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Abstract

This thesis provides a theoretical study of the statistical properties of some neural network

models by means of random matrix theory and model selection tools. We discuss the concen-

tration inequalities approach, established in Louart, Liao and Couillet [1] in 2018 to study

the performance of extreme learning machines. Some limiting spectral results of certain ma-

trices, presented in Pennington and Worah [2] in 2017 and Benigni y Péché [3] in 2019, are

studied, as well as two novel applications of a model selection approach to select a hyperpa-

rameter in extreme learning machines. Moreover, some original and applicable results about

new and useful activation functions are presented, as well as conjectures related to the speed

of the training of deep neural networks.
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tion, Concentration Inequality, Generalized Information Criterion, Generalized Cross-
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CHAPTER 1

Introduction

In the mid-twentieth century, with the work of Frank Rosenblatt, the artificial neural networks

emerged. The work of the psychologist Donnald Hebb and the increasing interest in using

computers motivated the development of computational algorithms that, in a sense, imitate

human learning. In 1958, Frank Rosenblatt made the first precursor of neural networks, the

perceptron, which will be presented later in this section. Work of Minsky and Papert in 1969

showed that the perceptron was not able to solve some useful and easy problems in computer

science, such as the learning of a linear function. Therefore, the perceptron was forgotten for

more than a decade.

In 1975, Paul Werbos proposed the backpropagation method. However, it was not until

1985 that it was completely understood. At that point, there was a resurgence of neural net-

works because backpropagation could answer certain questions about the perceptron. Since

then, there have been continuous advances in this area. Neural network applications in com-

puter vision and machine learning in general, such as Krichenvsky, Sutskever and Hilton in

2012 and Schmidhuber in 2015, have provoked a really strong research interest. Neverthe-
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less, the progress in neural networks has been achieved by the power of modern computers

and the availability of large datasets rather than by mathematical and statistical results. Very

recently, some authors, such as Louart, Liao and Couillet [1] in 2018 and Pennington and

Worah [2] in 2017, have claimed that there is a lack of appropriate theoretical tools to com-

pletely understand these networks.

The subject of this thesis is a theoretical study of some neural network models by means

of random matrix theory and model selection tools. Specifically, we use concentration in-

equalities and limiting spectral results of certain matrices, as well as a novel application of

an information criterion and a cross-validation type of approach to select a hyperparame-

ter. Moreover, some original and applicable results about some new and useful activation

functions are presented, as well as some conjectures.

In order to understand the goal of this thesis, we first have to state the models considered.

In the image below we can observe the structure of a neural network:

1

In a) we have a perceptron or neuron:

here, a weighted (w1, ..., wn) sum of the char-

acteristics (x1, ..., xn) of a datum is evaluated

by a function (f ), called the activation func-

tion, in order to explain a feature (yj).

In b) we can see a neural network: an ar-

rangement of neurons in layers connected by

weights (wi). A bias in each neuron is con-

sidered too. The first layer is the input layer,

which has the data. In the output layer, we

have the output of the algorithm.

For example, if we are considering an image classification task, the input layer has the

1Vieira, S., Pinaya, W. H., & Mechelli, A. (2017). Using deep learning to investigate the neuroimaging

correlates of psychiatric and neurological disorders: Methods and applications. Neuroscience & Biobehavioral

Reviews, 74, 58–75.
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Chapter 1. Introduction

pictures and the output layer has the possible categories from which the network will choose.

This classification can be a multiclass classification.

The neural network process consists of two phases. The training phase is when, on a

known dataset, we tune (learn) the parameters (weights and bias) of the network by an op-

timization algorithm, such as stochastic gradient descent (SGD), in order to get the least

misclassification error in terms of a loss function. The testing phase is when, fixing the pa-

rameters, we use a different dataset to study the performance of the algorithm by its misclas-

sification error. From a statistical point of view, the training dataset is our data with which to

tune the parameters of the model in order to minimize a loss function, and the testing dataset

is a new dataset which will help to study how good is our model to solve a specific task (for

example, classification).

In the early twenty-first century, the concept of a random neural network was developed.

This is basically a neural network with some random variations, in our case, this will mean

with random weights. This type of neural network is very popular because of its ability to

solve optimization problems. The smaller number of trainable parameters is another attrac-

tive feature of this kind of network. In Rahimi and Recht in 2007 and Saxe et al. in 2011, it

was stated that well designed randomly connected neural networks can achieve performances

close to those of classic neural networks. Moreover, in Cambria et al. in 2015, it was estab-

lished that intelligently designed single-layer random neural networks can reach superhuman

capabilities, as presented in [1].

On the other hand, most of the recent neural network models initialize their parameters

with random weights. This could be seen as the neural networks with random weights defin-

ing the initial loss landscape of the optimization. In Pennington and Worah [2] in 2017 and

Pennington and Bahri [6] in 2017, it was claimed that these networks are closely related to

random feature methods. They said there are important roles for these models in the field

of neural networks, so they are important objects of study. The article [2], and our applica-

tions in Chapter 5, base their study on a physics paradigm: when we want to study a large

and complex system, we make the assumption that its components are random variables, so

3



we can obtain useful results using probability theory. By analogy, in nuclear physics, the

Schödringer operator associated with an atom with a heavy nucleus can be replaced by a

Hermitian random matrix, so the eigenvalues of this matrix correspond to the observed en-

ergy levels2. Modern neural network models are complex and large systems, so, as is stated

in [2], it is natural to think about what insights we can obtain considering their components

as random variables.

Let us note that we can describe the neural network process using matrices. For exam-

ple, the input and output of each layer in the network are matrices. Thus, the random neural

networks considered in the first part of this thesis, as well as the neural networks with initial-

ized random weights used in the last chapter of this thesis, can be approached in terms of an

initial random matrix model. Although these models involve random matrices, the applica-

tion of the vast theory of random matrices to these systems is not straightforward. The main

problem is that in many applications the activation functions are nonlinear. This nonlinear-

ity could induce nonlinear dependence in the entries of the random matrices used to analyze

the networks. Two approaches to deal with this problem are discussed in this work: using

concentration inequalities, proposed by Louart, Liao and Couillet [1] in 2018 and Louart

and Couillet [7] in 2018, and using the so called method of moments for random matrices,

established in [2].

The goals of this thesis are the following: first, to discuss and summarize the two random

matrix approaches above and show how these can help to obtain applicable results to neu-

ral networks. Second, to propose a novel information criterion and a cross-validation type

method to select a hyperparameter considered in the model from [1]. Finally, based on re-

sults from Beningni y Péché [3] in 2019, to present a conjecture on the spectral distribution of

the covariance output matrix of a multilayer neural network and its implications on training

speed.

This thesis is organized as follows. In Chapter 2, “Preliminaries on Probability and Ran-

dom Matrices,” the main tools to understand the theoretical results of this thesis are presented:

2Wigner, Eugene P. “Random matrices in physics.” SIAM Review 9.1 (1967): 1–23.
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Chapter 1. Introduction

one part is on the more classic probability tools, such as concentration inequalities and sub-

Gaussian random variables. Another section is on random matrix theory, another for the

empirical spectral distribution, the Stieltjes transform, and the Marchenko–Pastur Theorem.

Chapter 3 summarizes the results of [1]: the concentration inequalities approach is used

to obtain estimates of the asymptotic performance of a single layer random neural network.

This is achieved using concentration results on a key matrix for the training and testing errors.

We discuss here two particular important results in the random matrix area. The first one is

a concentration inequality for quadratic forms for vectors with nonlinear dependent entries.

The second one is a kind of Marchenko–Pastur theorem on the data, i.e., a characterization

of its empirical asymptotic spectral distribution by means of its Stieltjes transform.

In [1] it is stated that its model can be seen naturally as a random ridge regression. Thus,

this model employs a regularization hyperparameter. In Chapter 4 we propose two original

applications of model selection to select this hyperparameter. This is a traditional statistical

approach, first developed by the Generalized Information Criterion (GIC) and then by Gen-

eralized Cross-Validation (GCV). GIC is an information criterion based on bias correction

for models that use estimation procedures more general than the maximum likelihood esti-

mation. GCV can be seen as a weighted version of the ordinary cross-validation method.

Our proposed results can be seen as a complement to those of [1] concerning the selection

of the hyperparameter. It is important to note that these two methods, presented in Chapter

4, are developed for a dataset and do not consider the classical training and testing datasets

in the field of neural networks. Nevertheless, we adopt this nomenclature in our statistical

approach.

Finally, in Chapter 5, we first study some closely related work to the aforementioned kind

of Marchenko–Pastur theorem in [1]. These results, due to [2] and [3], use the method of

moments as the main tool. The first theorem on the asymptotic empirical spectral distribution

of the covariance output matrix of a single layer neural network with random weights is

presented. This theorem was proposed in [2]. They observed that under certain hypotheses

on the properties of the activation function, the asymptotic empirical spectral distribution of

5



the input covariance matrix of the network is conserved. Also, it was conjectured that this

property holds for multilayer neural networks with random weights. They claimed that this

feature could be beneficial for an increase of the training speed, an interesting property in

the field of deep learning. In a recent work, in 2019, Benigni and Péché [3] proved this

conjecture for a specific class of activation functions. In this part of the thesis, we present

a suitable modification of this result. Moreover, we present a method for developing new

useful activation functions based on classical activation functions. In order to show how

these practical random matrix results can be applied to deep learning, in the final part of

this chapter, some practical results are presented: we carried out experiments with different

activation functions that pertain to our approach and the approach in [3]. We can conclude that

our approach has important implications for the speed of training of deep neural networks.

The code used for the practical outcomes in this thesis can be found in a repository on

GitHub.
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CHAPTER 2

Preliminaries on Probability and Random Matrices

In this chapter we present the main definitions that will be used throughout this thesis. We

first present the basic probability tools, and then some of the definitions and results of random

matrix theory.

2.1 Probability Tools

2.1.1 Concentration Inequalitites

Let us first define the concentration inequalities:

Definition 1. Let x1, ..., xn be random variables with values in X . Let ζ : X n → R be a

function and Z = ζ(x1, ..., xn). A concentration inequality for Z is a bound like:

P(Z −E(Z) ≥ t) ≤ gz(t)

for 0 ≤ t ≤ t0. The left bound is defined in a similar way.
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2.1. Probability Tools

In order to illustrate this definition, consider X a nonnegative random variable and t ∈

R+. Markov’s inequality ensures that

P(X ≥ t) ≤ E[X]

t
.

Even more, if h is a strictly increasing nonnegative function, then

P(h(X) ≥ h(t)) ≤ E[h(X)]

h(t)
.

Using the function h(x) = x2 we get Chebyshev’s inequality:

P(|X −E[X]| ≥ t) = P(|X −E[X]|2 ≥ t2) ≤ E[|X −E[X]|2]

t2
=
V[X]

t2

Thus, we have found a concentration inequality for X .

2.1.2 Sub-Gaussian Random Variables

In many parts of this thesis we will use the concept of a sub-Gaussian random variable. We

can think of this as a centered random variable such that its distribution tails decay at least as

fast as a Gaussian distribution. A formal definition is

Definition 2. Let W be a real-valued random variable. We say W is sub-Gaussian if there is

some b > 0 such that for every real t,

E[etW ] ≤ e
b2t2

2 .

Also, we can say W is a sub-Gaussian random variable with parameter b.

As an example, let us consider W ∼ N(0, σ2). It is not difficult to show that for any

t ∈ R,

E[etW ] ≤ e
σ2t2

2 .

Thus, W is a sub-Gaussian random variable with parameter σ.

The following proposition confirms the intuition given previously.

8



Chapter 2. Preliminaries on Probability and Random Matrices

Proposition. If W is a sub-Gaussian random variable with parameter b, then

E[W ] = 0, and V[W ] ≤ b2.

The following proposition will be present in some assumptions in this thesis.

