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Abstract— In this paper, we consider the problem of captur-
ing an omnidirectional evader using a Differential Drive Robot
in an obstacle free environment. At the beginning of the game
the evader is at a distance L > l from the pursuer. The pursuer
goal is to get closer from the evader than the capture distance
l. The goal of the evader is to keep the pursuer at all time
farther from it than this capture distance. In this paper, we
found closed-form representations of the motion primitives and
time-optimal strategies for each player. These strategies are
in Nash Equilibrium, meaning that any unilateral deviation
of each player from these strategies does not provide to such
player benefit toward the goal of winning the game. We also
present the condition defining the winner of the game and we
construct a solution over the entire reduced space.

I. INTRODUCTION

This paper addresses a pursuit-evasion game [9], [4], [6],
[8], [7], [11]. In our past research [10], we have presented
a solution for the problem of tracking an omnidirectional
mobile evader at constant distance with a differential drive
robot. In that work we have obtained optimal motion strate-
gies, in the sense that they require the minimal speed for
both players for winning, and the long term solution for
the game, the main drawback of that work [10] is that
the proposed motion strategies are not time-optimal. The
distinguishing feature of our current work compared with
our previous research is that the proposed motion strategies
for both players are time-optimal.

The problem that we address in this work is close re-
lated to the classical differential game, called the Homicidal
Chauffeur problem [3], [12]. In that game a faster pursuer
(w.r.t. the evader) has as its objective to get closer than a
given distance (the capture condition) from a slower but more
agile evader. The pursuer is a vehicle with a minimal turning
radius. In our problem, we also consider a faster pursuer
and a more agile evader moving in an environment without
obstacles. However, there is an important difference between
both problems. In this work the pursuer is a Differential
Drive Robot (DDR), i.e. the pursuer can rotate in place.
The change in the mechanical model of the pursuer has
as distinctive consequences that both the pursuer motion
primitives and the motion strategies of both players also
change w.r.t. the Homicidal Chauffeur solution.

II. PROBLEM FORMULATION

A Differential Drive Robot (DDR), the pursuer, and a
omnidirectional evader move on a plane without obstacles.
The DDR tries to capture the evader. The game is over when

the distance between the DDR and the evader is smaller
than a critical value l. Both players have maximum bounded
speeds V max

p and V max
e , respectively. The DDR is faster

than the evader, V max
p > V max

e , but it can only change its
motion direction at a rate that is inversely proportional to its
translational speed [5]. We consider here a purely kinematic
problem, and neglect any effects due to dynamic constraints
(e.g., acceleration bounds). The DDR wants to minimize
the capture time tf while the evader wants to maximize it.
We want to know the optimal strategies that are in Nash
Equilibrium and are used by both players to achieve their
goals.

III. MODEL

A. Realistic space

The kinematics of the game can be described in an global
coordinate system, (xp, yp, θp) represents the pose of the
DDR and (xe, ye) is the position of the omnidirectional
evader. The Euclidean plane is called by Isaacs the realistic
space [3]. The state of the system can be expressed as
(xp, yp, θp, xe, ye) ∈ R2 × S1 × R2. The evolution of the
system is described by the following motion equations

ẋp =
(ω1 + ω2

2

)
cos θp, ẏp =

(ω1 + ω2

2

)
sin θp

θ̇p =
(ω2 − ω1

2b

)
, ẋe = ve cosψe, ẏe = ve sinψe

(1)

where ω1, ω2 ∈ [−V max
p /r, V max

p /r] are the controls of
the DDR, and they correspond to the angular velocities
of its wheels. Let ω1 be the angular velocity of the left
wheel and ω2 of the rigth wheel. With a suitable choice of
units and assuming an unit radius r of the pursuer’s wheels
[5], the rotational speeds are equivalent to the translational
speed meaning that Vp = 1

2 (ω1 + ω2). We denote as b
the distance between the center of the robot and the wheel
location. The evader controls its speed ve ∈ [0, V max

e ] and its
motion direction using ψe ∈ [0, 2π). We present two useful
definitions for the rest of the paper, ρv = V max

e /V max
p is

the ratio between the maximal translational speed of both
players, and ρd = b/l is the ratio of capture distance l to
the distance between the center of the robot and the wheel
location b. We must have that l ≥ b, otherwise the capture
distance would be located inside the robot.

