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Introduction

There is an increasing current interest in the statistical analysis of data arising in problems
of genomics, medical image analysis, climatology, finance and functional data analysis, where
one frequently observes multivariate data with high dimension greater than the sample size.
It is then important to consider for this kind of data the behavior of classical multivariate
statistical methodologies, which have been mainly developed for data with dimension d lower
than the sample size n. This thesis is about the behavior of two classical methodologies of
multivariate statistics in the High-Dimension, Low Sample Size (HDLSS) context: Principal
Component Analysis (PCA) and Binary Discrimination Analysis.

In Chapter 1 we present some classical results and properties of the spectrum of the
Wishart distribution in the classical and Random Matrix Theory contexts. They are useful
to motivate, compare and develop some new asymptotic results for PCA in the HDLSS con-
text. We also obtain an expression for the characteristic function of the ordered eigenvalues
of a Wishart matrix in terms of the characteristic function of the gamma distribution. Fur-
thermore, we consider the structure of the exact distribution of the largest eigenvalue of a
Wishart matrix as a simultaneous mixture of scale and shape mixtures of gamma distribu-
tions.

In Chapter 2 we consider PCA in the HDLSS context. It is known that in the HDLSS
framework PCA often fails to estimate the population eigenvalues and eigenvectors, since the
sample covariance matrix is not a good approximation to the population covariance matrix.
As pointed out in Johnstone [23], one often observes one or a small number of large sample
eigenvalues well separated from the rest. In this case, the so-called spiked covariance model
is of special interest. It has recently been studied the asymptotic behavior of the largest
sample eigenvalues and their corresponding sample eigenvectors under the spiked covariance
model in the HDLSS context. This line of work was initiated by Ahn, et al. [2] in the case
of the largest eigenvalue when both the dimension of the data d and the sample size n go to
infinity successively with d increasing at a much faster rate that n, i.e. d � n. Under the
spiked covariance model where the p ≥ 2 largest eigenvalues have different asymptotic order
of magnitude as d increases, Jung and Marron [25] study the asymptotic behavior of the
p largest sample eigenvalues and prove eigenvector consistency when d goes to infinity and
n is fixed. As a contribution of this thesis, we consider the study of the spiked covariance
model which has its p largest eigenvalues of the same asymptotic order of magnitude as d
goes to infinity. Specifically, we find the joint asymptotic distribution of the nonzero sample
eigenvalues when d tends to infinity and n is fixed. Then we show that the first p sample

v



vi INTRODUCTION

eigenvalues increase at the same speed as their population counterpart, in the sense that
the vector of ratios of the sample and population eigenvalues converges to a multivariate
distribution when d→∞ and n is fixed, and to the vector of ones when both d, n→∞ and
d� n; and the subspace consistency of the corresponding sample eigenvectors when d tends
to infinity and n is fixed. Moreover, we prove —under a Gaussian assumption— asymptotic
results that allow us to consider hypothesis testing and confidence intervals for the first p
largest population eigenvalues and, in particular, the test itself of a special case of our spiked
covariance model.

In Chapter 3 we consider Binary Discrimination Analysis for data with dimension greater
than the sample size. Here we focus on the behavior of the binary discrimination methods
Mean Difference (MD), Support Vector Machine (SVM), Distance Weighted Discrimination
(DWD) and Maximal Data Piling (MDP) when the dimension d of the training data set
tends to infinity and the sample sizes m and n are fixed. It is worth mentioning that the
last two methods are specially designed for the HDLSS context by Marron, et al. [28] and
Ahn and Marron [1], respectively. The comparison of the MD, SVM and DWD methods was
first studied in Hall, et al. [19], where the probability of correct classification of a new data
point is considered when d tends to infinity and the sample sizes are fixed. The comparison
of the four methods has been done by simulation studies in Marron, et al. [28], [29]. As
contributions of this thesis, we extend the results of [19] and give theoretical proofs of some
empirical results of [28] and [29]. Specifically, we show that when the data sets are spherical
Gaussian where one set has mean zero and the other has mean vd, then the orthogonal
vectors of the separating hyperplanes of the methods tend to be in the same direction as
vd when ‖ vd ‖� d1/2 and tend to be orthogonal to vd when ‖ vd ‖� d1/2. The case when
‖ vd ‖≈ d1/2 is also considered. We also compare the MD method with the SVM when d is
large but fixed. We see in a particular setting that generally the MD method is better than
the SVM when d is large, in the sense that the angle between the orthogonal vector of the
MD hyperplane and the optimal direction vd is closer to zero than the angle between the
orthogonal vector of the SVM hyperplane and vd.



Chapter 1

On the spectrum of the Wishart
distribution

In this chapter we gather some known properties of the spectrum of Wishart matrices in
the classical and Random Matrix Theory (RMT) contexts. They are useful to motivate and
develop some new asymptotic results in Chapter 2 for Principal Component Analysis in the
HDLSS context. The classical case corresponds to the situation when data dimension p is
fixed and less than or equal to the sample size n which is fixed or goes to infinity. On the
other hand the RMT context considers p and n go to infinity simultaneously, in the sense
that p/n goes to a constant.

We also give new expressions for the joint characteristic function of the ordered eigen-
values of a Wishart matrix and study the structure of the exact distribution of the largest
eigenvalue. In particular we obtain an interpretation of this distribution as a simultaneous
mixture of scale and shape mixtures of gamma distributions. We believe that these results
may be useful to study some open problems in Random Matrices Theory, e.g. the charac-
teristic functions of linear combinations of the ordered eigenvalues of a Wishart matrix and
the infinite divisibility of the so-called Tracy-Widom distributions.

1.1 Definition and basic properties

The first matrix distribution was considered by John Wishart [42] in 1928, as a matrix
generalization of the chi-square distribution. It is defined as follows.

Definition 1.1.1 Let X1, X2, . . . , Xn be (real) random vectors from a p-multivariate normal
distribution with mean zero and positive definite covariance matrix Σ, Np(0,Σ). Let X =
[X1, X2, . . . , Xn]. Then A = XX> is said to have a Wishart distribution with n degrees of
freedom and covariance matrix Σ. A common notation used is A ∼ W(n,Σ).

1



2 Chapter 1 On the spectrum of the Wishart distribution

The density function of A ∼ W(n,Σ), when n ≥ p, can be found in [4, pp. 245] and is
given by

fA(B) =
1

2pn/2Γp(
n
2
)|Σ|n/2

exp

[
−1

2
tr(Σ−1B)

]
det(B)(n−p−1)/2, B > 0,

where Γp is the p-multivariate gamma function given by

Γp(a) = πp(p−1)/4

p∏
j=1

Γ(a− (j − 1)/2).

When n < p, A is singular and the Wishart distribution W(n,Σ) does not have density
function.

Let A ∼ W(n,Σ). It can be seen that E(A) = nΣ. On the other hand the characteristic
function of the random matrix A is given by

ϕ(Θ) = E[exp(itr(AΘ))] = det(Ip − 2iΘΣ)−n/2,

for Θ a p×p symmetric matrix; see [4, pp. 253]. The following three facts are easily obtained
from this characteristic function

1. When p = 1 and Σ = 1, the Wishart distributionW(n,Σ) is the chi-square distribution
with n degrees of freedom, X 2

n .

2. If C is a q × p matrix of rank q, then CAC> ∼ W(n,CΣC>).

3. If Ai ∼ W(ni,Σ) for i = 1, 2, . . . , r are independent, then
∑r

i=1Ai ∼ W(n,Σ) where
n =

∑r
i=1 ni.

The following two results give the distributions of functionals of the determinant and
trace of a Wishart matrix A; see [31, pp. 100] and [31, pp. 107], respectively. They are
useful in the study of some inference problems.

Theorem 1.1.1 If A ∼ W(n,Σ) where n ≥ p, then det(A)/det(Σ) has the same distribution
as
∏p

i=1X 2
n−i+1, where X 2

n−i+1 for i = 1, 2, . . . , p, are independent random variables with chi-
squared distribution with n− i+ 1 degrees of freedom.

Theorem 1.1.2 If A ∼ W(n, cIp) where n ≥ p and c > 0, then det(A)/[tr(A)/p]p and tr(A)
are independent, and tr(A)/c ∼ X 2

pn.

The next theorem is used to test the null hypothesis H0 : Σ = cIp for the covariance
matrix Σ in the context of large sample size; see [31, pp. 344].

Theorem 1.1.3 Suppose A ∼ W(n, cIp) where n ≥ p. Let V = det(A)/[tr(A)/p]p and
ρ = 1− (2p2 + p+ 2)/(6np). Then

−nρ ln(V )
w−→ X 2

r as n→∞,

where X 2
r is a random variable with chi-square distribution with r = (p+ 2)(p− 1)/2 degrees

of freedom.
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1.2 Distribution of the spectrum: classical context

1.2.1 Joint density function of the eigenvalues

The number of nonzero eigenvalues of A ∼ W(n,Σ) is r = min(n, p). The next theorem
gives the joint density function of the nonzero eigenvalues of a Wishart matrix; see [31, pp.
106].

Theorem 1.2.1 If A ∼ W(n,Σ) with n ≥ p, the joint density function of the eigenvalues
of A, `1 ≥ `2 ≥ · · · ≥ `p > 0, is given by

f(`1, . . . , `p) =
πp

2/2

2pn/2|Σ|n/2Γp(
p
2
)Γp(

n
2
)

p∏
i=1

`
(n−p−1)/2
i

p∏
i<j

(`i − `j)

∗
∫
O(p)

exp

[
−1

2
tr(Σ−1HLH>)

]
(dH),

where L = diag(`1, `2, . . . , `p), and O(p) is the Group of orthogonal p× p matrices, i.e.

O(p) = {H is a p× p matrix : H>H = Ip}.

The product
∏p

i<j(`i − `j) is called the Vandermonde determinant. It is well known
in Random Matrix Theory that due to the Vandermonde determinant there is a repulsion
effect of the eigenvalues of a Wishart matrix. This says that these eigenvalues are strongly
dependent.

As a consequence of this theorem we have the next corollary.

Corollary 1.2.1 If A ∼ W(n, cIp) with n ≥ p, the joint density function of the eigenvalues
of A, `1 ≥ `2 ≥ · · · ≥ `p > 0, is given by

f(`1, . . . , `p) =
πp

2/2

(2c)pn/2Γp(
p
2
)Γp(

n
2
)

p∏
i=1

`
(n−p−1)/2
i

p∏
i<j

(`i − `j) exp

(
− 1

2c

p∑
i=1

`i

)
. (1.1)

Remark 1.2.1 The density of the nonzero eigenvalues of the singular case (p > n) can be
found in [15]. For the special case when A ∼ W(n, cIp) with p > n, the joint density function
of the nonzero eigenvalues of A is given by (1.1) after interchanging n and p. That is because

A
L
= XX>, where X = [X1, X2, . . . , Xn] and X1, X2, . . . , Xn are i.i.d. random vectors with

distribution Np(0, cIp) and if we define B = X>X, then B ∼ W(p, cIn) is a non-singular
Wishart matrix having the same nonzero eigenvalues as A. Thus, the several results for the
eigenvalues of B are also valid for the nonzero eigenvalues of A.