Proposition. Let ϕ be a Lipschitz continuous function. If W is a standard Gaussian random

variable, then ϕ(W )−E(ϕ(W )) is a sub-Gaussian random variable.

2.2 Random Matrix Theory (RMT)

2.2.1 The Empirical Spectral Distribution

We can see the empirical spectral distribution, for any square matrix, as a probability distri-

bution that places equal mass on each of its eigenvalues.

Definition 3. Let M be an n × n symmetric matrix, not necessarily random. Let λj(M),

for j = 1, ..., n, be the n eigenvalues of M , including multiplicity. The empirical spectral

distribution of M is

ρM(t) =
1

n

n∑
j=1

1λj(M)≤t

If the limit exists (in the weak almost surely sense), the limiting spectral density is defined as

ρ(t) = lim
n→∞

ρM(t).

Thus, the empirical spectral distribution of a square matrix evaluated at t counts the num-

ber of eigenvalues less than or equal to t.

2.2.2 Stieltjes Transform

The Stieltjes Transform will be used in many theorems in this work. It is used to characterize

the asymptotic empirical spectral distribution of certain matrices in Chapter 3 and Chapter 5.

The Marchenko–Pastur Theorem is an example of how this can be achieved.

9



2.2. Random Matrix Theory (RMT)

Definition 4. For ρ a positive finite measure on R, we define the Stieltjes transform gρ :

C+ → C+ of ρ by

gρ(z) =

∫
R

1

x− z
dρ(x)

where C+ = {z ∈ C|Im(z) > 0}.

Let us note that the Stieljtes transform can be seen as a moment generating function: Let

ρ be a probability measure with support a compact set [−R,R]. The geometric series ensures

that

gρ(t) =

∫ R

−R

1

x− t
dρ(x)

= −
∫ R

−R

∞∑
n=o

xn

tn+1
dρ(x)

= −
∞∑
n=o

1

tn+1

∫ R

−R
xndρ(x)

= −
∞∑
n=o

mn

tn+1

for t ∈ C+ with |t| > R. Therefore, under these conditions, gρ is a power series in 1
t

whose coefficients are the moments of ρ. This is a tool which will be used in Chapter 5 for

computing Stieltjes transforms.

The following two theorems are important for characterizing an asymptotic measure by

its asymptotic Stieltjes transform.

Theorem 2.2.1. Let ρ, ρ1, ρ2, ... be probability measures. Then ρn
w−→ ρ if and only if

gρn(t)
n→∞−−−→ gρ(t) for all t ∈ C+.

Theorem 2.2.2. Inversion formula: Let ρ be a probability measure, and a, b ∈ R. Then

1

2
[ρ({a}) + ρ({b})] + ρ((a, b)) = lim

y↓0

1

π

∫ b

a

Im[gρ(x+ iy)]dx.

When ρ is absolutely continuous with respect to Lebesgue measure with density fρ, then

fρ(x) =
1

π
lim
y↓0

Im[gρ(x+ iy].

This property ensures that there is a one-to-one correspondence between finite measures on

R and Stieltjes transforms.

10



Chapter 2. Preliminaries on Probability and Random Matrices

2.2.3 The Marchenko–Pastur Theorem

Let us make the following definition.

Definition 5. Let X an n × p matrix with independently identically distributed centered

entries with variance equal to 1. We define a Wishart type matrix B as the following n × n

matrix:

B =
1

p
XX t.

If x1, ..., xn are the columns of Xn, we can rewrite B as

B =
1

p

p∑
k=1

xkx
t
k.

Let us recall that if λ1, ..., λn are the eigenvalues of B, we can write the empirical spectral

measure as

ρB =
1

n

n∑
k=1

δλk,

where δ∗ is the Dirac delta. The following theorem give us the asymptotic empirical spectral

distribution of B when n, p→∞ at the same rate:

Theorem 2.2.3. The Marchenko–Pastur Theorem. Let (xij)i,j be a family of indepen-

dent identically distributed random variables (such as in the previous definition) such that

E[x11] = 0 and E[x2
11] = σ2 is finite. If n, p→∞ such that n

p
→ c ∈ (0,∞), then

ρB
w−→ ρMP almost surely,

whose Stieltjes transform, g(z), satisfies the following equation

zg(z)2 + (z − c+ 1)g(z) + 1 = 0,

with solution

g(z) =

√
(z − λ−)(z − λ+)

2z
− 1

2
− 1− c

2z

where λ± = σ2(1±
√
c)2.

11



2.2. Random Matrix Theory (RMT)

Let us note that using the inversion formula we can get the distribution of ρMP , which is

given by (
1− 1

c

)
+
δ0(dx) +

1

2πcσ2x

√
(λ+ − x)(x− λ−)1[λ−,λ+](x)dx

where (.)+ = max(0, .). Many theorems similar to this will be presented in Chapter 5.

12



CHAPTER 3

Extreme Learning Machine Performance via RMT

In this chapter we summarize and discuss the results of [1]. In order to study the asymptotic

performance of a single-layer random neural network (Extreme Learning Machine), a con-

centration inequality approach is presented. We first have to define the notation used in this

chapter.

Notation

• ||.|| denotes the Euclidean vectorial norm for vectors and the linear operator norm for

matrices.

• ||.||F denotes the Frobenius norm for matrices:

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij|2 =
√
tr (A∗A)

• σ(M) denotes the entry-wise application of a function σ : R→ R to the matrix M .

• σ(v) denotes the entry-wise application of a function σ : R→ R to the vector v.

13



3.1. The Model

• =(a) denotes the imaginary part of the complex number a.

• 1T denotes the T -dimensional vector with all its entries equal to 1.

For a = φ(b) ∈ Rl with l ≥ 1 and b ∼ N(0, Il), we write a ∼ Nφ(0, Il).

3.1 The Model

Having stated the notations let us define the model and its process used in this chapter. We

first describe the neural network model, then the training and testing phases are stated.

3.1.1 The neural network

We can view our random neural network as a ridge regression task on random feature maps.

Let T be the size of the input training set and p the dimension of each input datum. We

consider a single layer neural network with n neurons. Let σ : R → R be the activation

function. In the next section we will impose some conditions on σ.

The process of the network is as follows:

• We multiply each x ∈ Rp by a random matrix W ∈ Rn×p, which yields the vector

Wx ∈ Rn. Note that this is a random neural network approach because we have a

random weights matrix.

• We apply σ : R→ R to Wx to get the vector σ(Wx) ∈ Rn.

• Then the output is βTσ(Wx), with β ∈ Rn×d a matrix to be designed. We call β the

regression matrix.

In the process of using a neural network we have two phases. The first is called the train-

ing phase; here we learn (tune/estimate) the regression matrix β, using a known input–output

dataset (X, Y ), by minimizing a loss function (the mean square error with some regulariza-

tion factor). This is similar to a classical ridge regression task. The second phase is called the

14



Chapter 3. Extreme Learning Machine Performance via RMT

testing phase; here we evaluate how good the selection of β has been. Then we fix β and the

network operates on a new input dataset X̂ corresponding to new unknown output dataset Ŷ .

It is of interest to evaluate the mean square error in this phase.

3.1.2 Training phase

In the training phase, we have:

• Known input data, a matrix X = [x1, ..., xT ] ∈ Rp×T

• Known output data, a matrix Y = [y1, ..., yT ] ∈ Rd×T

• We are looking for β that minimizes the loss function

`(β) =
1

T

T∑
i=1

||βTσ(Wxi)− yi||2 + γ||β||2F ,

with γ > 0 being some regularization factor to be selected.

It is well known that the regularization factor γ is very important to the ridge regression.

It is intuitive to think that a small γ can minimize the loss function; neverthless, this could

result in a large test error. On the other hand, large values for γ induce over-fitting. In the

future, we will find a way to adequately choose the factor γ.

The solution of the minimization problem is:

β =
1

T
Σ(

1

T
ΣtΣ + γIT )−1Y t =

1

T
(

1

T
ΣΣt + γIn)−1ΣY t,

with Σ = σ(WX). We write

Q = (
1

T
ΣtΣ + γIT )−1.

Some of the literature refers to Q as the resolvent of 1
T

ΣtΣ. Thus we can define the training

error as

Etrain =
1

T
||Y T − Σtβ||2F .

It is easy to show that, rewriting β in terms of Q, we can write

Etrain =
γ2

T
tr(Y tY Q2).
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3.2. Assumptions

This is the expression of Etrain that will be used from now on. Note that this expression

depends on the selection of γ.

3.1.3 Testing phase

Now it is time to state the second phase components of the network. In the testing phase, we

have:

• Known input data, a matrix X̂ ∈ Rp×T̂ .

• Unknown output data, a matrix Ŷ ∈ Rd×T̂ .

Note that T may be different than T̂ . With the regression matrix β fixed, we can define the

test error as

Etest =
1

T̂
||Ŷ T − Σ̂Tβ||2F ,

which corresponds to the mean-square error, where Σ̂ = σ(WX̂).

Note that β is the matrix learned in the training phase; thus, it depends only on X , Y and

γ. We want to determine a γ that minimizes Etest. When Etest is small, we can say that the

network has good generalization performance. In the testing phase results Section (3.4) we

will formulate a conjecture about Etest that, if proved, would allow us to satisfactorily choose

the regularization factor γ.

3.2 Assumptions

To obtain the principal results, we need to make the following three assumptions:

1. Sub-GaussianW : LetW be the result of evaluating a Lipschitz function φ on a Ginibre

matrix with standard Gaussian entries, i.e.,

W = φ(W̃ ),

16



Chapter 3. Extreme Learning Machine Performance via RMT

where W̃ has independent and identically distributed N(0, 1) entries, with φ a λφ-

Lipschitz function.

2. The function σ: The activation function σ : R→ R is λσ-Lipschitz.

This is usual for many of the activation functions used in practice, such as sigmoid

functions, rectified linear unit, or the absolute value operator.

3. Growth rate: As n→∞,

0 < lim inf
n

min{p
n
,
T

n
} ≤ lim sup

n
max{p

n
,
T

n
} <∞,

while γ, λφ, λσ > 0, for d constant. Moreover, lim supn ||X|| <∞ y lim supn maxi,j |Yij| <

∞.

3.3 Training phase results

In this section, our main object of study is the random variable training error:

Etrain =
γ2

T
tr(Y TY Q2).

We want to establish an asymptotic estimate of Etrain. Under Assumption 3 (growth rate),

we will get that Etrain concentrates around its mean. Thus, E[Q2] will be a central object in

the asymptotic evaluation of Etrain.

We establish the following notation to summarize some important quantities. Also, we

introduce some key matrices for the main result about the training error.

Notation

• n is the number of neurons in our present random neural network model.

• T is the number of elements in the input training dataset.

• p is the dimension of each input datum.

• γ is the regularization factor.
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3.3. Training phase results

Definition 6. For w ∼ Nφ(0, Ip) and X = [x1, ..., xT ] ∈ Rp×T , the input data matrix, we

define

Φ = E(σ(wTX)Tσ(wTX)),

and

Q̄ = (
n

T

Φ

1 + δ
+ γIT )−1,

where δ is the unique positive solution of δ = 1
T
tr[ΦQ̄]. Finally, we define

Ψ =
n

T

Φ

1 + δ
.

The following theorem provides us an asymptotic evaluation of the training mean-square

error of a single-layer random neural network. This is the application result we are looking

for.

Theorem 3.3.1. (Under Assumptions 1, 2, and 3) For every ε > 0, almost surely

n
1
2
−ε(Etrain − Ētrain)→ 0,

where

Ētrain =
γ2

T
tr

[
Y TY Q̄

[ 1
n
tr(ΨQ̄2)

1− 1
n
tr(ΨQ̄)2

Ψ + IT

]
Q̄

]
.