B. Reduced space

Usually it is more convenient to analyse the problem
and perform all the computations in a space of reduced



dimension. In our case, the problem can be stated in a
coordinate system that is fixed to the body of the DDR
(see Fig. 1). The state of the system now can be expressed
as x = (x, y) ∈ R2. All the orientations in this system
are measured with respect to the y-axis, in particular, the
direction of motion of the evader ν.
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Fig. 1. Reduced space

Using the coordinate transformation given by

x = (xe − xp) sin θp − (ye − yp) cos θp

y = (xe − xp) cos θp + (ye − yp) sin θp

ν = θp − ψe

(2)

and computing its time derivative, the following model of the
kinematics in the DDR-fixed coordinate system is obtained

ẋ =
(ω2 − ω1

2b

)
y + ve sin ν

ẏ = −
(ω2 − ω1

2b

)
x−

(ω1 + ω2

2

)
+ ve cos ν

(3)

where ω1, ω2 ∈ [−V max
p , V max

p ] are again the controls of
the DDR, ve ∈ [0, V max

e ] is the control associated to the
speed of the evader and ν ∈ [0, 2π) is the control associated
to its motion direction in the new coordinate system. Doing
u1 = ω1, u2 = ω2, v1 = ve, and v2 = ν, this set of equations
can be expressed in the form ẋ = f(x, u, v), where u =
(u1, u2) ∈ Û = [−V max

p , V max
p ]× [−V max

p , V max
p ] and v =

(v1, v2) ∈ V̂ = [0, V max
e ]× [0, 2π).

IV. PRELIMINARIES

In this section, we describe some concepts from differen-
tial games that will be used in the solution of our problem.

A. Value of the game

The numerical quantity which the players strive to maxi-
mize and minimize can assume a variety of forms. However,
there is a standard representation of the payoff

J(xs, u, v) =

∫ tf

t0

L(x, u, v)dt+G(xf ) (4)

The time integral extends over the path traversed by x during
the game; its lower limit (we could call it t0) refers to the
starting point xs; its upper limit is the time tf to reach the
final point xf . L(x, u, v) is called the running cost function
and it is the cost incurred while the game is being played.
The term G(xf ) is called the terminal cost function and it is
the cost incurred for reaching a particular terminal state. For
problems of minimum time [1], as in our game, L(x, u, v) =
1 and G(xf ) = 0. Notice that in this case, Eq. (4) does not

explicitly depend on time. For a given state of the system
xs at time t0, V (xs) represents the outcome if the players
implement their optimal strategies starting at the point xs,
and it is called the value of the game at xs

V (xs) = min
u

max
v

∫ tf

t0

L(x, u, v)dt+G(xf ) (5)

In our game, Eq. (5) does not explicitly depend on time, and
it actually corresponds to the time it takes for the DDR to
capture the evader, when the players implement their optimal
strategies. No matter what the evader does, it cannot avoid
the capture for longer than V (x). If the evader does anything
different than its optimal strategy, the DDR can capture it
in less than V (x). Reciprocally, if the DDR does anything
different than its optimal strategy, the evader can remain
longer avoiding it.

B. Equilibrium strategies

Let γp(t,x(t)) = u(t) and γe(t,x(t)) = v(t) denote the
strategies of the DDR and the evader, respectively. A strategy
par (γ∗p , γ

∗
e ) is in (saddle-point) equilibrium if

J(γ∗
p , γe) ≤ J(γ∗

p , γ
∗
e ) ≤ J(γp, γ

∗
e ) (6)

where J is the payoff of the game in terms of the strategies.

C. Termination situations

Every state of the system in which the distance between
both players equals l represents an opportunity for the DDR
to capture the evader. This set of points is called terminal
surface [3] or target set [1], and it will be denoted as ζ.

In our game, termination occurs only when the distance
between the DDR and the evader is smaller than a critical
value l despite any opposition of the evader. The portion of
the terminal surface where the DDR can guarantee termi-
nation regardless of the choice of controls of the evader is
called the usable part (UP) [3]. From [3], we have that the
UP of our problem is given by

UP =

{
x ∈ ζ : min

u∈Û
max
v∈V̂

n · f(x, u, v) < 0

}
(7)

where n is the normal vector to ζ from point x on ζ and
extending into the playing space. n·f(x, u, v) is a projection
of the motion directions of both players along the best
direction for penetrating ζ and tell us if the strategies of
both players will be able to cross the terminal surface or
not. Those points of ζ where the expression in (7) holds with
the inequality reversed are called the non-usable part (NUP)
and the game will never terminate on the NUP. The set of
points that separates these parts is called the boundary of the
usable part (BUP). The BUP can be computed replacing the
inequality in (7) by an equality.

V. NECESSARY AND SUFFICIENT CONDITIONS FOR
SADDLE-POINT EQUILIBRIUM STRATEGIES

This section describes the necessary and sufficient condi-
tions for existence of saddle-point equilibrium strategies in
pursuit-evasion games [1].



A. Isaacs equation

The sufficient condition is provided by an extension of
the Hamilton-Jacobi-Bellman (HJB) equation [1] to a non-
cooperative game with two players. This extension is called
the Isaacs equation [1]

−∂V (x)

∂t
= min

u∈Û
max
v∈V̂

[
∂V (x)

∂x
· f(x, u, v) + L(x, u, v)

]
(8)

This equation provides a sufficient condition for saddle-point
equilibrium strategies.