In order to derive an expression for the characteristic function of the ordered eigenvalues
of a Wishart matrix, we first point out an alternative form of the joint density function (1.1)
in terms of the set of permutations Sp of the set {1, 2, . . . , p}. A permutation α ∈ Sp will be
represented by a vector α = (α1, α2, . . . , αp)

>.



4 Chapter 1 On the spectrum of the Wishart distribution

Lemma 1.2.1 If `1 ≥ `2 ≥ · · · ≥ `p are the eigenvalues of A ∼ W(n, cIp) with n ≥ p and
c > 0, then the joint density of (`1, `2, . . . , `p)

> is given by

f`1,`2,...,`p(`1, `2, . . . , `p) = ∆
∑
α∈Sp

sign(α) exp

(
− 1

2c

p∑
k=1

`k

)
p∏

k=1

`
αk+(n−p−1)/2−1
p+1−k , (1.2)

with `1 > `2 > · · · > `p, where

∆ =
πp

2/2

(2c)pn/2Γp(
p
2
)Γp(

n
2
)
. (1.3)

Proof. Let lk = `p+1−k for k = 1, 2, . . . , p. By Corollary 1.2.1, the joint density of
(l1, l2, . . . , lp)

> is given by

fl1,l2,...,lp(l1, l2, . . . , lp) = ∆ exp

(
− 1

2c

p∑
i=1

li

)
p∏
i=1

l
(n−p−1)/2
i

p∏
i<j

(lj − li), lp > · · · > l1, (1.4)

where ∆ is given as above. Note that the last product in the above expression is equal to
the Vandermonde determinant∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
l1 · · · lp
l21 · · · l2p
...

...
...

lp−1
1 · · · lp−1

p

∣∣∣∣∣∣∣∣∣∣∣
=
∑
α∈Sp

sign(α)

p∏
k=1

lαk−1
k .

Thus the density function f`1,`2,...,`p is given by the expression (1.2). �

1.2.2 Joint characteristic function of the eigenvalues

In this section we obtain an interesting representation for the joint characteristic function
of the ordered eigenvalues of a Wishart random matrix with identity covariance matrix, in
terms of characteristic functions of gamma distributions. We use the notation

g(x; a, b) =
xa−1 exp(−x/b)

baΓ(a)
, x > 0, and (1.5)

Ĝ(t; a, b) = (1− ibt)−a, t ∈ R (1.6)

for the density and characteristic functions of the gamma distribution Gamma(a, b) with
shape parameter a > 0 and scale parameter b > 0, respectively.
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Proposition 1.2.1 If `1 ≥ `2 ≥ · · · ≥ `p are the eigenvalues of A ∼ W(n, cIp) with n ≥ p
and c > 0, then the characteristic function of (`1, `2, . . . , `p)

> is given by

ϕ`1,`2,...,`p(t1, t2, . . . , tp) = ∆

(
2c

p

)pn/2
Ĝ

(
p∑
j=1

tj; pn/2, 2c/p

)
∞∑
k1=0

· · ·
∞∑

kp−1=0

Γ

(
pn

2
+

p−1∑
j=1

kj

)

∗ Cn,p(k1, . . . , kp−1)

p−1∏
r=1

(
r

p

)kr Ĝ(
∑p

j=1 tj; kr, 2c/p)

Ĝ(
∑p

j=p+1−r tj; kr, 2c/r)
, (1.7)

where Ĝ(t; a, b) is the characteristic function of the gamma distribution Gamma(a, b) and

Cn,p(k1, . . . , kp−1) =
∑
α∈Sp

sign(α)

p−1∏
r=1

Γ(
∑r

j=1 αj + r(n−p−1)
2

+
∑r−1

j=1 kj)

Γ(
∑r

j=1 αj + r(n−p−1)
2

+
∑r

j=1 kj + 1)
. (1.8)

Proof. Let lk = `p+1−k for k = 1, 2, . . . , p. Using Lemma 1.2.1, we have that the
characteristic function of (l1, l2, . . . , lp)

> is equal to

ϕ(t1, t2, . . . , tp) = E

[
exp

(
i

p∑
k=1

tklk

)]

= ∆
∑
α∈Sp

sign(α)

∫ ∞
0

lαp+(n−p−1)/2−1
p exp(−(1/2c− itp)lp)

∗
∫ lp

0

l
αp−1+(n−p−1)/2−1
p−1 exp(−(1/2c− itp−1)lp−1) · · ·

∗
∫ l2

0

l
α1+(n−p−1)/2−1
1 exp(−(1/2c− it1)l1)dl1dl2 · · · dlp. (1.9)

From equations 3.383(1), 9.212(1) and 9.210(1) of [18] it follows that∫ m

0

xγ−1 exp(−βx)dx = exp(−βm)
∞∑
k=0

βkmγ+k

γ(γ + 1) · · · (γ + k)
, (1.10)

for m > 0, Re(γ) > 0 and any complex number β. Applying (1.10) several times in the last
expression of (1.9) we have that it is equal to

∆
∑
α∈Sp

sign(α)
∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kp−1=0

p−1∏
r=1

( r
2c
− i
∑r

s=1 ts)
kr∏kr

s=0(
∑r

j=1 αj + r(n−p−1)
2

+
∑r−1

j=1 kj + s)

∗
∫ ∞

0

l
∑p

j=1 αj+p(n−p−1)/2+
∑p−1

j=1 kj−1
p exp

[
−

(
p

2c
− i

p∑
j=1

tj

)
lp

]
dlp. (1.11)
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We recall that ∫ ∞
0

xv−1 exp(−ux)dx =
Γ(v)

uv
, Re(u) > 0, Re(v) > 0.

Therefore we have that the integral in (1.11) is equal to

Γ(
∑p

j=1 αj + p(n−p−1)
2

+
∑p−1

j=1 kj)

( p
2c
− i
∑p

j=1 tj)
∑p

j=1 αj+
p(n−p−1)

2
+
∑p−1

j=1 kj
=

Γ(pn
2

+
∑p−1

j=1 kj)

( p
2c
− i
∑p

j=1 tj)
pn/2+

∑p−1
j=1 kj

.

Then, we obtain that (1.11) is given by

∆

(
2c

p

)pn/2(
1− i2c

p

p∑
j=1

tj

)−pn/2 ∞∑
k1=0

· · ·
∞∑

kp−1=0

Γ

(
pn

2
+

p−1∑
j=1

kj

)

∗ Cn,p(k1, . . . , kp−1)

p−1∏
r=1

(
r

p

)kr (1− i2c
r

∑r
j=1 tj

1− i2c
p

∑p
j=1 tj

)kr

= ∆

(
2c

p

)pn/2
Ĝ

(
p∑
j=1

tj; pn/2, 2c/p

)
∞∑
k1=0

· · ·
∞∑

kp−1=0

Γ

(
pn

2
+

p−1∑
j=1

kj

)

∗ Cn,p(k1, . . . , kp−1)

p−1∏
r=1

(
r

p

)kr Ĝ(
∑p

j=1 tj; kr, 2c/p)

Ĝ(
∑r

j=1 tj; kr, 2c/r)
, (1.12)

where Ĝ(t; a, b) and Cn,p(k1, . . . , kp−1) are given as above. Thus we have

ϕ`1,...,`p(t1, . . . , tp) = ϕl1,...,lp(tp, . . . , t1)

= ∆

(
2c

p

)pn/2
Ĝ

(
p∑
j=1

tj; pn/2, 2c/p

)
∞∑
k1=0

· · ·
∞∑

kp−1=0

Γ

(
pn

2
+

p−1∑
j=1

kj

)

∗ Cn,p(k1, . . . , kp−1)

p−1∏
r=1

(
r

p

)kr Ĝ(
∑p

j=1 tj; kr, 2c/p)

Ĝ(
∑p

j=p+1−r tj; kr, 2c/r)

which ends the proof. �

The next result follows by taking (t1, t2, · · · , tp)> =
−→
0 in (1.7). It may be useful to

study in terms of characteristic functions the representation of the distribution of the largest
eigenvalue of a Wishart matrix as a simultaneous mixture of scale and shape mixtures of
gamma distributions, given in Section 1.4.

Corollary 1.2.2

∆

(
2c

p

)pn/2 ∞∑
k1=0

· · ·
∞∑

kp−1=0

Γ

(
pn

2
+

p−1∑
j=1

kj

)
Cn,p(k1, . . . , kp−1)

p−1∏
r=1

(
r

p

)kr
= 1.
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As an application of the last proposition, we can obtain the characteristic function ϕ`1(t)
of the largest eigenvalue `1 of a Wishart random matrix with distribution W(n, cIp), simply

by evaluating the vector
−→
t1 = te1 in (1.7), where ei is the i-th p-dimensional unit vector, to

get
ϕ`1(t) = ϕ`1,...,`p(

−→
t1 ) ∀t ∈ R.

We can do this for any eigenvalue `i, with i = 2, . . . , p. Furthermore, we can obtain the
characteristic function of any linear combination of the eigenvalues. In particular, for the level
spacings si = `i−`i+1, for i = 1, 2, . . . , p−1, we need to evaluate the vector

−−→
ti,i+1 = t(ei−ei+1)

in (1.7) to obtain that the characteristic function of si is given by

ϕsi(t) = ϕ`1,...,`p(
−−→
ti,i+1) ∀t ∈ R.

1.2.3 Distribution of the eigenvectors

Before giving the distribution of the eigenvectors of a Wishart matrix we present the next
definition given in Anderson [4]. We include it for the sake of completeness, but it is not
used in this work.

Definition 1.2.1 If the random orthogonal matrix E of order p has a distribution such that
EQ> has the same distribution for every orthogonal matrix Q, the distribution of E is said
to have the Haar invariant distribution.

If E has Haar invariant distribution the probability that E is such that ei1 ≥ 0, i =
1, 2, . . . , p, is 1/2p; see [4, pp. 536]. Then the conditional distribution of E given ei1 ≥ 0,
i = 1, 2, . . . , p, is 2p times the Haar invariant distribution over this part of the space. We call
this distribution the conditional Haar invariant distribution. The next theorem is about the
distribution of the matrix of eigenvectors of a Wishart matrix, it is taken from [4, pp. 537].

Theorem 1.2.2 If C = Y >, where Y = [Y1, Y2, . . . , Yp] = (yij) is the orthogonal matrix of
eigenvectors of A ∼ W(n, Ip) with y1j ≥ 0 for all j = 1, 2, . . . , p, then C has the conditional
Haar invariant distribution and C is independent of the eigenvalues of A.