To achieve this goal, as we said previously, both E[Q2] as well as E[Q] need to be es-

timated. In order to get these estimates, the following two theorems state the asymptotic

equivalence for E[QAQ] and E[Q], for certain matrix A. Note that to evaluate practically

Theorem 3.3.1, it is necessary to estimate the value of Φ for various popular σ activation

functions. In a subsequent section we will discuss this estimation.

Theorem 3.3.2. (Under Assumptions 1, 2, and 3) LetA ∈ RT×T be a symmetric nonnegative

definite matrix which is either Φ or a matrix with uniformly bounded operator norm. Then,

for all ε > 0, there exists c > 0 such that, for all n

||E[QAQ]−
(
Q̄AQ̄+

1
n
tr(ΨQ̄AQ̄)

1− 1
n
trΨ2Q̄2

Q̄ΨQ̄
)
|| ≤ cn−

1
2

+ε.
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Chapter 3. Extreme Learning Machine Performance via RMT

For E[Q] we have the following result provided by the standard resolvent approach of

random matrix theory.

Theorem 3.3.3. (Under Assumptions 1, 2, and 3) For any ε > 0, there exists c > 0 such that

||E[Q]− Q̄|| ≤ cn−
1
2

+ε.

Using this theorem along with a concentration result on 1
T
trQ, we have the following

theorem on the spectral measure of 1
T

ΣTΣ wich can be seen as a nonlinear extension of the

Marchenko–Pastur theorem.

Theorem 3.3.4 (Nonlinear M–P extension ). (Under Assumptions 1, 2, and 3) Let λ1, ..., λT

be the eigenvalues of 1
T

ΣTΣ and µn = 1
T

∑T
i=1 δλi . Then, for any bounded continuous func-

tion f , with probability 1 ∫
fdµn −

∫
fdµ̄n → 0.

Where µ̄n is the measure defined through its Stieltjes transform: for z ∈ {a ∈ C,=(a) > 0}

mµ̄n(z) =
1

T
tr(

n

T

Φ

1 + δz
− zIT )−1,

with δz the unique solution in {a ∈ C,=(a) > 0} of

δz =
1

T
trΦ(

n

T

Φ

1 + δz
− zIT )−1.

To prove Theorem 3.3.3 with the standard resolvent approach, we need a convergence of

quadratic forms based on the row vectors of Σ [11]. This kind of result is usually obtained

by exploiting the independence (or linear dependence) in the vector entries. The entries

of σ(XTw) are not independent; therefore, a different technique is required. To state the

following nonasymptotic lemma, we use a concentration of measure approach [10].

Lemma 3.3.5 (Concentration of quadratic forms ). (Under Assumptions 1 and 2) Suppose

A ∈ RT×T satisfies ||A|| ≤ 1 and, for X ∈ Rp×T and w ∼ Nφ(0, Ip), define the random

vector σ = σ(wTX) ∈ RT . Then

P(| 1
T
σTAσ − 1

T
tr[ΦA]| > t) ≤ Ce

− cT

||X||2λ2
φ
λ2σ

min( t
2

t20
,t)

,
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3.3. Training phase results

for t0 = |σ(0)|+ λφλσ||X||
√

p
T

and C, c > 0 independent of all other parameters.

Adding Assumption 3, we have

P(| 1
T
σTAσ − 1

T
tr[ΦA]| > t) ≤ Ce−cnmin(t,t2),

for some C, c > 0.

This lemma has been stated in a nonasymptotic random matrix regime, i.e., without As-

sumption 3, thus it has independent interest. The following lemma is the aforementioned

result about the concentration on 1
T
trQ used to obtain Theorem 3.3.4 [Nonlinear M–P exten-

sion], which is also interesting in Random Matrix Theory.

Lemma 3.3.6 (Concentration of the Stieltjes transform of µn). Under Assumptions 1 and 2.

For z ∈ C \ R+,

P
(
| 1
T
tr(

1

T
ΣTΣ− zIT )−1 − E[

1

T
tr(

1

T
ΣTΣ− zIT )−1]| > t

)
≤ Ce

− cdist(z,R
+)2Tt2

λ2σλ
2
φ
||X||2 ,

for some C, c > 0, where dist(z,R2) denotes the Hausdorff set distance. In particular, for

z = −γ with γ > 0 and under Assumption 3, we have

P
(
| 1
T
trQ− 1

T
trE[Q]| > t

)
≤ Ce−cnt

2

.

3.3.1 Sketch of the proof of Lemma 3.3.5

In order to show how to prove this lemma, we need to state the following classic theorem for

the Lipschitz transformation of a vector with independent standard Gaussian entries.

Theorem 3.3.7 (Gaussian concentration inequality for Lipschitz functions). 1

Let X1, ..., Xn ∼ N(0, 1) be iid real Gaussian variables, and let F : Rn → R be a

λF−Lipschitz function. Then, for X = (X1, ..., Xn) and for all t,

P(|F (X)− EF (X)| ≥ t) ≤ Ce
−c t

2

λ2
F ,

for some absolute constants C, c > 0.

1Taken from Tao, 2012, theorem 2.1.12
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Chapter 3. Extreme Learning Machine Performance via RMT

We will use this theorem in some steps in the proof. Let us reformulate Lemma 3.3.5:

Lemma (Under Assumptions 1 and 2). Let A ∈ RT×T be such that ||A|| ≤ 1 and, for

X ∈ Rp×T and w ∼ Nφ(0, Ip), define the random vector σ = σ(wTX) ∈ RT . Then

P(| 1
T
σTAσ − 1

T
tr[ΦA]| > t) ≤ Ce

− cT

||X||2λ2
φ
λ2σ

min( t
2

t20
,t)

for t0 = |σ(0)|+ λφλσ||X||
√

p
T

and C, c > 0 independent of all other parameters.

Adding Assumption 3, we have

P(| 1
T
σTAσ − 1

T
tr[ΦA]| > t) ≤ Ce−cnmin(t,t2)

for some C, c > 0.

Sketch of the proof:

Let us see that the application w 7→ 1
T
σtAσ is, in a sense, quadratic in w. For quadratic

forms we do not have a Lipschitz application thus we cannot easily transfer a concentration

of w to 1
T
σtAσ. Another approach is required. We first will find a high probability bound

on 1
T
||σ|| by a concentration inequality.

Note that the function Ψ : Rp → RT , defined by Ψ(w̃) = 1√
T
σ(φ(w̃)tX)t, is a 1√

T
λσλφ||X||-

Lipschitz function. Therefore we can use Theorem 3.3.7 to obtain:

P(
∣∣||Ψ(w̃)|| − E[||Ψ(w̃)||

∣∣ ≥ t]) = P(
∣∣|| 1√

T
σ(wtX)|| − E[|| 1√

T
σ(wtX)|| ≥ t]

∣∣)
≤ Ce

−c t2T

λ2σλ
2
φ
||X||2

for some C, c > 0 independent of all parameters.

The map w 7→ σ(wtX) is also Lipschitz, so

∣∣‖σ(wtX)‖ − ‖σ(0)1tt‖
∣∣ ≤ ‖σ(wtX)− σ(0)1tt‖ ≤ λσ‖w‖‖X‖.

Since w̃ ∼ N(0, Ip), we have

E[‖φ(w̃)‖2] ≤ λ2
φE[‖w̃‖2] = λ2

φp.
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3.3. Training phase results

Now, using Jensen’s Inequality,

E
[
‖ 1√

T
σ(wtX)‖

]
≤ |σ(0)|+ λσE

[ 1√
T
‖w‖

]
‖X‖

≤ |σ(0)|+ λσ

√
E
[ 1

T
‖w‖2

]
≤ |σ(0)|+ λσλφ‖X‖

√
p

T
.

Letting t0 = |σ(0)|+ λσλφ‖X‖
√

p
T

, we find

P(‖ 1√
T
σ(wtX)‖ ≥ t+ t0) ≤ Ce

− cTt2

λ2
φ
λ2σ‖X‖2 .

For all t ≥ 4t0, we can obtain

P(‖ 1√
T
σ(wtX)‖ ≥ t) ≤ Ce

− cTt2

2λ2
φ
λ2σ‖X‖2 . (3.1)

We define AK = {w : ‖σ(wtX)‖ ≤ K
√
T}. Partitioning on this event, we can show

that the map w 7→ 1√
T
σtAσ is Lipschitz. There exists a K ≥ 4t0 such that

P
(∣∣ 1

T
σAσt − 1

T
tr[ΦA]

∣∣ > t
)
≤ P

(
{
∣∣ 1

T
σAσt − 1

T
tr[ΦA]

∣∣ > t},AK
)

+ P(AcK).

Because of (3.1) we can already bound P(AcK). On the set AK , the function f , defined as

f(σ) = σtAσ is a Lipschitz map. Neverthless, the expression P
(
{
∣∣ 1
T
σAσt − 1

T
tr[ΦA]

∣∣ >
t},AK

)
does not allow applying Theorem 3.3.7. So, we consider instead f̃ , a K

√
T -

Lipschitz continuation to RT of fAK (the restriction of f to AK).

Applying Theorem 3.3.7, we obtain

P(|f̃(σ(wtX))− E[f̃(σ(wtX))]| ≥ KTt) ≤ e
− cTt2

‖X‖2λ2σλφ .

Then, we have

P({|f(σ(wtX))− E[f̃(σ(wtX))]| ≥ KTt},AK) = P({|f̃(σ(wtX))− E[f̃(σ(wtX))]| ≥ KTt},AK)

≤ e
− cTt2

‖X‖2λ2σλφ .

Therefore, we need to bound the difference

∆ = |E[f̃(σ(wtX))]− E[f(σ(wtX))]|.
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Chapter 3. Extreme Learning Machine Performance via RMT

Let µσ be the law of σ(wtX). Now, f and f̃ are equal on AK , and so

∆ ≤
∫
‖σ‖≥K

√
T

(|f(σ)|+ |f̃(σ)|)dµσ(σ).

Since ‖A‖ ≤ 1, for ‖σ‖ ≥ K
√
T , max(|f(σ), |f̃(σ)| ≤ ‖σ‖2. We can write

∆ ≤ 2

∫
‖σ‖≥K

√
T

‖σ‖2dµσ = 2

∫
‖σ‖≥K

√
T

∫ ∞
t=0

1‖σ‖2≥tdtdµσ

= 2

∫ ∞
t=0

P({‖σ‖2 ≥ t},AcK)dt

≤ 2

∫ K2T

t=0

P(AcK) + 2

∫ ∞
t=K2T

P(‖σ(tX)‖2 ≥ t)dt

≤ 2K2TP(AcK) + 2

∫ ∞
t=K2T

Ce
− ct

2λ2
φ
λ2σ‖X‖2 dt

≤ 2CTK2e
− cTK2

2λ2
φ
λ2σ‖X‖2 +

2Cλ2
φλ

2
σ‖X‖2

c
e
− cTK2

2λ2
φ
λ2σ‖X‖2 .

We need the fact that for x ∈ R, xe−x ≤ e−1 ≤ 1, and recalling that K ≥ 4t0 ≥

λσλφ‖X‖
√

p
T

, we obtain

∆ ≤ 6C

c
λ2
φλ

2
σ‖X‖2.

So, we have

P({|f(σ(wtX))− E[f(σ(wtX))]| ≥ KTt+ ∆},AK) ≤ Ce
− cTt2

λ2
φ
λ2σ‖X‖2 .

As before, for t ≥ 4∆
KT

,

P({|f(σ(wtX))− E[f(σ(wtX))]| ≥ KTt},AK) ≤ Ce
− cTt2

2λ2
φ
λ2σ‖X‖2 .

We are almost done with the proof. To achieve this, we need an appropiate control

of the concentration results. We need to avoid the condition t ≥ 4∆
KT

using the fact that

probabilities are less than one. We want to replace C by λC with λ ≥ 1, such that for t ≥ 4∆
KT

λCe
−c Tt2

2‖X‖2λ2
φ
λ2σ ≥ 1.

