

Lenguaje de Programación Tarea 13

Maestro: José Luis Alonzo Velázquez

Problema 1. Hacer una función que halle la suma de: $2! + 4! + 6! + 8! + \cdots + (2n)!$, deberán leer un número n^1 de un archivo llamado "datos.txt" e imprimir la respuesta tal como en los ejemplos:

Ejemplo 1:

Ejemepte 1.		
Entrada	Salida	
1	2	

Ejemplo 2:

Entrada	Salida
4	41066

Problema 2. Escribir una función que leerá de un archivo llamado "datos.txt" los dos lados de un triángulo y el ángulo entre ellos, la función deberá regresar el valor del tercer lado:

Ejemplo 1:

Entrada	Salida
3.00	5.00
4.00	
90.00	

Ejemplo 2:

<i>u</i>	
Entrada	Salida
9.00	15.00
12.00	
90.00	

Problema 3. Escribir una función que leerá de un archivo llamado "datos.txt" los dos lados de un triángulo y el ángulo entre ellos, la función deberá regresar el valor del área del triángulo:

Ejemplo 1:

Entrada	Salida
3.00	6.00
4.00	
90.00	

Ejemplo 2:

Entrada	Salida
9.00	54.00
12.00	
90.00	

¹El número n será un entero positivo, es decir, $n \in \{1, 2, 3, \ldots\}$.

²En la entrada se muestran los datos como vienen en el archivo de texto.

³En la entrada se muestran los datos como vienen en el archivo de texto.

⁴En la entrada se muestran los datos como vienen en el archivo de texto.

Code::Blocks

Problema 4. Escribir una función que leerá de un archivo llamado "datos.txt" los dos lados y el ángulo⁶ entre los lados de 10 triángulos, la función deberá regresar el valor de la suma de las áreas de cada triángulo:

Ejemplo 1:

Salida
60.00

Ejemplo 2:

Entrada	Salida
3.00 4.00 90.00	378.69
13.00 4.00 19.00	
3.00 14.00 27.00	
12.00 23.00 26.00	
16.00 18.00 52.00	
22.00 27.00 23.00	
13.00 17.00 24.00	
4.00 4.00 25.00	
5.00 5.00 36.00	
6.00 6.00 150.00	

 $^{^5{\}rm En}$ la entrada se muestran los datos como vienen en el archivo de texto.

 $^{^6\}mathrm{El}$ ángulo será dado en grados.