1.2.4 Asymptotic distribution of the spectrum when p is fixed

In the case of a Wishart matrix with fixed dimension p, the asymptotic joint distribution
of the normalized eigenvalues when n goes to infinity is given by the joint distributions of
the eigenvalues of a symmetric standard Gaussian matrix, that is a symmetric matrix where
the entries on and above the diagonal are independent, the elements in the diagonal are
i.i.d. with distribution N(0, 2) and the entries above the diagonal are i.i.d. with distribution
N(0, 1). Moreover the distribution of sample eigenvectors converges to a conditional Haar
measure and the sample eigenvectors and eigenvalues are asymptotically independent; see
[4, pp. 538].
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Theorem 1.2.3 Let nS ∼ W(n, Ip), define the p × p matrices L = diag(l1, l2, . . . , lp) and
V = [V1, V2, . . . , Vp] = (vij) by S = V LV > with l1 ≥ l2 ≥ · · · ≥ lp, V

>V = Ip and v1j ≥ 0,
j = 1, 2, . . . , p. Then the density of the limiting distribution of

√
n(L− Ip) as n→∞ is

2−p/2πp(p−1)/4Γ−1
p

(p
2

)
exp

(
−1

2

p∑
i=1

ϕ2
i

)∏
j<i

(ϕi − ϕj), (1.13)

for ϕ1 > · · · > ϕp, which is the density of the eigenvalues of a symmetric standard Gaussian
matrix. Furthermore, the matrix V > is asymptotically distributed according to the conditional
Haar measure and independent of L.

The next proposition can be consider an extension of the one-dimensional fact that if
χ2
n is a chi-square random variable with n degrees of freedom, then χ2

n/n converges to 1 in
probability (almost surely and in distribution), as n → ∞. It is a consequence of a more
general result under a non-Gaussian assumption, the Proposition 2.2.1 in Chapter 2.

Proposition 1.2.2 Let `1 ≥ `2 ≥ · · · ≥ `p be the eigenvalues of W ∼ W(n,Σ) with n ≥ p
and suppose that λ1 ≥ λ2 ≥ · · · ≥ λp are the eigenvalues of Σ. Then

n−1

(
`1

λ1

,
`2

λ2

, . . . ,
`p
λp

)>
w−→ (1, 1, . . . , 1)> as n→∞.

1.3 Asymptotic results for the spectrum: Random Ma-

trix Theory context

1.3.1 Marchenko-Pastur distribution

Several results about the asymptotic behavior of eigenvalues of random matrices are given
in terms of their empirical spectral distribution whose definition is the following.

Definition 1.3.1 The empirical spectral distribution (ESD) of a p×p Hermitian matrix A
with eigenvalues l1 ≥ l2 ≥ · · · ≥ lp is defined as

F̂A(x) =

∑p
i=1 I(li,∞)(x)

p
=

#{1 ≤ i ≤ p : li ≤ x}
p

.

The expectation of FA(x) is computed as follows

E(F̂A(x)) = E

(∑p
i=1 I(li,∞)(x)

p

)
=

∑p
i=1E[I(li,∞)(x)]

p
=

∑p
i=1 P (li ≤ x)

p
.

The following theorem is due to Marchenko and Pastur [27]. It gives the limiting dis-
tribution of the ESD of (a sequence of) Wishart matrices, when the sample size n and the
matrix dimension p go both to infinity at the same rate, in the sense that p/n→ γ > 0. It
considers both the full (γ ≤ 1) and non-full (γ > 1) rank cases.
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Theorem 1.3.1 Let Sn = An/n where An ∼ W(n, Ip), p = p(n) and p/n → γ > 0 as
n→∞. Then for all x ∈ R

F̂Sn(x) −→ F (x) as n→∞

almost surely, where F is the Marchenko-Pastur law with density given by

f(x) =
1

2πγx

√
(b− x)(x− a)I(a,b)(x) + I(1,∞)(γ)

(
1− 1

γ

)
δ0(x), (1.14)

where a = (1−√γ)2, b = (1 +
√
γ)2 and δ0 is the Dirac delta function in zero.

Note that when γ > 1 the Marchenko-Pastur law has an atom at x = 0 with mass 1− 1
γ
.

Remark 1.3.1 The result of Theorem 1.3.1 holds for more general matrices of the form
Bn = Y Y >, where the entries of the p × n matrix Y are i.i.d. random variables with mean
zero and finite variance; see [6].

Furthermore, by [17] and [38] we have the next result which says that when n and p tend
to infinity and p/n → γ all the nonzero eigenvalues of Sn tend to be in the support of the
Marchenko-Pastur density (1.14).

Proposition 1.3.1 Under the same hypothesis as in Theorem 1.3.1, if l1 and lr are the
largest and the smallest nonzero eigenvalue of Sn respectively, with r = min(n, p), then

lr −→ (1−√γ)2 and l1 −→ (1 +
√
γ)2

almost surely, when p/n→ γ > 0 and n→∞.

The next example is taken from [24]. It illustrates how Marchenko-Pastur’s result explains
the dispersion of sample eigenvalues in a simple case.

Example 1.3.1 n = 10 independent observations are obtained from a distribution Np(0, Ip),
with p = 10. In this case the eigenvalues of the population covariance matrix are all equal
to one, but the eigenvalues of the sample covariance matrix, which is 1/n times a Wishart
matrix, are

(0.003, 0.036, 0.095, 0.16, 0.30, 0.51, 0.78, 1.12, 1.40, 3.07).

We can see an extreme spread in the sample eigenvalues and not all of them are close to
one. This phenomenon can be explained by Theorem 1.3.1 because the limit of the ESD of
the sample covariance matrix with p = n (i.e. γ = 1) is the Marchenko-Pastur law with
support

a = (1−
√

1)2 = 0 and b = (1 +
√

1)2 = 4,

which corresponds to the range of the sample eigenvalues.
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1.3.2 Tracy-Widom distribution

The asymptotic distribution of the largest eigenvalue of a Wishart matrix was obtained by
Johnstone [23]. This distribution is the so-called Tracy-Widom distribution obtained by
these authors [39] as the limiting law of the largest eigenvalue of Gaussian matrices; see [30,
pp. 33].

Theorem 1.3.2 Let us assume that the p× n matrix X has entries i.i.d. with distribution
N(0, 1). Then, if p/n→ γ > 0 as n→∞, and if l1 is the largest eigenvalue of Sn = XX>/n,
we have

P

(
n2/3 l1 − (

√
1− 1/n+

√
p/n)2

(
√

1− 1/n+
√
p/n)(

√
1 + 1/(n− 1) +

√
n/p)1/3

≤ s

)
−→ F1(s)

as n→∞, where F1 is the Tracy-Widom distribution of order 1 defined by

F1(s) = exp

(
−1

2

∫ ∞
0

q(x) + (x− s)q2(x)dx

)
, s ∈ R,

with q(x) the solution of the Painlevé II differential equation

q′′3(x), q(x) ∼ Ai(x) as x→∞, (1.15)

and where Ai(x) denotes the Airy function.

Remark 1.3.2 The complex case of Theorem 1.3.2 is study by Johansson [22], who shows
that the limiting distribution of the largest sample eigenvalue in this case is the Tracy-Widom
distribution of order 2.

Theorem 1.3.2 can be used in hypothesis testing as we show in the next example taken
from [24].

Example 1.3.2 Suppose that the observed largest sample eigenvalue is equal to 4.25 and
n = p = 10. Is this consistent with H0 : Σ = Ip?. Let l1 be largest sample eigenvalue. By
Theorem 1.3.2 we have

P

(
nl1 − µn,p
σn,p

≤ s

)
≈ F1(s),

where

µn,p = (
√
n− 1 +

√
p)2 and σn,p = (

√
n− 1 +

√
p)

(
1√
n− 1

+
1
√
p

)1/3

.

Then

P (l1 > 4.25) ≈ 1− F1

(
n(4.25)− µn,p

σn,p

)
= 0.06.

Therefore we do not reject H0 with significance level 5%.
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1.4 Exact distribution of the largest eigenvalue

In this section we obtain results that address the structure and properties of the exact
distribution of the largest eigenvalue `1 of a Wishart matrix W(n, Ip). We show that this
distribution is a simultaneous mixture of scale and shape mixtures of gamma distributions.
We believe that these results could be useful to discover new properties of the Tracy-Widom
distribution, e.g. its infinite divisibility, an open problem.

The notations Φ(a; c; z) and 2F1(a, b; c; z) will be used for the confluent hypergeometric
function and the Gauss hypergeometric function of one variable, respectively. The integral
and series representations of these functions can be found in [18] and are given by the
expressions

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt,

Re(c) > Re(b) > 0, | arg(1− z)| < π; (1.16)

Φ(a; b; z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

ta−1(1− t)b−a−1 exp(tz)dt,

Re(b) > Re(a) > 0; (1.17)

2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, |z| < 1; (1.18)

Φ(a; b; z) =
∞∑
k=0

(a)k
(b)k

zk

k!
, b 6= 0,−1,−2, . . . ; (1.19)

where (a)k = a(a+ 1) · · · (a+ k − 1) = Γ(a+k)
Γ(a)

.

1.4.1 Mixtures of distributions

Let us recall some notions regarding mixtures of distributions.

Definition 1.4.1 Let P be a probability measure on the measurable space (Θ, T ) and let
{Fθ}θ∈Θ be a collection of distribution functions such that θ 7→ Fθ(x) is T -measurable for all
x ∈ R. Then we say that the function

F (x) =

∫
Θ

Fθ(x)P (dθ), x ∈ R, (1.20)

is a mixture of the distributions {Fθ}θ∈Θ.
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Sometimes the space Θ can be a subset of R+ and P can be the Stieltjes measure induced
by a distribution function H. Mixtures as in (1.20) can be written in terms of characteristic
functions as follows

ϕ(t) =

∫
Θ

ϕθ(t)P (dθ), t ∈ R, (1.21)

where ϕθ is the characteristic function of Fθ. If Fθ is absolutely continuous with density fθ
for every θ ∈ Θ, then the mixture F is absolutely continuous with density f given by

f(x) =

∫
Θ

fθ(x)P (dθ), x ∈ R. (1.22)

Let us recall two important types of mixtures. Suppose Θ ⊂ R+ and let ϕ1 be a charac-
teristic function.

Definition 1.4.2 The distribution of a random variable X is said to be a scale mixture if

X
L
= ZY,

where Z and Y are independent and Z is non-negative. In terms of characteristics functions
this is equivalent to

ϕX(t) =

∫
Θ

ϕY (θt)dFZ(θ), t ∈ R. (1.23)

Example 1.4.1 Let g(x; a, b) and Ĝ(t; a, b) be the density and characteristic functions of
the gamma distribution Gamma(a, b) given by (1.5) and (1.6), respectively. Suppose Ha is a

distribution function for each a ∈ R+. Let ϕ1(t) = Ĝ(t; a, 1) = (1−it)−a be the characteristic
function of the gamma distribution Gamma(a, 1). Then the distribution with density

g̃a(x) =

∫
R+

g(x; a, θ)dHa(θ)

is a scale mixture, called a scale mixture of gamma(a) distributions. Its characteristic func-
tion is

ϕa(t) =

∫
R+

Ĝ(t; a, θ)dHa(θ) =

∫
R+

(1− iθt)−adHa(θ) =

∫
R+

ϕ1(θt)dHa(θ).