If we take for instance λ ≤ 1
C
e

18C2

c , the above inequality holds. Therefore, taking λ =

max(1, 1
C
e

18C2

c ), we get for every t > 0

P({|f(σ(wtX))− E[f(σ(wtX))]| ≥ KTt},AK) ≤ λCe
− cTt2

2λ2
φ
λ2σ‖X‖2 ,
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along with

P(AcK) ≤ Ce
− cTK2

2λ2
φ
λ2σ‖X‖2 ,

we have

P(|f(σ(wtX))− E[f(σ(wtX))]| ≥ KTt) ≤ (λ+ 1)Ce
− cTt2

2λ2
φ
λ2σ‖X‖2 .

Now, with K = max(4t0,
√
t),

P(|f(σ(wtX))− E[f(σ(wtX))]| ≥ KTt) ≤ (λ+ 1)Ce
−
cT min( t2

16t20

,t)

2λ2
φ
λ2σ‖X‖2 .

3.4 Testing phase results

To talk about the asymptotic estimate of

Etest =
1

T̂
||Ŷ T − Σ̂Tβ||2F ,

where Σ̂ = σ(WX̂), we first have to extend the previously established definitions of Φ and

Ψ.

Definition 7. For all pairs of matrices A and B with p rows and an arbitrary number of

columns, we define

ΦAB = E[σ(wTA)Tσ(wTB)],

and

ΨAB =
n

T

ΦAB

1 + δ
,

where w ∼ Nφ(0, Ip). In particular, Φ = ΦXX and Ψ = ΨXX .

The following unproven statement has been intuitively derived by the concentration argu-

ments used to prove the training phase results.

Conjecture 3.4.1. (Under Assumptions 1 and 2) If X̂ and Ŷ satisfy the same conditions as

X and Y in Assumption 3, then, for all ε > 0

n
1
2
−ε(Etest − Ētest)→ 0
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almost surely, with

Ētest =
1

T̂
||Ŷ T−ΨT

XX̂
Q̄Y T ||2F +

1
n
trY TY Q̄ΨQ̄

1− 1
n
tr(ΨQ̄)2

[
1

T̂
trΨX̂X̂−

1

T̂
tr(IT +γQ̄)(ΨXX̂ΨX̂XQ̄)

]
.

As we said previously for Theorem 3.3.1, in order to make practical use of this result,

we need to evaluate ΦAB for some σ activation functions. In the following section we will

provide an estimate for this matrix.

3.5 Estimation of ΦAB

In this part we will present some evaluations of

ΦAB = E[σ(wtA)tσ(wtB)],

for arbitrary matrices A and B and different activation functions σ(.), letting the mapping

φ(.) be the identity. For more details, we refer the reader to section 3.3 of [1]. The evaluation

depends on the study of the evaluation of its entries, i.e., let a, b ∈ Rp be arbitrary vectors,

thus

Φab = E[σ(wta)tσ(wtb)]

= (2π)
−p
2

∫
σ((φ(w̃))ta)tσ((φ(w̃))tb).

In [1], the evaluation is obtained for some of the most popular activation functions in neural

networks through various integration tricks. The identity function, the erf, the absolute value

function, and the famous rectified linear unit (ReLU) function are considered. Note that these

functions satisfy Assumption 2, i.e., they are Lipschitz functions.

σ(t) Φab

identity t atb

erf 2√
π

∫ t
0
e−u

2
du 2

pi
( 2atb√

(1+2‖a‖2)(1+2‖b‖2)
)

absolute value |t| 2
π
‖a‖‖b‖(<(a, b)(<(a, b)) +

√
1−<(a, b)2)

ReLU max(t, 0) 1
2π
‖a‖‖b‖(<(a, b)(−<(a, b)) +

√
1−<(a, b)2)
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3.5. Estimation of ΦAB

where

<(a, b) =
atb

‖a‖‖b‖
.

These evaluations allow us to apply the results of this section to real problems.
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Chapter 3. Extreme Learning Machine Performance via RMT

3.6 Diagram of Results

In the following diagram we can observe a diagram of the previously presented results from

[1]. We have in red the Random Neural Networks area results, in blue the interesting Random

Matrices area results, and in orange the auxiliary results which basically come from Random

Matrix Theory.

Theorem

3.3.1 (Etrain)

⇑ Theorem

3.3.3 (E[Q])

⇑ Lemma

3.3.5

( 1
T σ

tAσ)

+ Lemma

3.3.6

( 1
T trQ) ⇓

Theorem

3.3.4

(Nonlinear

M-P)

Conjecture

3.4.1 (Etest)

Theorem

3.3.2

(E[QAQ]) ⇓
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Note that Conjecture 3.4.1 could help us to select the hyperparameter γ, as mentioned in

[1]. However, a statistical criterion to select this regularization hyperparameter is developed

in the next chapter.
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CHAPTER 4

Model Selection for applications to Extreme Learning

Machines

In the present section we will present two model selection approaches to selecting the regular-

ization parameter γ. Our first results are based on a generalization of the classical technique

of Akaike’s information criterion (AIC). This framework is called the generalized informa-

tion criterion (GIC) [4]. The development of the GIC had the purpose of obtaining an in-

formation criterion for models that employ estimation procedures other than the maximum

likelihood method. The second result presented in this chapter is the so called Generalized

Cross-Validation approach, which can be seen as a weighted version of the Ordinary Cross-

Validation approach [5].

4.1 The Generalized Information Criterion (GIC)

The GIC was introduced by Konishi and Kitagawa [4] in 1996. It is known that the GIC can

be applied to evaluate statistical models constructed by the maximum penalized likelihood
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4.1. The Generalized Information Criterion (GIC)

procedure. Earlier in this thesis, we claimed that we can see our random neural network

model as a mere linear ridge regression task on random feature maps. Thus, it is natural to

consider the GIC as a potential technique for selecting the regularization parameter γ.

In order to study the application of the GIC to our neural network, we will describe the

fundamentals of a functional statistics and robust estimators approach to use this technique.

Also we will fit our random neural network model into the framework of the generalized

information criterion.

4.1.1 Fundamentals of the GIC

In the process of statistical inference, we select an parametric family of probability distri-

butions {f(x|θ); θ ∈ Θ} that serves as an approximation to the true distribution G(x) that

generates our data. The model parameter is estimated based on the data which comes from

the true distribution G(x), but not from f(x|θ).

Let T be a real-valued function defined on D, the set of all distributions on the sample

space. In this framework, we assume that the parameter θ is given by a real-valued function

of the distribution G, i.e., a functional T (G). Given data {x1, ..., xn}, the estimator for θ is

θ̂(x1, ..., xn) = T (Ĝ),

where G is replaced with the empirical distribution Ĝ. We can say that the estimator depends

on data only through the empirical distribution. Now we can state the following definition:

Definition 8. Let D be the set of all distributions on R. A statistical functional is a real-

valued map T : D → R.

From this point of view, we will define an object that describes the effect of an infinitesi-

mal contamination at a point in the estimation procedure. This concept comes from the field

of robust statistics.

Definition 9. Given a functional T (G), the directional derivative with respect to the distri-
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Chapter 4. Model Selection for applications to Extreme Learning Machines

bution G is the real-valued function T (1)(x;G) that satisfies

lim
ε→0

T ((1− ε)G+ εH)− T (G)

ε
=

∂

∂ε
{T ((1− ε)G+ εH)}

∣∣∣
ε=0

=

∫
T (1)(x;G)d{H(x)−G(x)},

for any distribution H(x). To ensure uniqueness, we have∫
T (1)(x;G)dG(x) = 0.

Then we can write

lim
ε→0

T ((1− ε)G+ εH)− T (G)

ε
=

∫
T (1)(x;G)dH(x).

Remark. Note that if we take H to be the delta function δx that has the probability of 1 at

the point x, then we have

lim
ε→0

T ((1− ε)G+ εδx)− T (G)

ε
=

∂

∂ε
{T ((1− ε)G+ εδx)}

∣∣∣
ε=0

=

∫
T (1)(x;G)dδx

= T (1)(x;G).

In the field of robust statistics, T (1)(x;G) is called the influence function.

Now we have everything needed to define the generalized information criterion. Before

stating the definition of the GIC, we have to remark on some theoretical aspects. As we said

earlier in this section, the GIC can be seen as an extension of the AIC to a more general

information criterion by relaxing the following assumptions made for the use of the AIC:

• estimation is by maximum likelihood,

• and we are working in a parametric family of distributions including the true model.

As we expected, the developement of the GIC is similar to that for the AIC. They are both

bias correction based methods for the selection of models.
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Definition 10. Let {z1, ..., zn} be data which comes from the true distribution G, and let Ĝ

be the empirical distribution based on the data. Let {f(x|θ); θ ∈ Θ ⊂ Rp} be an adopted

parametric statistical model, with density f . For T , a p-dimensional statistical functional, let

θ̂ = T (Ĝ) be an estimator for θ. An information criterion for evaluating the statistical model

f(x|θ̂) is given by

GIC = −2
n∑
i=1

log f(zi; θ̂) +
2

n

n∑
i=1

tr{T (1)(zi, Ĝ)
(∂ log f(zi; θ̂)

∂θ

)t∣∣∣
θ=θ̂
}.

When we want to select the best model from various different models, we select the model

for which the GIC is smallest. An application of this criterion is to select the hyperparameters

of a statistical model.

4.1.2 GIC for M-estimator

We aim to use the generalized information criterion to select the regularization parameter γ in

our present random neural network model. We previously said that our network can be seen

as a linear ridge regression model on random feature maps. We will show that the estimators

of this kind of linear models are a specific case of M-estimators. Then, we need to establish

the expression of GIC for these M-estimators.

To achieve this objective we first have to define what an M-estimator is.

Definition 11. Let {f(x; θ) : θ ∈ Θ} be a parametric statistical model for X = {x1, ..., xn}

an independent dataset. Given a function ψ : X ×Θ→ Rp, an M-estimator θ̂ is an estimator

that solves the equation
1

n

n∑
i=1

ψ(xi; θ) = 0.

Example. Maximum Likelihood Estimator

Consider a probability distribution with density f(x; θ) (θ ∈ Θ ⊂ R). Let x1, ..., xn

be n independent observations generated from this distribution (the true distribution). We

estimate θ based on these n observations. The maximum likelihood estimator θ̂ML is given
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by the solution of the equation

1

n

n∑
i=1

∂

∂θ
log f(xi; θ) = 0.

Then, θ̂ML is an M-estimator associated to the function ψ(xi; θ) = ∂
∂θ

log f(xi; θ).

Recall that the expression of GIC depends on the influence function T (1)(., .) of the es-

timator. Now we will establish an expression for the influence function of a general M-

estimator.

Theorem 4.1.1. Given an independent dataset Z = {z1, ..., zn} generated from the true

distribution G, let {f(x, θ) : θ ∈ Θ ⊂ Rq} be a parametric statistical model for the data. Let

θ̂ be an M-estimator associated with the function ψ : Z ×Θ→ Rq, where θ̂ = T (Ĝ), for Ĝ,

the empirical distribution and T is a statistical functional. Then,

T (1)(x,G) = −
[ ∫ ∂

∂θ
ψ(z; θ)

∣∣∣
θ=T (G)

dG(z)
]−1

ψ(x;T (G)).

Using the result from Theorem 4.1.1 in Definition 10, we can obtain the GIC expression

for M-estimators.