B. Pontryagin’s principle

V (x) is not known at the beginning of the game thus Eq.
(8) cannot directly be used in the derivation of saddle-point
equilibrium strategies. An alternative is to use Theorem 1,
given below, which is an extension of the Pontryagin’s Max-
imum Principle (PMP) [2] to a two-players non-cooperative
game. This extension provides a necessary condition for
the existence of saddle-point equilibrium strategies and a
constructive manner to compute them. The synthesis of the
motion trajectories obtained with Theorem 1 will allow to
recover the necessary and sufficient conditions for saddle-
point equilibrium strategies and guarantee global optimality.

Theorem 1 (Pontryagin’s Maximum Principle):
Suppose that the pair {γ∗p , γ∗e} provides a saddle-point
solution in feedback strategies, with x∗ denoting the
corresponding state trajectory. Furthermore, let its open-loop
representation {u(t) = γp(t,x

∗(t)), v(t) = γe(t,x
∗(t))}

also provide a saddle-point solution (in open-loop polices).
Then there exists a costate function p(·) : [0, tf ] → Rn such
that the following relations are satisfied:

ẋ∗(t) = f(x(t), u∗(t), v∗(t)), ẋ∗(0) = xs (9)

H(p,x, u, v) = pT · f(x, u, v) + L(x, u, v) (10)

H(p,x∗, u∗, v) ≤ H(p,x∗, u∗, v∗) ≤ H(p,x∗, u, v∗) (11)

ṗT (t) = − ∂

∂x
H(p(t),x∗(t), u∗, v∗) (12)

pT (t) =
∂

∂x
G(xf ) along ζ = 0 (13)

where T denotes the transpose operator.
Equation (12) is known as the adjoint equation, and Eq. (10)
as the Hamiltonian function. Using Eq. (10) with p(t) =
∇V (x(t)) for the case of vector-valued functions, assuming
that the Hamiltonian is separable in u and v, and that V (x),
f(x, u, v) and L(x, u, v) do not explicitly depend on time,
we can rewrite the Isaacs equation as

min
u∈Û

max
v∈V̂

H(∇V (x),x, u, v) = 0 (14)

The vector ∇V (x) can be interpreted as the Lagrange mul-
tipliers used in constrained optimization or optimal control
theory.

VI. OPTIMAL TRAJECTORIES

In this section, we will derive the saddle-point equilibrium
strategies for both players.

A. Computing the UP and its boundary

We will compute the portion of the space where the
pursuer guarantees termination regardless of the choice of
controls of the evader.

Lemma 1: In this game, the UP has two regions:
1) The first region corresponds to capture the evader

when the DDR is moving forward following a straight
line in the realistic space. This region contains all the
points on ζ such that cos s > ρv and its boundary is
given by those points where cos s = ρv.

2) The second region corresponds to capture the evader
when the DDR is moving backward following a straight
line in the realistic space. This region contains all the
points on ζ such that cos s < −ρv and its boundary is
given by those points where cos s = −ρv.

Proof: For this problem, the terminal surface ζ is
characterized by the distance l between both players. In the
reduced space, ζ is a circle of radius l centred at the origin,
hence we can parametrise it by the angle s, which is the angle
between the evader’s position and the pursuer’s heading at
the end of the game (recall that all the orientations in the
reduced space are measured with respect to the y-axis). The
game terminates with

x = l sin s, y = l cos s (15)

The outward normal n to ζ is defined by
n = [sin s cos s] (16)

The UP after substituting Eq. (3) and Eq. (16) into
inequality (7) is given by

min
u1,u2

max
v1,v2

{sin s
[(u2 − u1

2b

)
y + v1 sin v2

]
+ cos s

[
−
(u2 − u1

2b

)
x−

(u1 + u2

2

)
+ v1 cos v2

]
} < 0

(17)

Substituting Eq. (15) into inequality (17) and after doing
some algebra, we found that

min
u1,u2

[
V max
e −

(u1 + u2

2

)
cos s

]
< 0 (18)

In inequality (18) we have two cases, (1) cos s > 0 or (2)
cos s < 0. In order to make inequality (18) minimal, u1 and
u2 must be equal and saturated (that is equal to |V max

p |).
Hence the pursuer moves in straight line. If cos s > 0 then(
u1+u2

2

)
> 0, the DDR is moving forward and if cos s < 0

then
(
u1+u2

2

)
< 0, the DDR is moving a backward. Note that

the same controls u1 and u2 are used in both the reduced
and realistic spaces. From inequality 18 and considering the
two cases described above, it is straightforward to compute
that the region where the DDR is moving forward contains
all points such that cos s > ρv and the region where the
DDR is moving backwards contains all the points such that
cos s < −ρv .