Now, suppose that B is a distribution function over R+, then

f(x) =

∫
R+

g̃a(x)dB(a)

is a mixture of the distributions {g̃a}a∈R+ which we call a mixture of scale mixtures of gamma
distributions.
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1.4.2 The case p = 2

We calculate the density function of the largest eigenvalue of W(n, cI2), `1, which has the
expression of a density function given by Al-Zamel [3]. Also, it can be seen as a scale mixture
of gamma(n) distributions as we show in the next proposition. For simplicity we take c = 1;
the general case is analogous.

Proposition 1.4.1 The density function of the largest eigenvalue of A ∼ W(n, I2), `1, is
given by

f`1(`1) =
`n−1

1 exp(−`1/2)Φ(n−1
2

; n+3
2

; −`1
2

)

2nΓ(n)2F1(n, n−1
2

; n+3
2

;−1)
(Al-Zamel’s density) (1.24)

=

∫ 2

1

g(`1;n, y)hn(y)dy, (scale mixture of gamma(n) dist.) (1.25)

where g(x; a, b) is as in (1.5) and

hn(y) = (n− 1)(y − 1)(2− y)(n−3)/2y(n−3)/2 (1.26)

is a density function with support (1,2). Furthermore the characteristic function of `1 is

ϕ`1(t) =
2F1(n, 2; n+3

2
; 1

2(1−it))

(n+ 1)(1− it)n
.

Proof. Let lk = `3−k for k = 1, 2. Using Corollary 1.2.1 we have

f`1(`1) = fl2(l2) =

∫
R
f(l1,l2)(l1, l2)dl1 =

l
(n−3)/2
2 exp(−l2/2)

4Γ(n− 1)

∫ l2

0

l
(n−3)/2
1 (l2 − l1) exp(−l1/2)dl1.

Under the change of variable t = l1/l2, the last expression is equal to

ln−1
2 exp(−l2/2)

4Γ(n− 1)

∫ 1

0

t(n−3)/2(1− t) exp(−l2t/2)dt. (1.27)

In order to see that (1.27) is equal to (1.24) we only need to see that

Φ(n−1
2

; n+3
2

; −l2
2

)

2nΓ(n)2F1(n, n−1
2

; n+3
2

;−1)
=

1

4Γ(n− 1)

∫ 1

0

t(n−3)/2(1− t) exp(−l2t/2)dt.

Before proving the last equality note the following:

2F1

(
n,
n− 1

2
;
n+ 3

2
;−1

)
=

Γ(n+3
2

)

Γ(n−1
2

)Γ(2)

∫ 1

0

u
n−1
2
−1(1− u)(1 + u)−ndu

=
Γ(n+3

2
)

2nΓ(n−1
2

)Γ(2)

∫ 1

0

(1− y)
n−1
2
−1y(1− y/2)−ndy

=
1

2n
2F1

(
n, 2;

n+ 3

2
; 1/2

)
=

2Γ(n+3
2

)

2nΓ(n+1
2

)
.
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Thus we have

Φ(n−1
2

; n+3
2

; −l2
2

)

2nΓ(n)2F1(n, n−1
2

; n+3
2

;−1)
=

Γ((n+3)/2)
Γ((n−1)/2)Γ(2)

∫ 1

0
t
n−1
2
−1(1− t) exp(−l2t/2)dt

2nΓ(n)
2Γ(n+3

2
)

2nΓ(n+1
2

)

=
Γ(n+1

2
)

2Γ(n)Γ(n−1
2

)

∫ 1

0

t(n−3)/2(1− t) exp(−l2t/2)dt

=
1

4Γ(n− 1)

∫ 1

0

t(n−3)/2(1− t) exp(−l2t/2)dt.

To conclude the proof we will see that (1.25) is equal to (1.27). Adopting the change of
variable y = 2

2−t we have that∫ 2

1

g(l2;n, y)hn(y)dy =

∫ 1

0

g

(
l2;n,

2

2− t

)
h̃n(t)dt,

where g(x; a, b) and hn(y) are given by (1.5) and(1.26) respectively, and

h̃n(t) =
n− 1

4
t(1− t)(n−3)/2

(
1− t

2

)−n
.

Furthermore, we have that∫ 1

0

g

(
l2;n,

2

2− t

)
h̃n(t)dt =

∫ 1

0

n− 1

4
t(1− t)(n−3)/2

(
1− t

2

)−n ln−1
2 exp(−l2(2−t)

2
)

( 2
2−t)

nΓ(n)
dt

=
(n− 1)ln−1

2

4Γ(n)

∫ 1

0

t(1− t)(n−3)/2 exp

(
−l2(2− t)

2

)
dt

=
ln−1
2

4Γ(n− 1)

∫ 1

0

y(n−3)/2(1− y) exp

(
−l2(1 + y)

2

)
dy

=
ln−1
2 exp(−l2/2)

4Γ(n− 1)

∫ 1

0

y(n−3)/2(1− y) exp(−l2y/2)dy.

Therefore we have that (1.25) is equal to (1.27). The characteristic function of `1 is derived
from Proposition 1.2.1 since

ϕ`1(t) = ϕ`1,`2(t, 0).�

1.4.3 The case p ≥ 3

In this section we prove that the distribution of the largest eigenvalue `1, when p ≥ 3, is
also related to mixtures of distributions involving mixtures of gamma distributions. In order
to see this, we will obtain the density function of `1 for the case p ≥ 3 differently from the
way used in the case p = 2. Let (Θ, T ) be the measurable space where Θ = Np−2

0 is the
(p− 2)-ary Cartesian product of the set N0 = N ∪ {0}, and T is the power set of Θ.
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Proposition 1.4.2 The density function of the largest eigenvalue of A ∼ W(n, Ip) with
p ≥ 3, `1, has the form

f`1(`1) =

∫
Θ

g̃(`1; θ, n, p)Bn,p(dθ). (1.28)

Here, Bn,p is a probability measure on (Θ, T ); the function g̃(`1; θ, n, p) is the density of a
scale mixture of gamma(r) distributions, as defined in Example 1.4.1 with r = r(θ, n, p),
given by

g̃(x; θ, n, p) =

∫
R+

g(x; r(θ, n, p), z)dH(θ,n,p)(z)

and H(θ,n,p) is a distribution function on R+. That is, f`1 is a simultaneous mixture of scale
and shape mixtures of gamma distributions.

Proof. Let lk = `p+1−k for k = 1, 2, . . . , p. Using (1.4) we have the following:

flp(lp) =

∫ lp

0

· · ·
∫ l2

0

f(l1,...,lp)(l1, . . . , lp)dl1 · · · dlp−1

= ∆ exp

(
− lp

2

)
l(n−p−1)/2
p

∫ lp

0

exp

(
− lp−1

2

)
l
(n−p−1)/2
p−1 (lp − lp−1) · · ·∫ li+1

0

exp

(
− li

2

)
l
(n−p−1)/2
i

p−1∏
j=i

(lj+1 − li) · · ·

∫ l2

0

exp

(
− l1

2

)
l
(n−p−1)/2
1

p−1∏
j=1

(lj+1 − l1)dl1 · · · dlp−1.

Doing the change of variable yi = li/li+1, i = 1, 2, . . . , p − 1, iteratively in the last integrals
we obtain that

flp(lp) = ∆ exp

(
− lp

2

)
lpn/2−1
p

∫ 1

0

exp

(
− lpyp−1

2

)
y

(p−1)(n−1)/2−1
p−1 (1− yp−1) · · ·∫ 1

0

exp

(
−
lp
∏p−1

j=i yj

2

)
y
i(n−p+i)/2−1
i

p−1∏
j=i

(
1−

j∏
r=i

yr

)
· · ·

∫ 1

0

exp

(
−
lp
∏p−1

j=1 yj

2

)
y

(n−p+1)/2−1
1

p−1∏
j=1

(
1−

j∏
r=1

yr

)
dy1 · · · dyp−1. (1.29)

Now, writing t1 = 1− y1 in the internal integral of (1.29) and taking in to account that

p−1∏
j=i+1

(
1−

j∏
r=i+1

yr + ti

j∏
r=i+1

yr

)nj

=

ni+1∑
xi+1=0

· · ·
np−1∑
xp−1=0

t
∑p−1

r=i+1 xr
i

p−1∏
j=i+1

[(
nj
xj

)
(1−

j∏
r=i+1

yr)
nj−xjy

∑p−1
r=j xr

j

]
, (1.30)
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for i and nj positive integers (in this case i = 1 and nj = 1 for all j = 2, 3, . . . , p − 1), we
have that the internal integral of (1.29) is equal to

exp

(
−
lp
∏p−1

j=2 yj

2

)
1∑

x
(1)
2 =0

· · ·
1∑

x
(1)
p−1=0

p−1∏
j=2

(1−
j∏
r=2

yr

)1−x(1)j

y
∑p−1

r=j x
(1)
r

j


∗
∫ 1

0

exp

(
lp
∏p−1

j=2 yjt1

2

)
(1− t1)(n−p+1)/2−1t

2−
∑p−1

r=2 x
(1)
r −1

1 dt1. (1.31)

By (1.17) the integral in (1.31) is equal to

B

(
2 +

p−1∑
r=2

x(1)
r ,

n− p+ 1

2

)
Φ

(
2 +

p−1∑
r=2

x(1)
r ; 2 +

n− p+ 1

2
+

p−1∑
r=2

x(1)
r ;

lp
∏p−1

j=2 yj

2

)
.