Theorem 4.1.2. Let {z1, ..., zn} be data which comes from the true distribution G, and let Ĝ

be the empirical distribution based on the data. Let {f(x|θ); θ ∈ Θ ⊂ Rp} be an adopted

parametric statistical model, with density f . For T , a p-dimensional statistical functional, let

θ̂ = T (Ĝ) be an M-estimator for θ associated to the function ψ : Z × Θ → Rq. Then, the

GIC for evaluating the statistical model f(x|θ̂) is given by

GIC = −2
n∑
i=1

log f(zi; θ̂) + 2tr{R(ψ, Ĝ)−1Q(ψ, Ĝ)},

where,

R(ψ, Ĝ) = −[
1

n

n∑
i=1

∂

∂θ
ψ(zi; θ)

∣∣∣
θ=θ̂

]t

and

Q(ψ, Ĝ) =
1

n

n∑
i=1

ψ(zi; θ)[
∂

∂θ
log f(zi; θ)]

t
∣∣∣
θ=θ̂

.
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4.2 The GIC for Extreme Learning Machines

We first will write our β̂ as an M-estimator. Then, we will use Theorem 4.1.2 to find the GIC

for our random neural network seen as a ridge regression task.

Recall that we have a deterministic data matrix X = [x1, ..., xT ] ∈ Rp×T , a random

weights matrix W ∈ Rn×p and a Lipschitz activation function σ. For simplicity we will write

the ridge regression task in terms of zi = σ(Wxi), for each i = 1, 2, ..., T . We will study a

Gaussian ridge regression task with known variance and another with an unknown variance.

4.2.1 Gaussian model with known variance

We consider the statistical model

{f(y|z; β) : β ∈ Rn×d},

where f(yi|zi; β) is a normal density with mean βtzi and known variance s. Thus, we have

that

f(yi|zi; β) = (2π)−
d
2 |sId|−

1
2 e−

1
2

(yi−βtzi)t(sId)−1(yi−βtzi),

and so

log f(yi|zi; β) = −d
2

log(2π)− d

2
log(s)− 1

2s
(yi − βtzi)t(yi − βtzi).

As we said earlier, we are looking for β that minimizes the loss function

`(β) =
1

T

T∑
i=1

||βT zi − yi||2 + γ||β||2F .

Differentiating `(β) with respect to β we obtain the equation

2γβ + 2
1

T

T∑
i=1

zi(β
tzi − yi)t = 0

1

T

T∑
i=1

[ziz
t
iβ − ziyti + γβ] = 0

1

T

T∑
i=1

[ziz
t
i + γIn]β − ziyti = 0,
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where In is the n × n identity matrix. Then, according to Definition 11, we can say β̂ =

1
T

( 1
T

ΣΣt + γIn)−1ΣY t is an M-estimator associated to the function ψ(yi|zi; β) = [ziz
t
i +

γIn]β − ziyi. In this case, the expression for the GIC is as follows

GIC = −2
T∑
i=1

log f(yi|zi; β̂) + 2tr{R(ψ, Ĝ)−1Q(ψ, Ĝ)},

where

R(ψ, Ĝ) = −[
1

T

T∑
i=1

∂

∂β
ψ(yi|zi; β)

∣∣∣
β=β̂

]t

and

Q(ψ, Ĝ) =
1

T

T∑
i=1

ψ(yi|zi; β)[
∂

∂β
log f(yi|zi; β)]t

∣∣∣
β=β̂

.

Therefore, we need to compute the expressions R(ψ, Ĝ) and Q(ψ, Ĝ). We have

∂

∂β
ψ(yi|zi; β)

∣∣∣
β=β̂

= [ziz
t
i + γIn],

and so

R(ψ, Ĝ) = −[
1

T

T∑
i=1

∂

∂β
ψ(yi|zi; β)

∣∣∣
β=β̂

]t = −[
1

T
ΣΣt + γIn]. (4.1)

Note that
∂

∂β
log f(yi|zi; β) = − 1

2s
(ziz

t
iβ − ziyti),

and so

1

T

T∑
i=1

ψ(yi|zi; β)[
∂

∂β
log f(yi|zi; β)]t

∣∣∣
β=β̂

=− 1

2s

1

T

T∑
i=1

[(ziz
t
i + γIn)β̂ − ziyti ][(zizti β̂ − ziyti)]t

=− 1

2s

1

T
{

T∑
i=1

(ziz
t
i β̂ − ziyti)(zizti β̂ − ziyti)t

+ γ

T∑
i=1

β̂(ziz
t
i β̂ − ziyti)t}.

We have, for Q,

Q(ψ, Ĝ) = − 1

2s

1

T
{

T∑
i=1

(ziz
t
i β̂ − ziyti)(zizti β̂ − ziyti)t + γ

T∑
i=1

β̂(ziz
t
i β̂ − ziyti)t}. (4.2)
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Now, substituting (4.3) and (4.4) into the expression for the GIC, we have

GIC = −2
T∑
i=1

−d
2

log(2π)− d

2
log(s)− 1

2s
(yi − β̂tzi)t(yi − β̂tzi)+

2
1

2s
tr{[ 1

T
ΣΣt + γIn]−1 1

T
{

T∑
i=1

(ziz
t
i β̂ − ziyti)(zizti β̂ − ziyti)t + γ

T∑
i=1

β̂(ziz
t
i β̂ − ziyti)t}}.

We can leave out the terms −d
2

log(2π), −d
2

log(s) and s, because they do not depend on γ.

Then, we can write

GIC =
T∑
i=1

(yi − β̂tzi)t(yi − β̂tzi)+

tr{[ 1

T
ΣΣt + γIn]−1 1

T
{

T∑
i=1

(ziz
t
i β̂ − ziyti)(zizti β̂ − ziyti)t + γ

T∑
i=1

β̂(ziz
t
i β̂ − ziyti)t}}.

Now, we can choose γ by minimizing the GIC. We made a program to study the application

of this result. The practical outcomes are presented in the next subsection.

4.2.2 Gaussian model with unknown variance

Before presenting the applications of the GIC for a single layer random neural network, we

will obtain an expression for the GIC for a Gaussian model with unknown variance. This part

is analogous to the previous one. In this case, we consider the statistical model

{f(y|z; β, s) : β ∈ Rn×d, s ∈ R+},

where f(yi|zi; β, s) is a normal density with mean βtzi and variance sId. Thus, we have

f(yi|zi; β, s) = (2π)−
d
2 |sId|−

1
2 e−

1
2

(yi−βtzi)t(sId)−1(yi−βtzi),

and so

log f(yi|zi; β, s) = −d
2

log(2π)− d

2
log(s)− 1

2s
(yi − βtzi)t(yi − βtzi).

Recall that we showed before that β̂ = 1
T

( 1
T

ΣΣt + γIn)−1ΣY t is an M-estimator associated

to the function ψ1(yi|zi; β, s) = [ziz
t
i + γIn]β − ziyi.
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We will estimate the variance of the model by maximizing the log-likelihood; thus, we

are looking for the s that maximizes

T∑
i=1

log f(yi|zi; β, s) =
T∑
i=1

[−d
2

log(2π)− d

2
log(s)− 1

2s
(yi − βtzi)t(yi − βtzi)],

differentiating along s we obtain

T∑
i=1

[− d

2s
+

1

2s2
‖βtzi − yi‖2] = 0

1

T

T∑
i=1

[−ds+ ‖βtzi − yi‖2] = 0.

Then, ŝ = 1
Td

∑T
i=1 ‖β̂tzi−yi‖2 is an M-estimator associated to the function ψ2(yi|z; β, s) =

‖βtzi − yi‖2 − sd. Therefore  1
T

( 1
T

ΣΣt + γIn)−1ΣY t

( 1
Td

∑T
i=1 ‖β̂tzi − yi‖2)Id


is an M-estimator associated to the function

ψ(yi|z; β, s) =

 [ziz
t
i + γIn]β − ziyti

(‖βtzi − yi‖2 − sd)Id


Now the expression for the GIC is

GIC = −2
T∑
i=1

log f(yi|zi; β̂, ŝ) + 2tr{R(ψ, Ĝ)−1Q(ψ, Ĝ)},

where

R(ψ, Ĝ) = −[
1

T

T∑
i=1

∂

∂(β, s)
ψ(yi|zi; β, s)

∣∣∣
β=β̂,s=ŝ

]t

and

Q(ψ, Ĝ) =
1

T

T∑
i=1

ψ(yi|zi; β, s)[
∂

∂(β, s)
log f(yi|zi; β, s)]t

∣∣∣
β=β̂,s=ŝ

.

We need to compute R(ψ, Ĝ) and Q(ψ, Ĝ). We have

∂

∂(β, s)
ψ(yi|zi; β, s)

∣∣∣
β=β̂,s=ŝ

=

 [ziz
t
i+n] 0

2[ziz
t
iβ − ziyti ] −d

 ,
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and so

R(ψ, Ĝ) = −[
1

T

T∑
i=1

∂

∂β
ψ(yi|zi; β, s)

∣∣∣
β=β̂,s=ŝ

]t = −[
1

T

T∑
i=1

 [ziz
t
i + γIn] 0(n×d)

2[ziz
t
i β̂ − ziyti ]t −dId

].

(4.3)

Where 0(n×d) denotes the n× d matrix with all its entries equal to 0. Let us note that

∂

∂(β, s)
log f(yi|zi; β, s) =

 −1
s
(ziz

t
iβ − ziyti)

(− d
2s

+ 1
2s2
‖βtzi − yi‖2)Id

 ,

then we have, for Q:

Q(ψ, Ĝ) =
1

T

T∑
i=1

 [ziz
t
i + γIn]β̂ − ziyti

(‖β̂tzi − yi‖2 − ŝd)Id

(−1
ŝ
(ziz

t
i β̂ − ziyti)t, (− d

2ŝ
+ 1

2ŝ2
‖β̂tzi − yi‖2)Id

)
(4.4)

Now, substituting (4.3) and (4.4) into the expression for the GIC, we have

GIC = −2
T∑
i=1

[−d
2

log(2π)− d

2
log(ŝ)− 1

2ŝ
(yi − β̂tzi)t(yi − β̂tzi)] + 2tr{R(ψ, Ĝ)−1Q(ψ, Ĝ)}

We can leave out the term −d
2

log(2π), because it does not depend on γ. Then, we can write

GIC =
T∑
i=1

[d log(ŝ) +
1

ŝ
(yi − β̂tzi)t(yi − β̂tzi)] + 2tr{R(ψ, Ĝ)−1Q(ψ, Ĝ)}

Now, we choose γ by minimizing the GIC.

4.2.3 GIC Practical Outcomes

In this section, we present the results of a simulation study similar to that in [1]. We have a

classification task with the popular MNIST image dataset, composed of grayscale handwrit-

ten digits of size 28× 28. We use n = 512 neurons and W , the weights matrix, with standard

Gaussian entries. The aim is to classify nines and sevens. For this application, each image is

a p = 784 dimensional vector, and we have T = 1024 training images and T = 1024 testing
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images. The output Y and Ŷ are vectors (d = 1) such that Y1j, Ŷ1j ∈ {−1, 1}, depending on

the image class.

Figure 4.1 presents the generated simulation performance of the network. The selection

of the hyperparameter can be achieved using the GIC (with known variance) developed in

this chapter.

Figure 4.1: Plot of test error for different values of γ

We compute the GIC(γ) for this network using a Python script. The case of known

variance was chosen for simplicity. In the following figure we can see the graph for this

criterion. Note that the γ that minimizes the GIC is between 300 and 400.

39



4.3. Generalized Cross-Validation (GCV)

Figure 4.2: GIC for testing dataset for different values of γ

We can use an optimization library in Python to get the selected γ. As we mentioned in

Chapter 3, the estimations of Etest and Etrain could help in this selection. However, GIC is a

statistical tool developed with the aim of selecting γ.

4.3 Generalized Cross-Validation (GCV)

In this part of the chapter we will study another model selection approach for selecting the

hyperparameter γ. This approach is the Generalized Cross-Validation (GCV). This method

was presented by Gene, Wahba and Heath [5] in 1979. We first state the basic definitions and

then study the properties of GCV in our present model.