B. Hamiltonian

In our problem, we have that ∇V = [Vx Vy]
T and

L(x, u1, u2, v1, v2) = 1. Vx and Vy represent the partial
derivatives ∂V

∂x and ∂V
∂y . Substituting the last expressions and

the motion equations in (3) into Eq. (10), we obtain



H(x,∇V, u1, u2, v1, v2) = Vx

(u2 − u1

2b

)
y + Vxv1 sin v2

− Vy

(u2 − u1

2b

)
x− Vy

(u1 + u2

2

)
+ Vyv1 cos v2 + 1

(19)

Lemma 2: The Hamiltonian of our system is separable
in the controls of the pursuer and the evader, i.e., we can
write it in the form f1(x,∇V, u) + f2(x,∇V, v).

Proof: In our case, Eq. (19) can be rewritten in the
form H(x,∇V, u1, u2, v1, v2) = u1

2 (−yVx

b +
xVy

b − Vy) +
u2

2 (yVx

b − xVy

b − Vy) + v1(Vx sin v2 + Vy cos v2) + 1.

C. Optimal controls

Lemma 3: The time-optimal controls for the DDR that
satisfy the Isaacs’ equation (8) are given by

u∗
1 = −sgn

(
−yVx

b
+
xVy

b
− Vy

)
V max
p

u∗
2 = −sgn

(
yVx

b
− xVy

b
− Vy

)
V max
p

(20)

We have that both controls are always saturated. The controls
of the evader are given by

v∗1 = V max
e , sin v∗2 =

Vx

ρ
, cos v∗2 =

Vy

ρ
(21)

where ρ =
√
V 2
x + V 2

y . The evader moves at maximal speed.
Proof: By Lemma 2 we know that the Hamiltonian

of our game is separable in two parts, one in terms of the
pursuer’s controls and other in terms of the evader’s controls.
Let consider first the pursuer and later the evader. As the
DDR is the minimizer player it wants the Hamiltonian term
u1

2 (−yVx

b +
xVy

b −Vy)+ u2

2 (yVx

b − xVy

b −Vy) to be minimal.
Let A = −yVx

b +
xVy

b − Vy and B = yVx

b − xVy

b − Vy . There
are four cases, in which u1 and u2 must be saturated and
they correspond to the maximal translational speed V max

p .
1) If A < 0 and B < 0 then u1 = V max

p and u2 = V max
p ,

the pursuer moves forward in straight line.
2) If A > 0 and B > 0 then u1 = −V max

p and u2 =
−V max

p , the pursuer moves backward in straight line.
3) If A > 0 and B < 0 then u1 = −V max

p and u2 =
V max
p , the pursuer rotates in place counterclockwise.

4) If A < 0 and B > 0 then u1 = V max
p and u2 =

−V max
p , the pursuer rotates in place clockwise.

Analogously, as the evader is the maximizer player it
wants the term v1(Vx sin v2 + Vy cos v2) to be maximal.
The quantity in round parenthesis is the dot product of
the vectors [Vx Vy] and [sin v2 cos v2], and it is maximal
when [sin v2 cos v2] lies along [Vx Vy] (both vectors are
parallel and have the same direction). Hence v1 = V max

e

and [Vx Vy] ∥ [sin v2 cos v2].
In Lemma 9, we will present the actual evader trajectories.

D. Adjoint equation

If tf is the time of termination of the game, we define the
retro-time as τ = tf−t. The adjoint equation in its retro-time
form is

d

dτ
∇V [x(τ)] =

∂

∂x
H(x,∇V, u∗

1, u
∗
2, v

∗
1 , v

∗
2) (22)

We integrate the adjoint equation backward in time from
the UP to obtain ∇V (x). Substituting ∇V (x) into the
optimal controls expressions and the resulting controls into
the motion equations leads to the optimal trajectories starting
at UP.

Lemma 4: The expressions in retro-time of the adjoint
equation of our system are

d

dτ
Vx = −

(
u∗
2 − u∗

1

2b

)
Vy,

d

dτ
Vy =

(
u∗
2 − u∗

1

2b

)
Vx (23)

Proof: Substituting Eq. (19) into Eq. (22) (u∗1, u∗2, v∗1
and v∗2 denote the optimal controls of both players) it is
straightforward to obtain the expressions above.

In what follows, we will show that the players’ optimal
motion primitives in the realistic space correspond for the
evader to straight lines (see Lemmas 6 and 9), and for the
pursuer to rotations in place and straight lines, Lemma 7.