Hence using (1.19) we can write (1.31) as

exp

(
−
lp
∏p−1

j=2 yj

2

)
∞∑
k1=0

1∑
x
(1)
2 =0

· · ·
1∑

x
(1)
p−1=0

a(1)(x(1), k1, n, p)l
k1
p

∗
p−1∏
j=2

(1−
j∏
r=2

yr

)1−x(1)j

y
∑p−1

r=j x
(1)
r +k1

j

 , (1.32)

where a(1) is a non-negative constant that depends only on x(1) := (x
(1)
2 , . . . , x

(1)
p−1)>, k1, n

and p. Therefore (1.29) can be written as

flp(lp) = ∆ exp

(
− lp

2

)
lpn/2−1
p

∫ 1

0

exp

(
− ldyp−1

2

)
y

(p−1)(n−1)/2−1
p−1 (1− yp−1) · · ·∫ 1

0

exp

(
−
lp
∏p−1

j=i yj

2

)
y
i(n−p+i)/2−1
i

p−1∏
j=i

(
1−

j∏
r=i

yr

)
· · ·

∞∑
k1=0

1∑
x
(1)
2 =0

· · ·
1∑

x
(1)
p−1=0

a(1)(x(1), k1, n, p)l
k1
p

p−1∏
j=3

[
y
∑p−1

r=j x
(1)
r +k1

j

]
∫ 1

0

exp

(
−

2lp
∏p−1

j=2 yj

2

)
y

2(n−p+1)/2+
∑p−1

r=2 x
(1)
r +k1−1

2

p−1∏
j=2

(
1−

j∏
r=2

yr

)2−x(1)j

dy2 · · · dyp−1

(1.33)

after interchanging the order of the sums with the integral respect to y2. Similarly, doing
the change of variable ti = 1 − yi, i = 2, 3, . . . , p − 2, in (1.33) iteratively and using (1.30)
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we see that

flp(lp) = ∆ exp

(
− lp

2

)
lpn/2−1
p

∞∑
k1=0

· · ·
∞∑

kp−2=0

1∑
x
(1)
2 =0

· · ·
1∑

x
(1)
p−1=0

2−x(1)3∑
x
(2)
3 =0

· · ·
2−x(1)p−1∑
x
(2)
p−1=0

· · ·
p−2−

∑p−3
i=1 x

(i)
p−1∑

x
(p−2)
p−1 =0

a(p−2)(x(1), . . . , x(p−2), k(p−2), n, p)l
∑p−2

r=1 kr
p

∫ 1

0

exp

(
−(p− 1)lpyp−1

2

)
∗ (1− yp−1)p−

∑p−2
i=1 x

(i)
p−1−1y

(p−1)(n−1)/2+
∑p−2

i=1 (x
(i)
p−1+ki)−1

p−1 dyp−1, (1.34)

where a(p−2) is a non-negative constant that depends only on the vectors

x(i) := (x
(i)
i+1, x

(i)
i+2, . . . , x

(i)
p−1)>, for i = 1, 2, . . . , p− 2,

k(p−2) := (k1, k2, . . . , kp−2)> and the numbers n, p. Performing the change of variable t =
1− yp−1 in (1.34) we obtain that

flp(lp) =
∞∑
k1=0

· · ·
∞∑

kp−2=0

1∑
x
(1)
2 =0

· · ·
1∑

x
(1)
p−1=0

2−x(1)3∑
x
(2)
3 =0

· · ·
2−x(1)p−1∑
x
(2)
p−1=0

· · ·
p−2−

∑p−3
i=1 x

(i)
p−1∑

x
(p−2)
p−1 =0

∆a(p−2)(x(1), . . . , x(p−2), k(p−2), n, p)

∫ 1

0

exp

(
− lp(p− (p− 1)t)

2

)
lpn/2+

∑p−2
r=1 kr−1

p

∗ tp−
∑p−2

i=1 x
(i)
p−1−1(1− t)(p−1)(n−1)/2+

∑p−2
i=1 (x

(i)
p−1+ki)−1dt. (1.35)

A further change of variable z = 2
p−(p−1)t

in the integral of (1.35), yields that this integral is
equal to∫ 2

2/p

exp

(
− lp
z

)
lpn/2+

∑p−2
r=1 kr−1

p

(
1− pz − 2

(p− 1)z

)(p−1)(n−1)/2+
∑p−2

i=1 (x
(i)
p−1+ki)−1

∗
(
pz − 2

(p− 1)z

)p−∑p−2
i=1 x

(i)
p−1−1

2

(p− 1)z2
dz

= Γ

(
pn

2
+

p−2∑
r=1

kr

)∫ 2

2/p

g

(
lp;
pn

2
+

p−2∑
r=1

kr, z

)
h(z;x

(1)
p−1, . . . , x

(p−2)
p−1 , k(p−2), n, p)dz, (1.36)

where g is the gamma density given in (1.5) and

h(z;x
(1)
p−1, . . . , x

(p−2)
p−1 , k(p−2), n, p) = zpn/2+

∑p−2
r=1 kr

(
1− pz − 2

(p− 1)z

)(p−1)(n−1)/2+
∑p−2

i=1 (x
(i)
p−1+ki)−1

∗
(
pz − 2

(p− 1)z

)p−∑p−2
i=1 x

(i)
p−1−1

2

(p− 1)z2
.
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Then, interchanging the integral in (1.35) by the last expression of (1.36) we have

flp(lp) =
∞∑
k1=0

· · ·
∞∑

kp−2=0

∫ 2

2/p

g

(
lp;
pn

2
+

p−2∑
r=1

kr, z

)
h(z; k(p−2), n, p)dz

=
∞∑
k1=0

· · ·
∞∑

kp−2=0

b(k(p−2), n, p)

∫ 2

2/p

g

(
lp;
pn

2
+

p−2∑
r=1

kr, z

)
h̃(z; k(p−2), n, p)dz, (1.37)

where

h(z; k(p−2), n, p) =
1∑

x
(1)
2 =0

· · ·
1∑

x
(1)
p−1=0

2−x(1)3∑
x
(2)
3 =0

· · ·
2−x(1)p−1∑
x
(2)
p−1=0

· · ·
p−2−

∑p−3
i=1 x

(i)
p−1∑

x
(p−2)
p−1 =0

∆a(p−2)(x(1), . . . , x(p−2), k(p−2), n, p)Γ

(
pn

2
+

p−2∑
r=1

kr

)
h(z;x

(1)
p−1, . . . , x

(p−2)
p−1 , k(p−2), n, p),

b(k(p−2), n, p) =

∫ 2

2/p

h(z; k(p−2), n, p)dz, (1.38)

h̃(z; k(p−2), n, p) =
h(z; k(p−2), n, p)

b(k(p−2), n, p)
.

Let

g̃(lp; k
(p−2), n, p) =

∫ 2

2/p

g

(
lp;
pn

2
+

p−2∑
r=1

kr, z

)
h̃(z; k(p−2), n, p)dz. (1.39)

Then by the last expression in (1.37) we have

flp(lp) =
∞∑
k1=0

· · ·
∞∑

kp−2=0

b(k(p−2), n, p)g̃(lp; k
(p−2), n, p). (1.40)

Since flp and g̃ are density functions depending on lp, integrating both size of (1.40) respect
to lp we see that

∞∑
k1=0

· · ·
∞∑

kp−2=0

b(k(p−2), n, p) = 1

and since b(k(p−2), n, p) ≥ 0 we can define a probability measure, Bn,p, over the space Θ =
Np−2

0 by
Bn,p(θ) = b(θ, n, p), θ ∈ Θ. (1.41)

Finally, by (1.40) we obtain (1.28). �



Chapter 2

Principal component analysis for
the spiked covariance model in
HDLSS

An important methodology in multivariate statistical analysis for reduction of dimensionality
is Principal Component Analysis (PCA), which is based on the estimation of the popula-
tion covariance matrix by the sample eigenvalues and eigenvectors of the sample covariance
matrix. In this chapter we study the asymptotic behavior of the p largest sample eigen-
values and their corresponding sample eigenvectors under the so-called spiked covariance
model. We assume for this model that its p ≥ 2 largest population eigenvalues have the
same asymptotic order of magnitude, as the data dimension d tends to infinity, while the
rest of the eigenvalues are constant, as explained in Section 2.1.2. We also propose hypotesis
testing for a particular case of our model and confidence intervals for the p largest population
eigenvalues under this model.

In Section 2.1 the definition of the spiked covariance model is given, as well as the ways
it has been considered in PCA under the the High-Dimension, Low Sample Size framework.
Section 2.2 is dedicated to study PCA for the spiked covariance model where the p largest
population eigenvalues have the same asymptotic order of magnitude. Specifically, in Section
2.2.1 we find the asymptotic joint distribution of the nonzero sample eigenvalues when d→∞
and with the sample size n fixed. We then obtain that the p largest sample eigenvalues
increase jointly at the same speed as their population counterpart, in the sense that the vector
of ratios of the sample and population eigenvalues converges to a multivariate distribution
when d→∞ and n is fixed, and to the vector of ones when both d, n→∞ and d� n. It is
proved in Section 2.2.2 that the sample eigenvectors corresponding to the p largest sample
eigenvalues are not consistent but they are subspace consistent when d tends to infinity and
n is fixed, in the sense of Jung and Marron [25]. In Section 2.3 we consider some inference
problems for the spiked covariance model under a Gaussian assumption, in particular, the
hypothesis testing of a special case of our spiked covariance model and confidence intervals
for the p largest population eigenvalues. Detailed comparisons of our results with those found
in the literature for PCA under different settings are done in Section 2.4, also including some

19
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open problems of interest in statistical inference.

2.1 Spiked covariance model

An important problem in multivariate statistical analysis is the estimation of the population
covariance matrix. When the data dimension is greater than the sample size, PCA often
fails to estimate the population eigenvalues and eigenvectors, since the sample covariance
matrix is not a good approximation to the population covariance matrix. Therefore, it is
important to know conditions under which PCA has good properties in this context. One
way to approach this problem is considering a particular covariance model and to study the
behavior of PCA under this model. As pointed out in Johnstone [23], one often observes one
or a small number of large sample eigenvalues well separated from the rest. The so-called
spiked covariance model has attracted attention in this situation.

More specifically, suppose X = [X1, X2, . . . , Xn] is a d×n data matrix with n < d, where
the sample Xj = (x1j, . . . , xdj)

>, j = 1, 2, . . . , n, are independent and identically distributed
random vectors with mean zero and unknown covariance matrix Σ, and X has rank n with
probability one (it is not assumed that the Xj’s have a multivariate Gaussian distribution).
The spiked covariance model considers a covariance matrix of the type

Σ = OΛO> where Λ = diag(τ1, τ2, . . . , τp, σ, . . . , σ), (2.1)

with τ1 ≥ τ2 ≥ · · · ≥ τp > σ > 0, for some 1 ≤ p < d, and O is a d× d orthogonal matrix.

The spiked covariance model is a kind of covariance matrix that may achieve few sample
eigenvalues well separated from the rest, the latter being in the support of the Marchenko-
Pastur distribution. This is showed in Baik and Silverstein [9]. They prove that when
d, n→∞, d/n→ γ > 0 and there are population eigenvalues of the spiked covariance model
outside the interval [1−√γ, 1 +

√
γ], precisely the same number of sample eigenvalues will

converge almost surely to values outside the support [(1−√γ)2, (1+
√
γ)2] of the Marchenko-

Pastur distribution as d/n → γ. Thus, although Theorem 1.3.1 is also true for the spiked
covariance model (see [27], [5]) we can not guarantee the result of Proposition 1.3.1 and some
sample eigenvalues may be outside the support of the Marchenko-Pastur distribution and
well separated from the rest.

Many aspects of the spiked covariance model have been considered in several papers; see
for example [7], [8], [9], [16], [33], [35]. In particular, Principal Component Analysis for the
spiked covariance model has been considered in [2], [20], [23], [25], [32].

2.1.1 Different asymptotic contexts

There are three different asymptotic contexts in which the study of the sample spectrum of
the spiked covariance model arises: (i) the Classical case, (ii) the Random Matrix Theory
(RMT) context and (iii) the High-Dimension, Low Sample Size (HDLSS) context. Each
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context depends on the particular data analytic setting and the way the corresponding
asymptotics are considered with respect to the data dimension d and the sample size n.

In the classical case, one considers d fixed and n goes to infinity. In the RMT situation
one considers d and n go to infinity simultaneously, in the sense that d/n → γ, where
γ > 0, γ = 0 or γ = ∞. This framework has been considered in Bai and Yao [7], Baik
and Silverstein [9] and references therein. The limiting distribution of the sample spiked
eigenvalues is considered in [7], when γ < 1 (data dimension d lower than sample size), and
as we have mentioned before almost sure limits are considered in [9], when γ > 0. In this
context the population eigenvalues of the covariance matrix Σ do not depend on d and the
basic analytic tool is the so-called Marchenko-Pastur theorem.