Definition 12. Consider the linear model

Y = Σtβ + ε,

with ε ∼ N(0, sI) and Y, ε ∈ RT , β ∈ Rn×d,Σ ∈ Rn×T . We define the Generalized Cross-

Validation as

GCV (γ) =
1
T
‖(I − A(γ))Y ‖2

[ 1
T
Tr(I − A(γ))]2

,
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where

A(γ) = Σt(ΣΣt + TγI)−1Σ.

Recall that we have a deterministic data matrix X = [x1, ..., xT ] ∈ Rp×T , a random

weights matrix W ∈ Rn×p, and a Lipschitz activation function σ. For simplicity, we will

write the ridge regression task in terms of zi = σ(Wxi), for each i = 1, 2, ..., T . Therefore,

we consider the statistical model

{f(y|z; β, s) : β ∈ Rn×d, s ∈ R+},

where f(yi|zi; β, s) is a normal density with mean βtzi and variance sId. Thus, we have

f(yi|zi; β, s) = (2π)−
d
2 |sId|−

1
2 e−

1
2

(yi−βtzi)t(sId)−1(yi−βtzi),

and our estimator can be seen to be

β̂(γ) = (ΣΣt + TγI)−1ΣY.

This approach is compatible with Definition 12. Let T (γ) be the mean square error in the

Σtβ estimation,

T (γ) =
1

T
‖Σtβ − Σtβ̂(γ)‖2.

With a simple computation, we have that

E[T (γ)] =
1

T
‖(I − A(γ))Σtβ‖2 +

s

T
Tr(A2(γ)).

Note that an unbiased estimator T̂ (γ) of E[T (γ)], for n < T , is given by

T̂ (γ) =
1

T
‖(I − A(γ))Y ‖2 − 2ŝ

T
Tr(I − A(γ)) + ŝ

with ŝ = 1
T−n‖(I −Σt(ΣΣt)−1Σ)Y ‖2. In our case, the restriction n < T means that we have

fewer neurons than training (or testing) data.

Minimizing Mallow’s criterion is a way to select the hyperparameter γ; this could be seen

as minimizing T T̂ (γ)
ŝ

. In [5], an estimate arrived at by minimizing T̂ is called an RR (range

risk) estimate.
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We will see that the GCV estimate is, for a huge number of training data T , an estimate

for γ which approximately minimizes E[T (γ)], without an estimator for s. Note that because

there is no need to estimate s, we can use GCV on problems where T − n is small, a very

common case in the field of neural networks, i.e., with the size of the training dataset close

to the number of neurons. Another case when this property leads us to use GCV is where the

real model could be

yi =
∞∑
j=1

σijβj + εi

for i = 1, 2, ..., T . This is related to the case where we have a huge number of neurons.

4.3.1 Similarities with Ordinary Cross-Validation

There is another method for estimating γ from the data without either knowledge of s or

even estimators for s, the Ordinary Cross-Validation (OCV) proposed by Allen. In [5] it is

explained why GCV can be expected to be generally better that OCV. There it is also stated

that there are arguments for thinking that any good estimator of γ should be invariant under

rotations of the coordinate system, when β and ε have spherical normal distributions (the

distribution has circular symmetry: diagonal covariance matrix with equal variances). They

showed, using the singular value decomposition of Σt, that GCV is a rotation-invariant form

of the OCV.

We will see that GCV can be seen as a weighted version of OCV. The OCV works as

follows. Let β̂(k)(γ) be the estimator of β removing the kth data point yk. The idea of OGC

is that if γ is a good slelection, then the kth row of Xβ(k)(γ) should be close to yk. The OCV

method selects γ by minimizing

OCV (γ) =
1

T

T∑
k=1

‖[Xβ(k)(γ)]k − yk‖2.

Using the Sherman–Morrison–Woodbury formula, we can write

OCV (γ) =
1

T
‖B(γ)(I − A(γ))Y ‖2

with B(γ) = diag( 1
(1−aii(γ))

), and aii(γ) the ith entry of the diagonal of A(γ).
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Then, using this formula we can write

GCV (γ) =
1

T
‖B(γ)(I − A(γ))Y ‖2w

(γ)
k ,

where

w
(γ)
k =

1− akk(γ)

1− 1
T
Tr(A(γ))

.

4.3.2 Some Properties of the GCV

In this part we will present some properties of the GCV and discuss the implications for our

neural network model. These properties are presented in [5] and we refer the reader to that

article to see the proofs.

Theorem 4.3.1. The GCV theorem

Let µ1 = 1
T
Tr(A(γ)), µ2 = 1

T
Tr(A2(γ)), and

b2 =
1

T
‖(I − A(γ))Σtβ‖2

. Then,
E[T (γ)]−E[GCV (γ)] + s

E[T (γ)]
=
−µ1(2− µ1)

(1− µ1)2
+

s

b2 + sµ2

µ2
1

(1− µ1)2
,

and therefore ∣∣∣E[T (γ)]−E[GCV (γ)] + s
∣∣∣

E[T (γ)]
<
(

2µ1 +
µ2

1

µ2

) 1

(1− µ1)2
,

when 0 < µ1 < 1.

Note that from this theorem it follows that if

lim
T→∞

µ1 = 0

and

lim
T→∞

µ2
1

µ2

= 0,
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then the difference /|E[T (γ)] − E[GCV (γ)] + s‖ is small compared to E[T (γ)]. This fact

suggests that a γ selected by minimizing the GCV is preferable to one obtained by minimizing

the OCV if one aims to choose γ to minimize

1

T
EY ∗ [‖Y ∗ − Σβ(γ)‖2],

where Y ∗ is future data, in our case this could be seen as a testing data, and EY ∗ is the

expectation with respect the distribution of Y ∗. Then, we can think that this result helps to

achieve a good testing performance by selecting γ using the GCV.

The following result is a corollary of the previous theorem.

Corollary 4.3.1.1. Let

h(γ) =
(

2µ1 +
µ2

1

µ2

) 1

(1− µ2)2
,

and γ0 be the minimizer of E[T (γ)]. Then E[GCV [γ]] always has a minimum γ̃ so that

I0 =
E[T (γ̃)]

E[T (γ0)]

(called the expectation inefficiency) satisfies

I0 ≤ 1 + h(γ0)

1− h(γ̃)
.

We aim for an expectation inefficiency close to 1. Note that if h(γ0) and h(γ̃) are small,

then the mean square error at argminγE[GCV (γ)] is not much bigger than the minimum

mean square error minγE[T (γ)].

The following theorem considers the case when d = 1, i.e., when β is a vector instead of

a matrix. Let us suppose β ∼ N(0, aI) and denote by Eβ the expectation with respect to this

distribution.

Theorem 4.3.2. Eβ[GCV (γ)] has the same minimizer of Eβ[T (γ)] and it is γ̂ = s
Ta
.

This is an interesting theorem proved in [5]. We will not use this theorem in our applica-

tions because it requires knowledge of s.
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4.4 GCV for Extreme Learning Machines

4.4.1 GCV Practical Outcomes

In this subsection, we present the results of the GCV using the same conditions as for the

GIC in Section 4.2. We have a classification task with the MNIST dataset, composed of

grayscale handwritten digits of size 28 × 28. We consider n = 512 neurons and W , the

weights matrix, with standard Gaussian entries. As before, we aim to classify nines and

sevens. We know each image is a p = 784 dimensional vector, and we have T = 1024

training images and T = 1024 testing images. The output Y and Ŷ are vectors (d = 1) such

that Y1j, Ŷ1j ∈ {−1, 1} depending on the image class.

Figure 4.3 presents the generated simulation performance of the network. The following

one is the training error for different values of γ.

Figure 4.3: Training error for different values of γ

In Figure 4.4 we have the testing error for different values of γ. Note that a good γ could

be selected between 80 and 150. Nevertheless, the selection of the hyperparameter can be

achieved using the GCV method.
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Figure 4.4: Testing error for different values of γ

We compute GCV(γ) for this network using a Python script. In Figure 4.5 we can see the

graph of this criterion for the training set. Note that the γ that minimizes the GIC In English,

acronyms are not italicised. In fact, in English, even a multiletter mathematical variable is

not italicised if it is based on English words, such as ‘log’ and ‘GIC’. is between 100 and

140.

In Figure 4.6 we can see the GCV for the testing dataset. Let us note that the optimal γ

is almost the same as for the training dataset. This could be seen as a property that follows

from Theorem 4.3.1.

Using the optimizer function scipy.optimize.minimize in Python, we got:

• The minimum in the training dataset is 120.0

• The minimum in the testing dataset is 121.0

For the following computations, we will use γ̂ = 120.0: in order to study the implications of

Theorem 4.3.1 and Corollary 4.3.1.1, we have to compute µ1 and µ2 for the training datasets.

We obtain the following results.
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Figure 4.5: GCV for training dataset for different values of γ

Figure 4.6: GCV for testing dataset for different values of γ

µ1(γ̂) = 0.2505

µ2(γ̂) = 0.1561, then we have

µ2
1

µ2

= 0.4019.
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4.4. GCV for Extreme Learning Machines

Then, from Theorem 4.3.1, we can say that the difference E[T (γ̂)]− E[GCV (γ̂)] + s is

not too big in relation to E[T (γ̂)], that is because 0 < µ1 < 1, then,

∣∣∣E[T (γ̂)]−E[GCV (γ̂)] + s
∣∣∣

E[T (γ̂)]
<
(

2(0.2505) +
0.25052

0.1561

) 1

(1− 0.2505)2
= 1.6.

In conclusion, the expression for the GCV is immediately computable, following Defi-

nition 12. We saw that there is no need to estimate the variance s to use the GCV. This is

an advantage of the GCV over other criteria, such as Mallow’s criterion or the GIC in this

chapter. Moreover, using the GCV allows us to study models without the restriction n < T ,

an important property in extreme learning machines.

Theorem 4.3.1 could imply that the GCV selection of γ is good enough to achieve a

good testing performance. This is supported by Figure 4.6 and Figure 4.5. Finally, we can

say that using the GCV method is a good, quick, and totally statistical way to select the

hyperparameter γ.
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CHAPTER 5

Training Speed in Multilayer Neural Networks

To present the main results of this chapter and its implications for the speed of the training of

multilayer neural networks, we first have to talk about the basic results that motivated them.

The first section is about the theoretical results on the data covariance matrix in a single layer

neural network [2]. Then, we will discuss some results of the data covariance matrix for a

mutilayer neural network [3]. Moreover, we present a suitable modification of a result of [3],

as well as its implications for the training speed.

5.1 Data Covariance Matrix of a Single Layer Neural Net-

work

This section presents the results from [2], where the method of moments is the main tool to

achieve them. Here, a similar model of extreme learning machines will be used, as will the

notation used in the previous sections. We have a single layer random neural network with

n neurons. However, in this case, we will consider a random data matrix. Then, for this
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5.1. Data Covariance Matrix of a Single Layer Neural Network

network we have:

• X ∈ Rp×T , a random data matrix with independent and identically distributed entries

N(0, σ2
x).

• Y ∈ Rd×T , a random output data matrix.

Similar to the first chapter, to obtain the results, we need to make the following assumptions:

1. W Gaussian: Let W ∈ Rn×T be a random weight matrix with independent and identi-

cally distributed entries N(0, σ2
w/p).

2. The function σ: The activation function σ : R→ R has zero Gaussian mean and finite

Gaussian moments, i.e., ∫
1√
2π
e
z2

2 σ(σwσxz)dz = 0

and, for k > 1, ∣∣∣ ∫ 1√
2π
e
z2

2 (σ(σwσxz))kdz
∣∣∣ <∞.

3. The growth rate: There are fixed constants ψ, φ such that

lim
p,T→∞

p

T
= φ,

and

lim
p,n→∞

p

n
= ψ.

As previously stated, we have Σ = σ(WX) ∈ Rn×T . We are interested in the Gram matrix

M =
1

T
ΣΣt ∈ Rn×n.