E. Integrating the adjoint equation starting at the UP

We need to establish the initial conditions of the system,
in this case, the values of Vx and Vy on the UP of ζ. From
Eq. (15), we have that

dx

ds
= l cos s,

dy

ds
= −l sin s (24)

Since V (x) = 0 on the UP of ζ it follows that

Vs =
dV

ds
=
∂V

∂x

dx

ds
+
∂V

∂y

dy

ds
= 0 (25)

Substituting Eq. (24) into Eq. (25), we obtain Vx cos s =
Vy sin s. From this expression, we have that on the UP

Vx = λ sin s, Vy = λ cos s (26)

where λ is a constant value.
Lemma 5: The solution of the adjoint equation (23) start-

ing at the UP is
Vx = λ sin s, Vy = λ cos s (27)

Proof: From Lemma 1, we know that near the end of
game the DDR is following a translation. Therefore Eq. (23)
takes the form d

dτ Vx = 0, d
dτ Vy = 0. We can directly verify

that Eq. (27) satisfies the last expressions.
Lemma 6: The evader is following a straight line in the

reduced and realistic spaces near the end of the game.
Proof: From Eq. (27), we know that Vx and Vy have

constant values. Substituting those values into the evader’s
controls in Eq. (21), we found that ν = v∗2 = s, the evader’s
motion direction in the reduced space, is also constant, thus
the evader is following a straight line in the reduced space
near the end of the game. From Lemma 1, we know that the
DDR is moving in straight line near the end of the game.
Therefore its motion direction θp is constant. From the third
expression in Eq. (2), and as ν and θp are constant, it is
straightforward to see that ψe, the evader’s motion direction
in the realistic space, will be constant.

Remark 1: From Lemma 3, the controls of the players
are independent, it would be misleading to conclude that
Lemma 6 implies that the evader’s controls depend on
the pursuer’s controls. But in order to show a graphical
representation of the trajectories in the realistic space it is



necessary to know the controls of the DDR to compute the
transformation between the reduced and realistic spaces.

F. Integrating the motion equations starting at the UP

Theorem 2: The trajectories of the system in the reduced
space leading directly to the end of the game are

x = −τV max
e sin s+ l sin s

y = τ(−V max
e cos s± V max

p ) + l cos s
(28)

the sign + is taken if the DDR is translating forward when
it captures the evader and the sign − if it is translating
backward.

Proof: The retro-time version of the motion equations
in the reduced space is

d

dτ
x = −

(u2 − u1

2b

)
y − v1 sin v2

d

dτ
y = +

(u2 − u1

2b

)
x+

(u1 + u2

2

)
− v1 cos v2

(29)

Substituting Eq. (27) into the controls expressions in Eq. (20)
and Eq. (21), and the resulting expressions into Eq. (29) we
obtain d

dτ x = −V max
e sin s, d

dτ y = −V max
e cos s ± V max

p

the sign + is taken if the DDR is translating forward, and
the sign − if it is translating backward. Integrating the last
equations with the initial conditions x = l sin s and y =
l cos s leads to the expressions in Eq. (28) for the trajectories.

G. Transition surface

The solutions in Eq. (27), and Eq. (28) are valid as long
as the DDR does not switch controls. The place where a
control variable abruptly changes in value, is known as a
transition surface. In our problem, after a time interval the
DDR switches controls and it starts rotating in place in the
realistic space.

Lemma 7: The DDR switches controls and it starts a
rotation in place in the realistic space, at τs = | b cos s

V max
p sin s |.

If s ∈ [0, π], u∗2 switches first, otherwise, u∗1.
Proof: We can compute the time τs when the DDR

switches controls, substituting Eq. (27) and Eq. (28) into Eq.
(20), and verifying which one of the resulting expressions
is the first in changing signs. Doing that we find that for
s ∈ [0, π2 ] , u∗2 switches first and it do it at

τs =
b cos s

V max
p sin s

(30)

The other cases can be proved using an analogous reasoning.

When the game reaches τs, we need to start a new
integration of the retro-time version of the adjoint (23)
and motion (29) equations. This integration takes as
initial conditions the values of Vx, Vy , x, and y at τs.
We will denote those values as Vxτs

, Vyτs
, xτs and yτs .

The equations in Lemmas 8 and 9, and Theorem 3 were
constructed after the DDR switches controls and it starts
rotating in place in the realistic space.

Lemma 8: The solution of the adjoint equation (23) start-
ing at τs is

Vx = λ sin

[
s−

(
u∗
2 − u∗

1

2b

)
(τ − τs)

]
Vy = λ cos

[
s−

(
u∗
2 − u∗

1

2b

)
(τ − τs)

] (31)

for τ ≥ τs.
Proof: Computing the retro-time derivative of Eq.

(23), we obtain two ordinary linear differential equa-
tions of second order with constant coefficients d2

dτ2Vx =

−
(

u∗
2−u∗

1

2b

)2

Vx,
d2

dτ2Vy = −
(

u∗
2−u∗

1

2b

)2

Vy . Solving these
equations with the values of Vx and Vy at τs as initial
conditions we obtain the expressions in Eq. (31).

Lemma 9: The evader is following a straight line in the
realistic space while the DDR is rotating in place.