On the other hand, in the so-called HDLSS context the asymptotic results are developed
by letting the data dimension d → ∞ while keeping fixed the sample size n. The main
references on this framework are Ahn, Marron, Muller and Chi [2], Hall, Marron and Neeman
[19] and Jung and Marron [25]. One can also consider in this framework the case of letting
first the data dimension d→∞ while keeping fixed the sample size n and in a second step,
letting n → ∞; see [2] and [25]. In other words d, n tend to infinity successively with d
increasing at a much faster rate than n, i.e. d, n→∞ and d� n. In contrast to the RMT
context, [2] and [25] assume that the p largest population eigenvalues of the covariance Σ
depend also on the data dimension d. Furthermore, the Marchenko-Pastur theorem does not
hold in the HDLSS context because we do not have the convergence of d/n to a positive
constant.

In this work we study the behavior of PCA, in the HDLSS context, for considering the
asymptotic behavior of largest population eigenvalues and their corresponding eigenvectors
under the spiked covariance model. We also study some inference problems for the spiked
covariance model and propose hypothesis testing for a particular case of this model and
confidence intervals for the largest eigenvalues.

2.1.2 Asymptotic behavior of the sample eigenvalues and eigen-

vectors

Since the sample covariance matrix S = n−1XX> has rank n with probability one, it has
exactly n nonzero sample eigenvalues which are denoted by τ̂1 ≥ τ̂2 ≥ · · · ≥ τ̂n. Suppose
that v1, . . . , vd are the orthonormal sample eigenvectors corresponding to the orthonormal
population eigenvectors o1, . . . , od, respectively. We consider that the direction of vi is close
to that of oi if

Angle(vi, oi) = arccos

(
v>i oi

‖ vi ‖‖ oi ‖

)
is near zero. As mentioned in [25], in the case when several population eigenvalues indexed
by the elements of a set J are similar, their corresponding sample eigenvectors may not be
distinguishable. Therefore, for j ∈ J the sample eigenvector vj, corresponding to the j-th
sample eigenvalue, will not be close to its corresponding population eigenvector oj but rather
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may asymptotically be in EJ = span{oj : j ∈ J}, the linear span generated by {oj : j ∈ J}.
For this case it is needed to consider the angle between vj, for j ∈ J , and EJ , which is
defined as

Angle(vj, EJ) = arccos

(
v>j [ProjEJ

vj]

‖ vj ‖‖ ProjEJ
vj ‖

)

= arccos

(
v>j (
∑

i∈J(o>i vj)oi)

‖ vj ‖‖
∑

i∈J(o>i vj)oi ‖

)
.

We say that vi is consistent if

Angle(vi, oi)
w−→ 0;

it is strongly inconsistent if

Angle(vi, oi)
w−→ π

2
;

and it is subspace consistent if
Angle(vi, EJ)

w−→ 0,

for some set of indices J with i ∈ J ; when d, n → ∞ and d � n or when d → ∞ and n is
fixed.

Under a sample Gaussian assumption on Xj, Ahn, et al. [2] show for p = 1 and Σ =
diag(dα, 1, . . . , 1) with α > 1, that the largest sample eigenvalue increases at the same speed
as its population eigenvalue, in the sense that its ratio converges to the distribution X 2

n/n
when d → ∞ and n is fixed. Moreover, they show that this ratio converges to one and the
first sample eigenvector is consistent when d, n → ∞ and d � n. A natural question is
whether these results can be generalized for the case p ≥ 2.

In this thesis we assume for the population covariance matrix the spiked covariance model
(2.1) where the p ≥ 2 largest population eigenvalues, τ1 ≥ τ2 ≥ · · · ≥ τp, have the same
asymptotic order of magnitude as d goes to infinity, that is τi = τi(d) and

τi
dα
−→ ci as d→∞, (2.2)

for some α > 1 and ci > 0, i = 1, 2, . . . , p. Then we show, under certain assumptions for
the data, that the p largest sample eigenvalues increase jointly at the same speed as their
population counterpart, in the sense that the vector of ratios of the sample and population
eigenvalues converges to a multivariate distribution when d→∞ and n is fixed, and to the
vector of ones when both d, n→∞ and d� n. We also show that the corresponding sample
eigenvectors are subspace consistent as d→∞ and n is fixed.

Recently, Jung and Marron [25] studied the spiked covariance model (2.1) for the case
when each of the p largest population eigenvalues has a different asymptotic order of mag-
nitude when dimension increases, that is τi = τi(d) and

τi
dαi
−→ ci as d→∞, (2.3)
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where α1 > α2 > · · · > αp > 1 and ci > 0, i = 1, 2, . . . , p. Taking into account a ρ-mixing
condition, they studied the asymptotic behavior of the p largest sample eigenvalues and the
consistency of the corresponding sample eigenvectors.

2.2 PCA under same asymptotic order of magnitude

Consider the spiked covariance model (2.1) where the p largest population eigenvalues have
the same asymptotic order of magnitude as d goes to infinity, together with the following
assumptions for the matrix X:

(a) Let Z = Λ−1/2O>X and assume that its entries have uniformly bounded fourth moments
with respect to d, in the sense that for each n = p+ 1, p+ 2, . . . we have E(z4

ij) ≤ Kn

for all i = 1, 2, . . . , d, j = 1, 2, . . . , n and d = n+ 1, n+ 2, . . . .

(b) Let Zi be the i-th row of Z and define Z̃p = [Z>1 , . . . , Z
>
p ]>. Assume that Z̃p converges

in distribution to some p× n matrix Ỹn as d→∞, which has rank p with probability
one.

We observe that the columns of Z are independent and identically distributed random
vectors with mean zero and identity covariance matrix. These assumptions do not cover all
random matrices but are still very general and include some interesting settings. In the case
when the independent columns of X have the Gaussian distribution Nd(0,Σ), assumptions
(a) and (b) are automatically satisfied and the W1 = Z>i Zi’s have a Wishart distribution

with one degree of freedom. The assumption (b) is also satisfied in the case when the Z̃p’s

have a stationary distribution in d, that is the distribution of Ỹn is the distribution of the
Z̃p’s for all d > n. Assumption (b) also holds in the case considered by Jung and Marron
[25] where a ρ-mixing condition is assumed; see proof of Lemma 1 in [25].

Considering the above assumptions for the covariance matrix Σ and for the data matrix
X, we study the asymptotic behavior of the p largest sample eigenvalues under the two differ-
ent limiting schemes of HDLSS; and we show the subspace consistency of the corresponding
sample eigenvectors when d tends to infinity and n is fixed.

2.2.1 Asymptotic behavior of the sample eigenvalues

As we have mentioned before, Ahn, et al. [2] show under the Gaussian setting, that for p = 1
and Σ = diag(dα, 1, . . . , 1) with α > 1, the largest sample eigenvalue increases at the same
speed as its population eigenvalue. Specifically, they showed that if τ̂1 is the largest sample
eigenvalue of the sample covariance matrix S = n−1XX> then

τ̂1

dα
w−→ X

2
n

n
as d→∞, (2.4)
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where X 2
n is a r.v. with a chi-square distribution with n degrees of freedom. Therefore, since

X 2
n/n

w→ 1 as n→∞ we have that the largest sample and population eigenvalue increase at
the same speed. This result can be derived also from Corollary 3 of Jung and Marron [25]
and can be extended for the p ≥ 2 largest population eigenvalues under certain assumptions
as we will see in Section 2.4.

We show that the p largest eigenvalues, with p ≥ 2, increase jointly at the same speed
as their population counterpart under our model under two different limiting schemes. We
begin with the case when d goes to infinity and n is fixed. The first result is an analogue
of Lemma 1 of [25]. In the next theorem we observe the joint convergence in distribution of
the vector of nonzero sample eigenvalues, while Lemma 1 of [25] states only the convergence
in distribution of each component of this vector (marginal convergence).

Theorem 2.2.1 Suppose that the unknown covariance matrix Σ of the columns of X is given
by the spiked covariance model (2.1), with p < n < d and where τ1 ≥ τ2 ≥ · · · ≥ τp have
the same asymptotic order of magnitude in the sense of (2.2). Consider the assumptions (a)
and (b) for the matrix X. Then when n is fixed

d−α(τ̂1, τ̂2, . . . , τ̂n)>
w−→ n−1(`1, `2, . . . , `p, 0, . . . , 0)>

as d → ∞, where `1 ≥ `2 ≥ · · · ≥ `p > 0 are the eigenvalues of the random matrix

Ũ0 = C1/2
p ỸnỸ

>
n C

1/2
p , where Cp = diag(c1, c2, . . . , cp).

Proof. The proof is based on the ideas of Section 4.2 of [2] where the case p = 1 was
considered. We have Σ = OΛO> where Λ = diag(τ1, ..., τp, σ, . . . , σ) is the diagonal matrix of
the eigenvalues of Σ and the corresponding eigenvectors are the column vectors of the matrix
O. The sample covariance matrix S and the dual sample covariance matrix SD = n−1X>X
have the same nonzero eigenvalues. Moreover, the following representation holds

nSD = Z>ΛZ =
d∑
i=1

λiWi =

p∑
i=1

τiWi + σ
d∑

i=p+1

Wi,

where Wi = Z>i Zi and Zi, i = 1, 2, . . . , d, are the row vectors of Z. Hence

d−αnSD = d−α
p∑
i=1

τiWi + d−ασ

d∑
i=p+1

Wi = U + σd−αV, (2.5)

where U =
∑p

i=1 d
−ατiWi and V =

∑d
i=p+1Wi.

Let τ̃p = diag(τ1, . . . , τp) and Cp = diag(c1, c2, . . . , cp). Note that U = Z̃>p (d−ατ̃p)Z̃p

converges in distribution to Ũ = Ỹ >n CpỸn as d →∞. On the other hand, we can show that
d−αV converges to the zero matrix in distribution as d→∞. In order to see that, consider
the norm ‖ A ‖= [tr(A>A)]1/2 for the n× n matrix A. By the Markov’s inequality we have
that for any ε > 0

P (‖ d−αV ‖> ε) = P (‖ d−αV ‖2> ε2) ≤ (dαε)−2E(‖ V ‖2).
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Using properties of the trace and the fact that the Wi’s are symmetric, it can be seen that
the right side of the last inequality is equal to

(dαε)−2

d∑
i=p+1

d∑
j=p+1

E[(ZiZ
>
j )2] = (dαε)−2

d∑
i=p+1

d∑
j=p+1

n∑
k=1

n∑
r=1

E(z2
ikz

2
jr).