We now recall the following definitions, presented in Chapter 2, but now using these nota-

tions:
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Definition 13. Let λj(M), for j = 1, ..., n, be the n eigenvalues of M including multiplicity.

The empirical spectral density of the matrix M is

ρM(t) =
1

n

n∑
j=1

δ(t− λj(M)),

where δ is the Dirac delta function. If the limit exists, the limiting spectral density is defined

as

lim
n→∞

ρM(t).

Definition 14. For z ∈ C\supp(ρM) we define G, the Stieltjes transform of ρM , as

G(z) =

∫
ρM(t)

z − t
dt = − 1

n
EW,X [tr(M − zIn)−1].

Let us note that here, the expresion (M−zIn)−1 is the resolvent ofM . The following for-

mula, called the inversion formula, allows us to recover the spectral density from its Stieltjes

transform:

ρM(λ) =
1

π
lim
ε→0+

=(G(λ+ iε)).

5.1.1 The Main Result

The following theorem provides a way to obtain G as the solution to a polynomial equation

of the fourth degree.

Theorem 5.1.1. Assume that ζ and η are as follows:

η =

∫
1√
2π
e
z2

2 (σ(σwσxz))2dz,

and

ζ =
[
σwσx

∫
1√
2π
e
z2

2 σ′(σwσxz)dz
]
.

The Stieltjes transform of the empirical spectral density of M satisfies

G(z) =
ψ

z
P (

1

zψ
) +

1− ψ
z

,
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5.1. Data Covariance Matrix of a Single Layer Neural Network

where,

P = 1 + (η − ζ)tPφPψ +
PφPψtζ

1− PφPψtζ
,

and

Pφ = 1 + (P − 1)φ, Pψ = 1 + (P − 1)ψ.

Idea of the proof:

The main idea of the proof is to use the method of moments for random matrices to

compute the limiting spectral distribution. Thus, the moments of ρM are of interest. We can

establish an asymptotic expansion of G(z) for large z. We have the Laurent series,

G(z) =
∞∑
k=0

mk

zk+1
,

where mk is the kth moment of ρM ,

mk =

∫
tkρM(t)dt =

1

n
E[trMk].

If we have computed the mk, then we can use the Laurent series and the inversion formula

to obtain the density ρM . The mk will be computed by expanding in powers of M inside the

trace,

1

n
E[trMk] =

1

nT k
E
[ ∑
i1,...,ik∈[n1],µ1,...,µk∈[T ]

Σi1µ1Σi2µ1Σi2µ2Σi3µ2 ...ΣikµkΣi1µk

]
.

Then we evaluate the leading contributions to the sum as the dimension of the matrix goes

to infinity. We translate this problem into two subproblems. First, enumerating certain con-

nected outer-planar graphs, and then evaluating integrals that correspond to cycles in those

graphs.

Interesting Limiting Cases

η = ζ

We can use a Hermite polynomial expansion of σ to show that η = ζ if and only if σ is

a linear function. We refer the reader to [2] for more details. In this case, a similar result as

that in Dupic and Castillo 2014 is obtained.
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ζ = 0

This assumption, along with η = 1, notably simplifies the expressions in Theorem 5.1.1.

Thus, we have

zG2 + ((1− ψ

φ
)z − 1)G+

ψ

φ
= 0,

which is satisfied by the Stieltjes transform of the Marchenko–Pastur distribution with shape
φ
ψ

. Note that when ψ = 1, we get the limiting spectral distribution of XX t, which implies

that ΣΣt and XX t have the same limiting spectral distribution. This is a really interesting

result that can be seen as an isospectral nonlinear transformation.

Note: We can take η = 1 without loss of generality. The general case can be recovered

by rescaling z.

Therefore, we can say that for ψ = 1 and activation functions that satisfy ζ = 0, the lim-

iting spectral distribution of the data covariance matrix is unchanged after passing though a

single layer of the network. A result that presents an extension of this result will be discussed

later. It was conjectured in [2] that this property is satisfied by arbitrary layers of the network.

In that article, we can see a simulation study that provides supporting numerical evidence.

Remark. Application of Theorem 5.1.1 to the asymptotic performance of random feature

methods.

As an application of Theorem 5.1.1 to the performance of a single layer neural network

(such as in Section 3 of this thesis), we can state the following result. This problem setup

and analysis is similar to that of [1], but here we are interested in a memorization task where

the netwrok is trained on random input–output pairs. Under the assumptions stated in the

introduction of this section, we focus on minimizing the loss function

`(β) =
1

2dT
‖Y −BtΣ‖2

F + γ‖β‖2
F .

Recall that Σ = σ(WX), where X ∈ Rp×T is the matrix of T p-dimensional features,

Y ∈ Rd×T is the matrix of T d-dimensional targets, and W ∈ Rn×p is the matrix of random

weights. We aim to learn (tune/estimate) the matrix β. The solution of the mimization problem
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5.2. Data Covariance Matrix of a Multilayer Neural Network

is

β̂ =
1

T
Σ(

1

T
ΣtΣ + γIT )−1Y t.

Write Q = ( 1
T

ΣtΣ +γIT )−1, the resolvent of 1
T

ΣtΣ. We take X and Y to be independent and

with independent Gaussian entries. The expected training loss is given by

Etrain = EW,X,Y [`(β)]

= EW,X,Y [
γ2

T
tr[Y tY Q2]]

= EW,X [
γ2

T
trQ2]

= −γ
2

T

∂

∂γ
EW,X [trQ].

Recall the definition of the Stieltjes transform:

G(z) = − 1

n
EW,X [tr(M − zIn)−1].

From this, it is evident that the expression for Etrain is related to G(−γ). Nevertheless,

Theorem 5.1.1 was obtained for ΣΣt, and Q contains ΣtΣ. Fortunately, these two matrices

differ only by a finite number of eigenvalues equal to zero. Thus, after some calculations, we

have
1

T
EW,X [trQ] =

(1− φ
ψ

)

γ
− φ

ψ
G(−γ).

From the expression for the Stieltjes transform in Theorem 5.1.1 and its derivative with re-

spect to z, an equation for G′(z) can be obtained by computing the resultant of the two

polynomials and eliminating G(z). Then, we can obtain an equation for Etrain. See [2] and

its supplementary material for more details.

5.2 Data Covariance Matrix of a Multilayer Neural Net-

work

In this section we present the results from [3] and we give a different structure for the sake of

providing the reader a better understanding. In the last section, we presented a theorem about
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the Stieltjes transform of the spectral distribution of the data covariance matrix in a single

layer random neural network. We assumedW andX to be random matrices with independent

and identically normal distributed entries. An extension of that result is presented here, where

W and X have sub-Gaussian distributions. We also present a multilayer case of Theorem

5.1.1. Hereafter, we will adopt a sightly different notation, which will allow us to talk about

more than one layer in a neural network.

5.2.1 Model

Consider a random neural network model, where:

• X ∈ Rn0×m is a random data matrix with independent and identically distributed en-

tries with distribution ν1.

• W ∈ Rn1×n0 is a random matrix with independent and identically distributed entries

with distribution ν2. W is called a weight matrix.

Both distributions have zero mean and the variance is given by: for each i, j we have,

E[X2
ij] = σ2

x,

E[W 2
ij] = σ2

w.

Let us make the following assumptions:

1. W,X Sub-Gaussian: This assumption concerns the tail of W and X: there exist con-

stants ϑw, ϑx > 0 and α > 1 such that for any t > 0 we have

P(|W11 > t|) ≤ e−ϑwt
α

and P(|X11 > t|) ≤ e−ϑxt
α

.

2. The function f : We consider a smooth activation function f : R → R with zero

Gaussian mean: ∫
f(σwσxx)

ex
2/2

√
2π
dx = 0.
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Additionally, we suppose there that exist positive constants Cf , cf and A0 > 0 such

that for any A ≥ A0 and any n ∈ N we have

sup
x∈[−A,A]

|f (n)(x)| ≤ CfA
cfn.

3. The growth rate: The dimensions of both the columns and the rows of each matrix

grow together: there exist positive constants φ and ψ such that

lim
m→∞

n0

m
= φ, and

lim
m→∞

n0

n1

= ψ.

Remark. Note that Assumption 1 and the central limit theorem give us that there exists a

constant C > 0 such that

P
(∣∣∣ 1
√
n0

n0∑
k=1

W1kXk1

∣∣∣ > t
)
≤ Ce−

t2

2 .

Assumption 2 guarantees that the activation function is real analytic, which is actually a

strong assumption. Nevertheless, commonly used functions fall within this framework, such

as the sigmoid f(x) = (1 − e−x)−1 or the softplus f(x) = log(1 − ex) (a smooth variant of

ReLU).

As before, our main object of study is the following random matrix:

M =
1

m
Y Y ∗ ∈ Rn1×n1 ,

where Y = f(WX√
n0

). Denote by (λ1, ..., λn1) the eigenvalues of M . As in Definition 13, we

define the empirical spectral distribution of M associated to the activation function f , by

µ(f)
n1

=
1

n1

n1∑
i=1

δλi .

5.2.2 Main Results

Now we have the framework to state the main theorems of this chapter. The two following

theorems extend results of [2] to a more general framework.
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Theorem 5.2.1. There exists a deterministic compactly supported measure µ such that

lim
n1→∞

µ(f)
n1

= µ

weakly almost surely.

Let us define the following parameters:

Definition 15. Let σw and σx be as we stated before. The parameters of the activation func-

tion f are:

θ1(f) =

∫
f 2(σwσxx)

e−x
2/2

√
2π

dx, and

θ2(f) =
(
σwσx

∫
f ′(σwσxx)

e−x
2/2

√
2π

dx
)2

.

The following theorem is an immediate extension of Theorem 5.1.1, where W and X

have sub-Gaussian entries.

Theorem 5.2.2. The measure µ is characterized through a self-consistent equation for its

Stieltjes transform defined for z ∈ C \ R by

G(z) =

∫
dµ(x)

x− z
.

Now write

H(z) =
ψ − 1

ψ
+
z

ψ
G(z),

Hφ(z) = 1− φ+ φH(z), and Hψ(z) = 1− ψ − ψH(z).

With θ1(f), θ2(f) being the parameters of the activation function f , we have the following

fourth-order self-consistent equation,

H(z) = 1− Hφ(z)Hψ(z)(θ1(f)− θ2(f))

ψz
+

Hφ(z)Hψ(z)θ2(f)

ψz −Hφ(z)Hψ(z)θ2(f)
.

Up to this point, the model corresponds to passing the input data X through one layer and

applying the function f . To talk about reinserting the output data Σ through a new layer (a
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multilayer neural network), we have to update the notation and assumptions. So, let us denote

by L the number of layers in the neural network, and consider for each p ∈ {0, ..., L − 1}

a family of independent matrices W (p) ∈ Rnp+1×np where (np)p is a family of increasing

sequences of integers.

1. W,X Sub-Gaussian: We suppose that all the matrix entries (W
(p)
ij )ij , a ≤ i ≤ np+1,

1 ≤ j ≤ np for each p are independent and identically distributed with zero mean and

variance σ2
w. Consider X ∈ Rn0×m with independent and identically distributed entries

with zero mean and variance σ2
x. In a similar way to the single layer case, supposeW (p)

and X to be sub-Gaussian, for each p.

2. The function f : As before, we consider a smooth activation function f : R → R with

zero Gaussian mean: ∫
f(σwσxx)

ex
2/2

√
2π
dx = 0.

Additionally, we suppose there that exist positive constants Cf , cf and A0 > 0 such

that for any A ≥ A0 and any n ∈ N we have

sup
x∈[−A,A]

|f (n)(x)| ≤ CfA
cfn.

Note that this assumption guarantees that f is real analytic. There are commonly used

activation functions that satisfy this, such as the sigmoid f(x) = (1 + e−x)−1 and the

softplus f(x) = log(1 + ex).

