
Tarea 5

Estabilidad

Entregar el Lunes 10 de Noviembre

Problema 1. Hirsh Smale Página 215 problema 1

1. Find the differential equations for the network in Fig. D, where the resistor is voltage controlled, that is, the resistor characteristic is the graph of a C^1 function $g: \mathbb{R} \to \mathbb{R}$, $g(v_R) = i_R$.

Problema 2. Hirsh Smale Página 215 problema 2

2. Show that the LC circuit consisting of one inductor and one capacitor wired in a closed loop oscillates.

Problema 3. Hirsh Smale Página 226 problema 3

3. (Hartman [9, Chapter 7, Theorem 10.2]) Find the phase portrait of the following differential equation and in particular show there is a unique non-trivial periodic solution:

$$x' = y - f(x),$$

$$y' = -g(x),$$

where all of the following are assumed:

- (i) $f, g \text{ are } C^1$;
- (ii) g(-x) = -g(x) and xg(x) > 0 for all $x \neq 0$;
- (iii) f(-x) = -f(x) and f(x) < 0 for 0 < x < a;
- (iv) for x > a, f(x) is positive and increasing;
- (v) $f(x) \to \infty \text{ as } x \to \infty$,

(Hint: Imitate the proof of the theorem in Section 3.)

Problema 4. Hirsh Smale Página 226 problema 5

5. Consider the equation

$$x' = \mu(y - (x^3 - x)), \quad \mu > 0,$$

 $y' = -x.$

It has a unique nontrivial periodic solution γ_s by Problem 3. Show that as $\mu \to \infty$, γ_s tends to the closed curve consisting of two horizontal line segments and two arcs on $y = x^2 - x$ as in Fig. I.