Since there exist Kn > 0 such that E(z4
ij) ≤ Kn for all i, j, and by the Holder’s inequality

E(z2
ikz

2
jr) ≤ E(z4

ik)
1/2E(z4

jr)
1/2, we have that the right side of the last equation is less than

or equal to (dαε)−2(d− p)2n2Kn. Then

P (‖ d−αV ‖> ε) ≤ (d− p)2n2Kn

d2αε2
=

(
d− p
d

)2(
1

dα−1

)2
n2Kn

ε2
(2.6)

and the right side of the inequality tends to zero when d → ∞ because α > 1. Thus
the second term in the right hand side of (2.5) goes to the zero matrix in probability, and
therefore in distribution, as d increases. Hence

d−αnSD
w−→ Ũ as d→∞.

Then the vector of the roots of the characteristic polynomial of d−αnSD converge in distri-
bution to the vector of the roots of the characteristic polynomial of Ũ as d→∞.

Since Ũ = Ỹ >n CpỸn has rank p with probability one, the nonzero eigenvalues of Ũ are the

p nonzero eigenvalues `1 ≥ `2 ≥ · · · ≥ `p of Ũ0 = (C1/2
p Ỹn)(C1/2

p Ỹn)> = C1/2
p ỸnỸ

>
n C

1/2
p . Hence,

if τ̂1 ≥ τ̂2 ≥ · · · ≥ τ̂n are the nonzero eigenvalues of SD, or of S, we have

d−αn(τ̂1, τ̂2, . . . , τ̂n)>
w−→ (`1, ...`p, 0, . . . , 0)>

when d→∞. �

The following consequence of Theorem 2.2.1 shows the usefulness of the joint convergence
in distribution of the sample eigenvalues when the dimension d goes to infinity and n is fixed.
The result is a multivariate extension of (2.4). It gives the joint convergence in distribution
of the ratios of the sample and population eigenvalues to a random vector of multiples of the
eigenvalues corresponding to the random matrix Ũ0.

Corollary 2.2.1 Under the assumptions of Theorem 2.2.1 and for n fixed, we have the joint
weak convergence (

τ̂1

τ1

,
τ̂2

τ2

, . . . ,
τ̂p
τp

)>
w−→ n−1

(
`1

c1

,
`2

c2

, . . . ,
`p
cp

)>
,

when d→∞, where `1 ≥ `2 ≥ · · · ≥ `p > 0 are the eigenvalues of the random matrix Ũ0.

Proof. Note that(
τ̂1

τ1

,
τ̂2

τ2

, . . . ,
τ̂p
τp

)>
= diag

(
dα

τ1

,
dα

τ2

, . . . ,
dα

τp

)(
τ̂1

dα
,
τ̂2

dα
, . . . ,

τ̂p
dα

)>
(2.7)
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which by Theorem 2.2.1 tends in distribution to

diag

(
1

c1

,
1

c2

, . . . ,
1

cp

)(
`1

n
,
`2

n
, . . . ,

`p
n

)>
= n−1

(
`1

c1

,
`2

c2

, . . . ,
`p
cp

)>
. �

Remark 2.2.1 Suppose τ1 ≥ · · · ≥ τp ≥ σp+1 ≥ · · · ≥ σd > 0 are functions of d. The two
previous results hold if we consider the covariance matrix

Σ = OΛO> where Λ = diag(τ1, . . . , τp, σp+1, . . . , σd), (2.8)

where τ1, . . . , τp satisfy (2.2), max(σp+1, . . . , σd)/d
α−1 → 0 as d → ∞, and O is a d × d

orthogonal matrix. The proof is similar to that of Theorem 2.2.1; we only need to prove that

d−α
d∑

i=p+1

σiWi
w−→ 0 as d→∞, (2.9)

where Wi is as in the proof of Theorem 2.2.1 and 0 is the n×n matrix of zeros. We use the
result that if Ad, Bd and Ad−Bd are non-negative definite matrices and Ad → 0 as d→∞,
then Bd → 0 as d → ∞. Let Md = max(σp+1, . . . , σd) and V =

∑d
i=p+1Wi. Since Wi is

non-negative definite and Md − σi > 0 for i = p + 1, . . . , d, we have that Ad = d−αMdV ,
Bd = d−α

∑d
i=p+1 σiWi and Ad−Bd are non-negative definite matrices. Let ε > 0; analogously

to the proof of (2.6) it can be seen that

P (‖ Ad ‖> ε) ≤ (d− p)2M2
dn

2Kn

d2αε2
=

(
d− p
d

)2(
Md

dα−1

)2
n2Kn

ε2

and the right side of the last inequality tends to zero as d → ∞ since d−(α−1)Md → 0.
Therefore Ad → 0 in probability and in distribution as d→∞. Then we have (2.9).

Theorem 2.2.1 can also be used to obtain the asymptotic distribution of the differences
τ̂i − τ̂j for 1 ≤ i < j ≤ p, when d→∞. More precisely we have the following result.

Theorem 2.2.2 Under the same assumptions as in Theorem 2.2.1, for 1 ≤ i < j ≤ p we
have, for n fixed,

d−α(τ̂i − τ̂j)
w−→ n−1(`i − `j) as d→∞,

where `1 ≥ · · · ≥ `p > 0 are the eigenvalues of the random matrix Ũ0.

As a direct application of Proposition 1.2.1 we can also obtain the characteristic function
of the limiting distribution of the last theorem when the column vectors of X are Gaussian.
Note that when Cp = cIp with c > 0, the characteristic function of δi,j = n−1(`i − `j) is

ϕδi,j(t) = ϕ`(
−→
ti,j/n)

where ϕ` is the characteristic function of ` = (`1, . . . , `p)
> given by (1.7),

−→
ti,j/n = (t/n)(ei−

ej) with ei the p-dimensional unit vectors for i = 1, 2, . . . , p.
We now consider the limiting scheme when d, n → ∞ and d � n. The next theorem is

a generalization of the result of Section 4.2 of [2] which considers the case p = 1.
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Theorem 2.2.3 Suppose that the unknown covariance matrix of the columns of X is given
by the spiked covariance model (2.1), with p < n < d and where τ1 ≥ τ2 ≥ · · · ≥ τp have the
same asymptotic order of magnitude in the sense of (2.2). Suppose that X satisfies (a) and
the following assumption:

(b’) Let Zi be the i-th row of Z and define Z̃p = [Z>1 , . . . , Z
>
p ]>. Assume that Z̃p converges

in distribution to some p × n matrix Ỹn = (yij,n) as d → ∞, which has rank p with
probability one and its entries have uniformly bounded fourth moments with respect to
n, that is for some M > 0 we have E(y4

ij,n) ≤ M for all i = 1, 2, . . . p, j = 1, 2, . . . , n

and n = p + 1, p + 2, . . . . Furthermore, suppose that the matrix distribution of ỸnỸ
>
n

is continuous.

Then we have that(
τ̂1

τ1

,
τ̂2

τ2

, . . . ,
τ̂p
τp

)>
w−→ (1, 1, . . . , 1)> as d→∞, n→∞, (2.10)

where the limits are applied successively.

For the proof of this theorem, we first give the following Law of Large Numbers for
random matrices and vector of eigenvalues.

Proposition 2.2.1 Let Yn be a sequence of p×n random matrices with p < n, such that its
columns are independent with mean zero and identity covariance matrix. Assume that the
rank of Yn is p with probability one and that the entries of Yn = (yij,n) have uniformly bounded
fourth moments with respect to n, that is E(y4

ij,n) ≤ K for all i = 1, 2, . . . p, j = 1, 2, . . . , n
and n = p+ 1, p+ 2, . . . . Let An = YnY

>
n . Then we have the following:

(i)

n−1An
w−→ Ip as n→∞.

(ii) If we suppose that Σ = OΛO> is a p×p positive definite matrix, where Λ = diag(λ1, . . . , λp)
is the diagonal matrix of its eigenvalues and O is the p × p orthogonal matrix of its
eigenvectors, then if `1 ≥ `2 ≥ · · · ≥ `p are the eigenvalues of Wn = OΛ1/2AnΛ1/2O>

we have

n−1

(
`1

λ1

,
`2

λ2

, . . . ,
`p
λp

)>
w−→ (1, 1, . . . , 1)> as n→∞.

Proof. (i) We have that YnY
>
n = (

∑n
k=1 yik,nyjk,n); therefore

n−1YnY
>
n − Ip = (n−1

n∑
k=1

yik,nyjk,n − δi,j),
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where δi,j is one if i = j and zero otherwise. It is sufficient to prove that for all ε > 0

P (|
n∑
k=1

n−1yik,nyjk,n − δi,j| > ε) −→ 0 as n→∞. (2.11)

For the case i = j, by Chebyshev’s inequality and the assumptions for Yn we have that

P (|n−1

n∑
k=1

y2
ik,n − 1| > ε) ≤ ε−2Var(n−1

n∑
k=1

y2
ik,n) = (nε)−2E[(

n∑
k=1

y2
ik,n − n)2]

= (nε)−2E[
n∑
k=1

y4
ik,n + 2

n∑
k1<k2

y2
ik1,n

y2
ik2,n
− 2n

n∑
k=1

y2
ik,n + n2]

= (nε)−2[
n∑
k=1

E(y4
ik,n)− n]. (2.12)

Since E(y4
ik,n) ≤ K for all i, k and n = p + 1, p + 2, . . . , the last expression of (2.12) is less

than or equal to (nε)−2(nK − n) = n−1ε−2(K − 1) which tends to zero as n→∞. Thus we
have (2.11).

Analogously, for the case i 6= j, by Chebyshev’s inequality and the assumptions for Yn
we have

P (|n−1

n∑
k=1

y2
ik,n| > ε) ≤ (nε)−2Var(

n∑
k=1

yik,nyjk,n)

= (nε)−2

n∑
k1=1

n∑
k2=1

E(yik1,nyjk1,nyik2,nyjk2,n) = (nε)−2

n∑
k=1

E(y2
ik,ny

2
jk,n). (2.13)

By Holder’s inequality we have E(y2
ik,ny

2
jk,n) ≤ E(y4

ik,n)1/2E(y4
jk,n)1/2 ≤ K, thus the last

expression of (2.13) is less than or equal to n−1ε−2M which tends to zero as n→∞.
(ii) Suppose that Wn = Vn`nV

>
n , where `n = diag(`1, . . . , `p) is the diagonal matrix of the

eigenvalues of Wn and Vn is the orthogonal matrix of its eigenvectors. Since n−1An
w→ Ip as

n→∞ by (i), we have that Vn(n−1`n)V >n = n−1Wn
w→ Σ = OΛO> and therefore n−1`n

w→ Λ
as n→∞. It follows that n−1Λ−1`n

w→ Ip as n→∞. �

Proof of Theorem 2.2.3. Let `1 ≥ `2 ≥ · · · ≥ `p > 0 be the eigenvalues of the matrix

Ũ0 = C1/2
p ỸnỸ

>
n C

1/2
p with Cp = diag(c1, . . . , cp). Let F1p , Fτ̂ /τ and Fn−1`/Cp be the distribution

functions of 1p = (1, 1, . . . , 1)>, τ̂ /τ = ( τ̂1
τ1
, τ̂2
τ2
, . . . , τ̂p

τp
)> and n−1`/Cp = n−1( `1

c1
, `2
c2
, . . . , `p

cp
)>,

respectively. Since ỸnỸ
>
n has continuous matrix distribution then Ũ0 and n−1`/Cp have

continuous distributions. Therefore the continuity set of Fn−1`/Cp is given by C(Fn−1`/Cp) =
Rp. By Corollary 2.2.1

lim
d→∞
|Fτ̂/τ (t)− Fn−1`/Cp(t)| = 0,
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for all t ∈ Rp. Therefore

lim
d→∞
|Fτ̂ /τ (t)− F1p(t)| = |Fn−1`/Cp(t)− F1p(t)| ∀t ∈ Rp.

