Material de Apoyo

04 de Noviembre.

Cortaduras de Dedekind

El problema de la construcción de los números reales corresponde directamente con todos los puntos de la recta real (ℓ) que hemos visualizado desde el comienzo del curso. Veremos que observar con un poco más de detenimiento la recta real nos ayudara a dar una definición de los números reales \mathbb{R} .

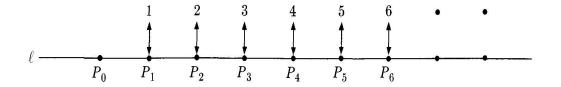


Figura 1: Aquí podemos ver la manera de relacionar un punto de ℓ con un número de \mathbb{R} .

Sea $T \in \ell$ definiremos

$$X_T = \{r | P_r \text{ esta a la derecha de } T\}$$

dicho de otra manera, X_T , es el conjunto de los números racionales r que que corresponden a los puntos $P_r \in \ell$ que están a la derecha de T.

Figura 2: Aquí podemos ver que el punto $P_S \not\in X_T$.

Propiedades de las cortaduras

Sea $T \in \ell$. Entonces:

- a) $\emptyset \subset X_T \subset \mathbb{Q}$.
- b) si r y s son números racionales tales que r < s y $r \in X_T$, entonces $s \in X_T$.
- c) X_T no tiene elemento mínimo.
- d) si $T = P_r$, entonces $X_T = \{ s \in \mathbb{Q} | r < s \}$.
- e) si S está ℓ a la izquierda de T, entonces $X_S \supseteq X_T$;
- f) La correspondencia $T \leftrightarrow X_T$ es uno a uno.

Con estas propiedades podemos decir que:

Definición 1. Una cortadura de Dedekind(cortadura de Dedekind superior) es un conjunto X de números racionales que satisface las siguientes propiedades:

- $a) \emptyset \subsetneq X \subsetneq \mathbb{Q}.$
- b) $si \ r < s \ y \ r \in X$, entonces $s \in X$.
- c) X no tiene elemento mínimo.

Pueden verificar que a cada elemento de ℓ le corresponde una cortadura y viceversa. Por lo tanto, es razonable definir $\mathbb R$ como el conjunto de todas las cortaduras de Dedekind.

Definición 2. El conjunto \mathbb{R} es el conjunto de todas las cortaduras de Dedekind.

Teorema 1. Si X y Y son dos cortaduras de Dedekind entonces pasa una y solo una de las siguientes relaciones: $X \subset Y$ o X = Y o $Y \subset X$.

Demostración. como ejercicio prueben esto ;)

Definición 3. Si tomamos un número racional arbitrario $r \in \mathbb{Q}$, entonces la cortadura $X(r) = \{t \in \mathbb{Q} : r < t\}$, a este conjunto se le denominará **cortadura racional** (asociada a r).

Es evidente que a todo número racional le corresponde una cortadura racional y solamente una. Podemos establecer así una aplicación inyectiva $\mathbb{Q} \longrightarrow \mathbb{R}$ que al número racional r le asocie la cortadura racional X(r).

Una cortadura X es cortadura racional si y solo si existe $r \in \mathbb{Q}$ tal que $r = \inf(X)$.

Sean r y s numeros racionales, entonces se cumple que:

- a) X(r) < X(s) si y solamente si r < s.
- b) $X(r+s) = \{t + u | t \in X(r), u \in X(s)\}.$
- c) $si \ r \ge 0$ $y \ s \ge 0$, entonces $X(r \cdot s) = \{t \cdot u | t \in X(r), u \in X(s)\}$.

Definición 4 (Suma en \mathbb{R}). Sean $X,Y \in \mathbb{R}$. Definimos

$$X + Y = \{r + s | r \in X, s \in Y\}$$

entonces X + Y es llamada la suma de X y Y.

Definición 5 (Negación en \mathbb{R}). Sea $X \in \mathbb{R}$. Definimos

$$-X = \{r \in \mathbb{Q} | r > t \text{ para alg\'un } t \in \mathbb{Q}, \text{ tal que } t > -s \text{ para todo } s \in X\}.$$

Definición 6 (El cero). Diremos que X es positivo si X(0) < X y que es negativo si X(0) > X.

Como ejercicio deben probar la correspondiente propiedad de tricotomía.

Definición 7 (Multiplicación en \mathbb{R}). Sean $X \in \mathbb{R}$ y $Y \in \mathbb{R}$. Definimos

- a) $X \cdot Y = \{r \cdot s | r \in X, s \in Y\}$ si X y Y son no negativos.
- b) $X \cdot Y = -[(-X) \cdot Y]$ si X negativo y Y positivo.
- c) $X \cdot Y = -[X \cdot (-Y)]$ si X positivo y Y negativo.
- d) $X \cdot Y = [(-X) \cdot (-Y)]$ si X negativo y Y negativo.

Ahora los siguientes ejemplos