Proof: Substituting Eq. (31) into Eq. (21) we have that,
the evader’s motion direction ν

′
= v∗2 = s−

(
u∗
2−u∗

1

2b

)
(τ −

τs). As the DDR is rotating in place, its motion direction
is given by θ

′

p = θsp −
(

u∗
2−u∗

1

2b

)
(τ − τs) where θsp is the

initial motion direction of the DDR in the realistic space.
Substituting ν

′
and θ

′

p into the third expression in Eq. (2)
we obtain that ψe = θsp − s, the evader’s motion direction in
the realistic space. Note that it is a constant value, thus the
evader is following a straight line in the realistic space.

Theorem 3: The trajectories of the system in the reduced
space starting at τs are

x = −yτs sin

[(
u∗
2 − u∗

1

2b

)
(τ − τs)

]
+ xτs cos

[(
u∗
2 − u∗

1

2b

)
(τ − τs)

]
− (τ − τs)V

max
e sin

[
s −

(
u∗
2 − u∗

1

2b

)
(τ − τs)

]
y = xτs sin

[(
u∗
2 − u∗

1

2b

)
(τ − τs)

]
+ yτs cos

[(
u∗
2 − u∗

1

2b

)
(τ − τs)

]
− (τ − τs)V

max
e cos

[
s −

(
u∗
2 − u∗

1

2b

)
(τ − τs)

]
(32)

Proof: Substituting Eq. (31) into Eq. (21), and the
resulting expressions into Eq. (29) we obtain d

dτ x =

−
(

u∗
2−u∗

1

2b

)
y − V max

e sin
[
s−

(
u∗
2−u∗

1

2b

)
(τ − τs)

]
, d

dτ y =(
u∗
2−u∗

1

2b

)
x−V max

e cos
[
s−

(
u∗
2−u∗

1

2b

)
(τ − τs)

]
. Computing

the retro-time derivative of these expressions and solving the
resulting expressions with the initial conditions xτs and yτs
we obtain the solution in Eq. (32).

Note that in Eqs. (31) and (32), (u∗1, u
∗
2) only takes the

values (−V max
p , V max

p ) and (V max
p ,−V max

p ) corresponding
to a rotation in place of the DDR in the realistic space.

VII. DECISION PROBLEM

A game of kind is a game in which we are interested in
what conditions lead to a winning for each one of the players.
In our case, this corresponds to find the conditions that make
capture possible for the DDR or escape for the evader.

A. The barrier

There is a surface called the barrier [3], which separates
the set of starting positions in those that result in capture and
those that result in escape for the evader. The answer to the
capture-escape question relies on whether or not the barrier
divides the playing space into two parts.



B. Construction of the barrier

As the BUP separates the points on ζ where immediate
capture occurs from those where does not, it is used as
initial condition for the barrier. The barrier is constructed
integrating the adjoint and motion equations starting at the
BUP. Suppose the barrier separates the playing space into
two parts. If x is in the outer side, the one that is not
contiguous to the UP, then the DDR cannot force the capture
because the UP is not accessible. If the barrier fails to
separate the playing space, then capture can always be
attained by the DDR.

C. Symmetry of the problem

Figure 2 shows a representation of the terminal surface ζ,
the UP and its boundary in the reduced space. The system
exhibits some symmetries with respect to the x and y-axis in
this representation. An analysis for the trajectories in the first
quadrant will be provided. This analysis can be extended to
the remaining quadrants using an analogous reasoning.

Surface

I

IIIII

IV

s

x

y

UP

UP

BUP

BUPBUP

BUP

Terminal

Fig. 2. Representation of ζ, UP and its boundary in the reduced space.

D. Solving the decision problem

We present two useful properties appearing in some tra-
jectories reaching the UP.

Lemma 10: The retro-time trajectories starting at the UP
in the first quadrant (see Fig. 2) reach the y-axis before the
system switches controls if l/V max

e ≤ τs.
Proof: When the retro-time trajectories reach the y-axis

we have that x = 0. From Eq. (28), −τV max
e sin s+l sin s =

0. By straightforward algebraic manipulation, we find that
τ = τc = l/V max

e . This is the retro-time it takes to reach the
y-axis if the system is following Eq. (28). We know that the
DDR switches controls at τ = τs, if τc ≤ τs the system will
reach the y-axis before switching controls.

Lemma 11: The trajectories in Eq. (28) that reach the
y-axis in the first quadrant, reach it at y = l/ρv.

Proof: From Lemma 10, we have that τc = l/V max
e is

the retro-time it takes to reach the y-axis when the system
is following Eq. (28). Substituting τc into Eq. (28) we
have that y = (l/V max

e )(−V max
e cos s + V max

p ) + l cos s.
After straightforward algebraic manipulation, we find that
y = yc = l/ρv .

Lemma 12: The barrier consists of a straight line seg-
ment, and it reaches the y-axis in the first quadrant if
ρv ≥ | tanS|/ρd where S = cos−1(ρv) is the angle at the
BUP (see Fig. 2).