3. The growth rate: The dimensions of both the columns and the rows of each matrix

grow together: there exist positive sequences (φp)p and (ψp)p such that

lim
m→∞

n0

m
= φp, and

lim
m→∞

np
np+1

= ψp.

Then, we can define the sequence of random matrices

Y (p+1) = f
( σx√

θ1(f)

W (p)Y (p)

√
np

)
∈ Rnp+1×m,
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with Y (0) = X . The scaling is chosen to normalize the variance of the entries of Y (p) at every

layer. This process is similar to the batch normalization presented in [15], which improves

the training speed. This fact motivates the study of the training speed of multilayer neural

networks by choosing activation functions that satisfy Assumption 2. We will study this later.

The object of study is the following matrix,

M (L) =
1

m
Y (L)Y (L)∗

and

µ(f)
nL

=
1

nL
δ
λ
(L)
i
,

where (λ
(L)
k )k are the eigenvalues of M (L).

We will state two theorems. The first one is for polynomial activation functions and the

second one is for analytic bounded activation functions.

Theorem 5.2.3. Given an integer L, suppose that f is a bounded function such that Assump-

tion 2 holds. If θ2(f) = 0, then the asymptotic empirical spectral distribution µ(f)
nL is given

almost surely by the Marchenko–Pastur distribution of shape parameter φ
ψ0ψ1...ψL−1

.

The following conjecture is inspired by the simulation experiments in Section 5.3. There,

we describe the process of modifying an activation function to make it satisfy the assump-

tions of Conjecture 5.2.1. Additionally, we show that some activation functions that satisfy

Conjecture 5.2.1 are better than those functions that satisfy Theorem 5.2.3. We can see this

conjecture as an extension of Theorem 5.2.3.

Conjecture 5.2.1. Given an integer L, suppose that g is a bounded analytic function. Let f

be a function such that

f(x) = g(x)− c1x− c2,

where c1 = E[g′(σxσwz)] and c2 = E[g(σxσwz)] and the expectation is taken with respect

to a standard Gaussian z. Then the asymptotic empirical spectral distribution µ(f)
nL is given

almost surely by the Marchenko–Pastur distribution of shape parameter φ
ψ0ψ1...ψL−1

.

Remark. Let us note f(x) = g(x)− c1x− c2 in the conjecture is not bounded, not the case

of Theorem 5.2.3.
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5.3 Application to Training Speed

In this part we will study the applications of Theorem 5.2.3 and Conjecture 5.2.1 to the

training speed in multilayer neural networks. We will impose an additional assumption, that

the activation function satisfies θ1(f) = 1, for the easy use of the stated model Y (p+1). We

first will verify the effects of using activation functions that satisfy Conjecture 5.2.1.

For the applications, we suppose σw = σx = 1 and we ensure this by scaling the data

matrix X and initializing the entries of W (0) to be standard normal. We summarize the

features of the activation functions as follows:

1. f real analytic

2. f bounded

3.
∫
f(x) e

x2/2
√

2π
dx = 0.

4. The parameters of the function are such that:

θ1(f) =

∫
f 2(x)

e−x
2/2

√
2π

dx = 1

θ2(f) =
(∫

f ′(x)
e−x

2/2

√
2π

dx
)2

= 0

Note we can see items 3 and 4 above as:

• E[f(x)] = 0,

• E[f 2(x)] = 1 and

• E[f ′(x)] = 0,

where the expectation is taken with respect to a standard Gaussian. So, if we have a real ana-

lytic and bounded function, we can use the following process to make an activation function.

We compute the following constants:
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• c1 = E[f ′(x)]

• c2 = E[f(x)]

• c3 = E[(f(x)− c1x− c2)2]

Therefore, the function

F (x) = c
−1/2
3 [f(x)− c1x− c2]

satisfies our assumptions to be an activation function. We use this on the following classical

activation functions:

f(x) F (x)

sigmoid (1− e−x)−1 [(1− e−x)−1 − 0.206621x− 0.5][ 1√
0.000686813

]

sinus sin(x) [sin(x)− 0.606531x][ 1√
0.0644529

]

tanh tanhx [tanhx− 0.605706x][ 1√
0.0274157

]

We will show some experimental results with these three activation functions later. It is

important to mention that we add to the activation function in layer p+ 1 the factor ( 1√
np

) to

ensure we are using the model

Y (p+1) = f
( σx√

θ1(f)

W (p)Y (p)

√
np

)
∈ Rnp+1×m,

where σx√
θ1(f)

= 1, W (p) is the weights matrix and Y (p) is the output matrix of the pth layer.

5.3.1 Motivation

In [2], it is claimed that the spectral distribution of the data covariance matrix for the pth

layer determines how the input signals become distorted or stretched as they spread through

the layers. Moreover, they said that highly skewed distributions imply a poor training condi-

tioning, in the sense that it becomes slower.

This agrees with [15], where it is stated that when a deep neural network is implemented,

the training becomes complicated due to the fact that the inputs of each layer depend on

all previous parameters (the weights in our case). They stated that this phenomenon (called
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internal covariate shift) slows down the training by requiring a lower learning rate in the

optimization and a more careful parameter initialization.

Our approach treats this problem. By a distribution shift, we refer to the change of spectral

distribution of the input covariance matrix of each layer. Based on [15], we can say that the

distribution shift afects the training by the fact that the optimization needs to continuously

adapt to the new distribution. This idea is supported by an article by Shimodaira in 2000.

The theorems of the previous section ensure that the limiting spectral distribution of the

data matrix will be preserved as it propagates through the layers. This is achieved by scaling

and choosing an activation function. Hereafter, we will study, by simulations, the effects of

adopting this approach.

We consider the problem of classifying the Fashion MNIST dataset, which consists of

images of clothes. It has 60, 000 training examples, 10, 000 testing examples, and 10 classes

(T-shirt, Pants, Pullover shirt, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot). We

work with 28 × 28 grayscale images. The output layer has ten neurons, with softmax (or

normalized exponential function) as the activation function. This will allow us to interpret

the output as a probability distribution over the predicted output classes.

Remark. The following experiments were made using the Python Deep Learning library

Keras running on top of TensorFlow. We plot the performance on training and validation

sets for the classical (blue) and the modified (red) activation functions.
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5.3.2 Experiments: Fashion MNIST, F not bounded

Sigmoid

Here we use a fully connected neural network model with L = 3 hidden layers, with 200,

350, and 250 neurons, respectively. The neural network uses 20 epochs, a batch size of 32,

and the optimizer algorithm RMSprop. The red line is for the neural network using F (x) as

activation function (in all layers) and the blue line is for the f(x) (classical) case. We adopted

the categorical crossentropy as the loss function.

Figure 5.1: Performance of neural network with sigmoid and modified sigmoid as activation functions

Note that the accuracy is substantially improved in the F (x) case for training. This could

be interpreted as needing fewer training steps to achieve a specific accuracy rate. In the

validation set, we get approximately the same accuracy. Nevertheless, the red line reached

its maximum before the blue line. This means we are getting the same performance in fewer

training steps. Note that the blue line in the validation set is above the red line for epochs

greater than 7.5, which could be explained as the network is getting over-fitted faster than the

classical case.
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Sinus

We have a fully connected neural network model with L = 3 hidden layers, of 200, 300,

and 250 neurons, respectively. The neural network uses 20 epochs, a batch size of 32, and

RMSprop as the optimizer algorithm. The red line is for the neural network using F (x) as

activation function (in all layers) and the blue line is for the f(x) (classical) case. We adopted

the categorical crossentropy as the loss function.

Figure 5.2: Performance of neural network with sin and modified sin as activation functions

This is an interesting result. The function sin(x) is not a good selection for an activation

function in the classical case. However, the transformation F (x), stated here, provides a very

good performance. The modified sin beat sin in the two sets. We will use this activation

function in some experiments later.

Tanh

Finally, we have a deeper fully connected neural network model with L = 5 layers, of

250, 350, 150, 100, and 150 neurons, respectively. The neural network uses 20 epochs, a

batch size of 32, and RMSprop as the optimizer algorithm. The red line is for the neural

network using F (x) as activation function (in all layers) and the blue line is for the f(x)

(classical) case. We adopted the categorical crossentropy as the loss function.
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Figure 5.3: Performance of neural network with tanh and modified tanh as activation functions

In this experiment, the performance has the same behavior as in the two previous cases.

The red line is better in training and it reached its maximum before the blue line.

Remark. Let us compare the performance of our previous networks. In the following table

we have the average of 30 simulations (runnign over Google Colab) of maximum validation

accuracy of the networks as well as the epoch in which this accuracy is achieved.

Metrics tanh tanh mod sigmoid sigmoid mod sin sin mod

Validation Accuracy 0.87 0.87 0.88 0.87 0.13 0.88

Epoch (argmax) 14 6 16 11 15 11

Time (seconds) 157.18 170.55 130.60 138.51 170.95 180.25

We can see that our approach achieves the maximum 1.7 times faster than the classical case.

The maximum is approximately equal for tanh and sigmoid and better for sin. Note that the

sigmoid and sin cases have the same architecture, so we can compere them. The modified sin

achieves the same accuracy as the sigmoid case five epochs earlier. Therefore, we have found

an activation function with a very good performance:

[sin(x)− 0.606531x][
1√

0.0644529
]
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5.3.3 Experiments: Fashion MNIST, F bounded

Let us consider the same classification problem as for F not bounded. Here we present the

results for two bounded functions that satisfy the assumptions of Theorem 5.2.3. First, we

make the following claim:

Proposition. Every bounded real analytic function f such that its derivative f ′ is an odd

function and

E[f(x)] = 0,

E[f 2(x)] = 1,

satisfies the assumptions of Theorem 5.2.3.

Proof. Since f ′ is an odd function, the following integral is equal to zero:

E[f ′(x)] =

∫
f ′(x)

e−x
2/2

√
2π

dx = 0.

This completes the proof.

Cos

Let us consider the following function, which satisfies the hypotheses of the previous

proposition:
1√

0.199788
(cos(x)− 1√

e
).

We choose this function because d cos(x)
dx

= sin(x) is an odd function. So, with a simple

correction, such as that in the beginning of this section, we can get this activation function. In

the following figure, we present the performance of a fully connected neural network model

with L = 2 layers, of 250 and 350 neurons, respectively. The neural network uses 40 epochs,

a batch size of 32, and RMSprop as the optimizer algorithm. The red line is for the neural

network using F (x) = 1√
0.199788

(cos(x) − 1√
e
) as activation function (in all layers) and the

blue line is for the f(x) = cos(x) (classical) case. The categorical crossentropy was adopted

as the loss function.
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Figure 5.4: Performance of neural network with cos and modified cos as activation functions

Although this function satisfies all the requirements to be a good activation function (in

the sense of Theorem 5.2.3), it does not have a really good training performance, likewise

with the validation performance. However, the modified function is better than the classical

one.

Gaussian

This is an interesting case. The red line represents a neural network using

F (x) =
( 3
√

5

3−
√

5

)1/2(
e−x

2 − 1√
3

)
,

as activation functions in all its layers. Note that F satisfies the hypotheses of the previous

proposition. The blue line is for f(x) = e−x
2 , a kind of Gaussian density (classical case).

We use a fully connected neural network model with L = 2 layers, of 250 and 350 neurons,

respectively. The neural network uses 25 epochs, a batch size of 32, and RMSprop as the

optimizer algorithm. We adopted the categorical crossentropy as the loss function.
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Figure 5.5: Performance of neural network with Gaussian and modified Gaussian as activation func-

tions

In this case, we have a function that satisfies all the assumptions of Theorem 5.2.3. Nev-

ertheless, its training performance is better in the classical case.

Remark. These two examples provide us the insight that in some cases the assumptions of

Theorem 5.2.3 are not enough to have a good performance in deep neural networks. There

are many ways to try to explain this, such as by the optimizer algorithms or the loss functions,

but we leave this for future research.
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