TAREA 8 17 de Octubre de 2011 Se entrega Lunes 24 de Octubre

Problema 1. Prueba que r es una sucesión decimal de tamaño n si y sólo si $10^n r \in \mathbb{Z}$.

Problema 2. Demuestra que la representación decimal de un número natural es única. (Ind: utiliza inducción en el natural y el algoritmo de la división entera entre 10). ¿Qué pasa si consideramos alguna otra base $a \in \mathbb{N}$?.

Problema 3. Prueba que para toda expresión decimal finita $a_m a_{m_1} \dots a_0.b_1 b_2 \dots b_n$ se cumple que

$$a_m a_{m_1} \dots a_0 b_1 b_2 \dots b_n 999 \dots = a_m a_{m_1} \dots a_0 b_1 b_2 \dots b_n + 10^{-n}$$

Problema 4. Demuestra que si un número real u admite dos representaciones decimales distintas, necesariamente una termina con una sucesión de ceros y la otra con una sucesión de 9.

Problema 5. Da las posibles representaciones decimales de: a) 1.01, b) $\frac{1}{4}$ y $c)\frac{4}{25}$.

Problema 6. Procediendo análogamente, encuentra la (o las) sucesión binaria que representa a $\frac{1}{10}$.

Problema 7. Prueba que $\sum_{k=1}^{\infty} 10^{-(k!)}$ es irracional.

Problema 8. Si denotamos por $\mathbb{Q}[\sqrt{2}]$ al conjunto $\{a+\sqrt{2}b; a, b \in \mathbb{Q}\}$, define en él una suma y un producto que le den estructura de anillo y de modo que la inclusión de \mathbb{Q} sea un morfismo de anillos. ¿Tienen solución en $\mathbb{Q}[\sqrt{2}]$ las ecuaciones $x^2 = 2$ y $x^2 = 3$?.