Proof: In our game, the barrier is constructed by
substituting the value S = cos−1(ρv) into Eq. (28). After
a retro-time interval τs the DDR should switch controls
and start rotating in place in the realistic space. Then the
system should follow the trajectory described by Eq. (32)
in the reduced space. Figure 3 shows both trajectories. The
trajectory given by Eq. (32) intersects the initial segment
of the barrier and it comes back to the UP in the reduced
space. According to [3], the barrier is not crossed by any
trajectory followed by the system during optimal play, in
particular, it cannot cross itself. Also, it is possible to show
that the points over the portion of the trajectory given by Eq.
(32) correspond to states where the DDR can attain capture,
which contradicts the neutral nature of the barrier. Therefore
the portion of the trajectory given by Eq. (32), (the arc in
Fig. 3) must be discarded. The barrier reaches the terminal
surface with S = cos−1(ρv), and it consists only of a straight
line in the reduced space given by Eq. (28) that ends when
τ = τs. From Lemma 10, it is straightforward to verify that
the barrier will reach the y-axis if τc ≤ τs. Substituting the
values of τc and τs in the last inequality, we find that it can
be expressed as V max

e /V max
p ≥ (l| tanS|)/b, which can be

rewritten as ρv ≥ | tanS|/ρd.

UP

3

2

4

1

Barrier

Discarded arc

Fig. 3. The system is following the barrier from point 1 to point 3. The
two elements of the barrier are, the dashed line which is given by Eq. (28),
and the solid arc given by Eq. (32). The solid straight line represents the
optimal trajectory to reach the UP at point 4 from point 1. From points over
the solid arc the DDR can attain capture and the system follows a straight
line in the reduced space. Therefore this arc must be discarded.

Theorem 4: If ρv < | tanS|/ρd the DDR can capture the
evader from any initial configuration in the playing space.
Otherwise the barrier separates the space into two regions:

1) One between the UP and the barrier.
2) Another above the barrier.

The DDR can only force the capture in the configurations
between the UP and the barrier, in which case, the DDR
follows a straight line in the realistic space when it captures
the evader.

Proof: It follows from the definition of the barrier and
Lemma 12. All the trajectories between the barrier and the
UP are straight lines reaching the y-axis (refer to Lemma 11
and see Fig. 4).



VIII. PARTITION OF THE SPACE

A procedure commonly used to obtain the optimal controls
generating the optimal trajectories for the players in the
entire state space is to split this space into a set of mutually
disjoint regions. In each one of them, V (x) is continuously
differentiable. The behaviour and the construction of V (x)
is well established in such regions. The boundaries of these
regions are called singular surfaces [3], [12], [1], and V (x)
is not continuously differentiable across them.

A. Singular surface

Following the definition given in [1], a singular surface is
a manifold on which

1) the equilibrium strategies are not uniquely determined
by the necessary conditions of Theorem 2 or

2) the V (x) is not continuously differentiable, or
3) the V (x) is discontinuous.
1) Transition surface (TS): The place where a control

variable abruptly changes in value, is known as a transition
surface (see Lemma 15 for its construction in our game).

2) Universal surface (US): A surface to which opti-
mal trajectories enter from both sides –called the tributary
trajectories– and then stay on, is called a universal surface.
(see Lemma 16 for their construction in our game).

3) Dispersal surface (DS): A dispersal surface is defined
in [3], [1] as the locus of initial conditions along which the
strategy of the players are not unique. In our game it appears
due to symmetries in the reduced space, see subsection VIII-
C and Fig. 4.

Note that in our game we have found these three types of
singular surfaces. However there are other known types in
the literature [1].

B. Regions in the space

In this section, we describe the regions of the space
characterized by a particular combination of the motion
primitives of both players.

Lemma 13: The trajectories reaching the y-axis in the
first quadrant have an orientation s ∈ [0, tan−1(ρvρd)] at
the UP (refer to Fig. 2).

Proof: From Lemma 10, the trajectories that reach the
y-axis are those that τc ≤ τs. The last one that can reach
it will have τc = τs. Substituting the corresponding values
l/V max

e = (b cos s)/(V max
p sin s). From the last expression

we find that tan s = ρvρd. The trajectory given by s = 0
coincides with the y-axis. Therefore, the trajectories crossing
the y-axis will have an angle s ∈ [0, tan−1(ρvρd)] at the UP.

Lemma 14: The trajectories that have an orientation s ∈
(tan−1(ρvρd), cos

−1(ρv)] in the UP of the first quadrant
terminate when the DDR switches controls.

Proof: From Lemma 13 we know that the last trajectory
reaching the y-axis have an orientation sc = tan−1(ρvρd). If
s > sc the DDR switches controls before reaching the y-axis
and the system starts following the trajectories given by Eq.
(32). The value s = cos−1(ρv) corresponds to the barrier
and it only consists of a straight line. Thus the straight line

trajectories reaching the UP at s ∈ (tan−1(ρvρd), cos
−1(ρv)]

terminate when a switch of the DDR controls occurs.
Lemma 15: The points x in the reduced space where τ =

τs constitute a TS in the first quadrant. At the TS in the first
quadrant, the expression yVx − xVy − bVy = 0 is satisfied.
This surface is bounded by the barrier and the y-axis.

Proof: From the Lemma 14, we know that the trajecto-
ries ending at s ∈ (tan−1(ρvρd), cos

−1(ρv)) have a switch
when τ = τs. The points x where this happen constitute the
transition surface (TS). For the first quadrant, in those points
u2 changes sign. If s = cos−1(ρv), the trajectory corresponds
to the barrier, which is a straight line ending also just before
switching controls. Thus the y-axis and the barrier bound the
TS.

Lemma 16: The positive y-axis contains a US where the
pursuer follows the evader with its heading directly aligned
to it.

Proof: A necessary condition for a US, is that in
this surface there are no switches and the controls of the
players remain constant. From Lemma 13, one time-optimal
trajectory for the system corresponds to a straight line with
s = 0, i.e., the evader’s relative position aligned with the
pursuer’s heading. From Lemma 5, we know that along this
trajectory starting at UP and reaching yc, Vx = λ sin s,
Vy = λ cos s where λ is a constant value. At yc and as s = 0,
Vx = 0, Vy = λ. Substituting those values into the pursuer’s
controls Eq. (20), we find that the expressions inside the sign
functions are constant. Therefore, the DDR does not need
to switch controls. Substituting Vx = 0, Vy = λ into the
evader’s controls Eq. (21), we find that its motion direction
is also constant. Hence, the system is moving in straight line
over the y-axis in the reduced space. In the realistic space,
both players are moving following a straight line while the
system is moving over the positive y-axis in the reduced
space.

Lemma 17: The tributary trajectories reaching the US
associated to the first quadrant correspond to a rotation in
place of the DDR and straight line for the evader in the
realistic space.

Proof: In our game, the tributary trajectories entering
the US are generated by a different combination of the
optimal controls for the DDR (see Lemmas 6 and 9). For the
first quadrant, we have that u∗1 = V max

p and u∗2 = −V max
p

(the DDR rotates clockwise to align its heading with the
evader’s motion direction in the realistic space). Taking
these controls, the trajectories in the reduced space can be
computed using an analogous reasoning to the one applied
in Theorem 3.

C. Construction of the partition of the space

In Fig. 4, we present the partition and the corresponding
trajectories in the reduced space.

1) Region I: It is the set of points (shown in Fig. 4) that
can reach the UP with a single straight line trajectory in the
reduced space, which corresponds to a straight line motion
of both, the DDR and the evader, in the realistic space.



2) Region II: It is the set of points (shown in Fig. 4) that
reach the TS by following a trajectory given by Eq. (32) in
the reduced space, which corresponds to a rotation in place
for DDR and straight line trajectory for the evader, both in
the realistic space.

3) Region III: It is the set of points (shown in Fig. 4) that
reach the US following one of its tributary trajectories given
by Eq. (32) in the reduced space corresponding to a rotation
in place for the DDR and a straight line trajectory for the
evader, both in the realistic space.

In this figure, the x-axis contains a dispersal surface
(DS), represented as a bold line, where the rotation in place
trajectories coming from the upper and bottom parts of the
UP intersect. Over the DS the DDR have the option to rotate
either clockwise or counterclowise to catch the evader, both
trajectories will lead to the same optimal time-to-go. The
difference will be that at the end the capture will be attained
moving forward or backward in straight line in the realistic
space.

Fig. 4. Partition of the reduced space.

IX. SIMULATIONS

In this section, we present simulation results of the optimal
motion primitives of both players and the trajectories of the
system. The parameters used were V max

p = 1.0, V max
e = 0.5,

b = 1.0 and l = 1.0. At the beginning of the game (see. Fig.
5), the DDR is located at PI and the evader at EI . The
capture condition is achieved when the players are at the
positions PF and EF , respectively. In this figure, we can
observe that the DDR first rotates in place at PI aligning its
heading with the point PF , once it has accomplished that, it
moves toward the point PF following a forward motion in
straight line. The evader moves from point EI to point EF

following a forward motion in straight line. In the reduced
space (see Fig. 4), the system follows a trajectory in region

II reaching the TS. At that point, it follows a trajectory in
region I reaching the terminal surface.

Fig. 5. The DDR captures the evader rotating in place and then it follows
a forward motion in straight line.

X. CONCLUSIONS AND FUTURE WORK

In this paper, we found closed-form representations of the
motion primitives and time-optimal controls for each player.
In the realistic space, the motion primitives for the pursuer
are straight lines and rotations in place and for the evader
are straight lines. The strategies of the players that we have
found are in Nash Equilibrium. We also construct a solution
for the entire reduced space, and we present the conditions
defining the winner of the game. As future work, we want to
include acceleration bounds in the solution of the problem.
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