Since Z̃p has independent column vectors and it converges in distribution to Ỹn, the

column vectors of Ỹn are also independent. Because Z̃p has uniformly fourth moment with
respect to d, by Theorem 4.5.2 of [12] we have E(zij) = 0→ E(yij,n), E(z2

ij) = 1→ E(y2
ij,n)

∀ i = 1, 2, . . . , p, j = 1, 2, . . . , n, and E(zikzjk) = 0 → E(yik,nyjk,n) ∀k = 1, 2, . . . , n, i 6= j,

as d → ∞. Therefore, Ỹn has mean zero and its column vectors have identity covariance
matrix. Thus by Proposition 2.2.1(ii)

lim
n→∞

|Fn−1`/Cp(t)− F1p(t)| = 0,

for all t in the continuity set of F1p , namely C(F1p). Thus

lim
n→∞

lim
d→∞
|Fτ̂/τ (t)− F1p(t)| = 0,

for all t ∈ C(F1p). �

2.2.2 Subspace consistency of the sample eigenvectors

From the results of [25], under our spiked covariance model the first p sample eigenvec-
tors v1, v2, . . . , vp are subspace consistent and the sample eigenvectors vp+1, vp+2, . . . , vn are
strongly inconsistent, when d → ∞ and n is fixed. We give a similar proof of the subspace
consistency of the first p sample eigenvectors using the results of Section 2.2.1 when d→∞
and n is fixed. We recall that the population eigenvectors of the spiked covariance model
(2.1) are the column vectors, o1, o2, . . . , od, of the matrix O.

Theorem 2.2.4 Under the same assumptions of Theorem 2.2.1, let v1, v2, . . . , vp be the
sample eigenvectors corresponding to the p largest sample eigenvalues τ̂1 ≥ τ̂2 ≥ · · · ≥ τ̂p.
Then for i = 1, 2, . . . , p,

Angle(vi, EJ)
w−→ 0 as d→∞, (2.14)

where EJ = span{o1, o2, . . . , op}.

Proof. We follow closely the ideas in [2] and [25]. Consider the eigenvalue decomposition
of the sample covariance matrix S = V LV >, where L = diag(τ̂1, . . . , τ̂n, 0, . . . , 0) is the
diagonal matrix of the sample eigenvalues and V = [v1, v2, . . . , vd] is the matrix of the sample
eigenvectors vj = (v1j, . . . , vdj)

>, j = 1, 2, . . . , d. We assume that V is orthogonal, that is
V >V = Id. We have Σ = OΛO>, where Λ = diag(τ1, . . . , τp, σ, . . . , σ) is the diagonal matrix
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of eigenvalues of Σ and O = [o1, . . . , od] the d × d orthogonal matrix of its eigenvectors. A
standardized version of the sample covariance matrix S is given by

S̃ = Λ−1/2O>SOΛ−1/2 = Λ−1/2O>V LV >OΛ−1/2. (2.15)

Thus we have S = n−1XX> = n−1OΛ1/2ZZ>Λ1/2O> and

S̃ = n−1Λ−1/2O>OΛ1/2ZZ>Λ1/2O>OΛ−1/2 = n−1ZZ>. (2.16)

From (2.15) we have that the j-th diagonal entry of S̃ is given by s̃jj = λ−1
j

∑n
i=1 τ̂i(v

>
i oj)

2,

where λj is the j-th diagonal entry of Λ, for j = 1, 2, . . . , d. Therefore λ−1
j τ̂i(v

>
i oj)

2 ≤ s̃jj, for

i = 1, 2, . . . , n and j = 1, 2, . . . , d. Furthermore, from (2.16) we also have s̃jj = n−1ZjZ
>
j =

n−1
∑n

k=1 z
2
jk. Thus for i = 1, 2, . . . , n

d∑
j=p+1

(v>i oj)
2 ≤

d∑
j=p+1

λj
τ̂i
s̃jj =

σ

nτ̂i

d∑
j=p+1

n∑
k=1

z2
jk =

σ

n

dα

τ̂i

n∑
k=1

d∑
j=p+1

z2
jk

dα
. (2.17)

By Theorem 2.2.1 we have τ̂i/d
α w→ `i/n as d → ∞, for i = 1, 2, . . . , p. Since the entries of

Z have uniformly bounded fourth moments in d, we have that there exist K∗n > 0 such that
E(z2

jk) ≤ K∗n for all j = 1, 2, . . . , d, k = 1, 2, . . . , n and d = n + 1, n + 2, . . . . Let ε > 0 and
observe that

P

(∣∣∣∣∣
d∑

j=p+1

z2
jk

dα

∣∣∣∣∣ > ε

)
≤
E(
∑d

j=p+1 z
2
jk)

dαε
≤ (d− p)K∗n

dαε
−→ 0 as d→∞,

that is
∑d

j=p+1 d
−αz2

jk
P→ 0 as d→∞. Hence, it follows from (2.17) that

d∑
j=p+1

(v>i oj)
2 w−→ 0 as d→∞, (2.18)

for i = 1, 2, . . . , p. Since V >OO>V = Id we have
∑d

j=1(v>i oj)
2 = 1, and thus (2.18) implies

p∑
j=1

(v>i oj)
2 w−→ 1 as d→∞, (2.19)

for i = 1, 2, . . . , p.
Finally, following the arguments in Section 5.2.2 of [25], we have that for i = 1, 2, . . . , p,

Angle(vi, EJ) = arccos([

p∑
j=1

(v>i oj)
2]1/2).

Then from (2.19) it follows that

Angle(vi, EJ)
w−→ 0 as d→∞,

for i = 1, 2, . . . , p. �

Remark 2.2.2 The result of Theorem 2.2.4 holds if we consider that the population covari-
ance matrix is as in Remark 2.2.1. The proof is similar to that of Theorem 2.2.4.
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2.3 The Gaussian case and some statistical eigen-

inference

In this section we assume that the data matrix X is a sample from the multivariate Gaussian
distribution Nd(0,Σ) where the matrix Σ is a spiked covariance matrix under the assumption
that the p largest eigenvalues are of the same order of magnitude when d goes to infinity, as
in (2.2) with c1 = · · · = cp = c > 0. In this case the matrix Ũ0 of Theorem 2.2.1 follows a
Wishart random matrix distribution W(n, cIp).

We now use the asymptotic results in Section 2.2.1, specially the joint convergence in
distribution of the nonzero sample eigenvalues given in Theorem 2.2.1, to consider some in-
ference problems for the population eigenvalues and show that some of the classical statistics
are also useful in the cases when d goes to infinity and n is fixed and when d, n go to infinity
with d� n.

We first point out some asymptotic results. The first one is a kind of Central Limit
Theorem for the vector of the ratios of the sample and population eigenvalues under our
model and when d and n go to infinity successively.

Theorem 2.3.1 Under the same assumptions as in Theorem 2.2.1, suppose c1 = c2 = · · · =
cp = c > 0 in (2.2) and the columns of X are Gaussian. Let τ̂

τ
= ( τ̂1

τ1
, . . . , τ̂p

τp
)> and denote

by ϕ the random vector with density function given by (1.13), that is ϕ is the vector of the
eigenvalues of a symmetric standard Gaussian matrix. Then we have that

n1/2

(
τ̂

τ
− 1p

)>
w−→ ϕ as d→∞, n→∞ (2.20)

where the limits are applied successively.

Proof. Without losing generality we can assume c = 1. Let L = n−1(`1, . . . , `p)
>, where

`1 ≥ · · · ≥ `p > 0 are the eigenvalues of the matrix Ũ0 with distributionW(n, Ip). By Corol-

lary 2.2.1 we have τ̂ /τ
w→ L as d → ∞ and by Theorem 1.2.3 we have n1/2(L − 1p)

> w→ ϕ
as n→∞, where the random vector ϕ has density function given by (1.13). Thus we have
(2.20). �

The next two propositions are consequences of Theorem 2.2.1 and they are useful to study
some inference problems in the context of data with dimension greater than the sample size.

Proposition 2.3.1 Under the same assumptions as in Theorem 2.2.1, suppose c1 = c2 =
· · · = cp = c > 0 in (2.2) and the columns of X are Gaussian. Let T = diag(τ̂1, τ̂2, . . . , τ̂p)
be the diagonal matrix of the p largest sample eigenvalues and ` = diag(`1, `2, . . . , `p), where
`1, `2, . . . , `p are the nonzero eigenvalues of a Wishart matrix with distribution W(n, cIp).
Then we have the following when n is fixed:

(a) tr(T )/τi
w→ X 2

np/n as d→∞, for i = 1, 2, . . . , p.
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(b) Ṽ = det(T )/[tr(T )/p]p
w→ V = det(`)/[tr(`)/p]p; furthermore Ṽ is asymptotically inde-

pendent of tr(T )/dα as d→∞.

(c) det(T )/τ pi
w→ (
∏p

j=1X 2
n−j+1)/np as d → ∞ for i = 1, 2, . . . , p, where X 2

n−j+1 are inde-
pendent random variables with chi-square distribution with n−j+1 degrees of freedom,
for j = 1, 2, . . . , p.

Proof. Using the continuity of the trace and determinant, from the joint weak con-
vergence of the eigenvalues in Theorem 2.2.1 and the assumption (2.2) we have that for n
fixed

tr(T )/τi = [tr(T )/(cdα)][cdα/τi]
w−→ tr(`)/cn, (2.21)

Ṽ =
det(T/dα)

[tr(T/dα)/p]p
w−→ det(`/n)

[tr(`/n)/p]p
= V, and (2.22)

det(T )/τ pi = [det(T )/(cdα)p][cdα/τi]
p w−→ det(`)/(nc)p, (2.23)

as d → ∞. By Theorem 1.1.2 tr(`)/cn ∼ X 2
np/n and det(`)/[tr(`)/p]p is independent

of tr(`)/n; therefore using (2.21) and (2.22) we have (a) and (b). It follows from Theo-
rem 1.1.1 that det(`)/(nc)p is equal in distribution to (

∏p
j=1X 2

n−j+1)/np, where X 2
n−j+1 for

j = 1, 2, . . . , p, are independent random variables with chi-square distribution with n− j+ 1
degrees of freedom. Thus from (2.23) we have (c). �

Proposition 2.3.2 Under the same assumptions as in Theorem 2.2.1, suppose c1 = c2 =
· · · = cp = c > 0 in (2.2) and the columns of X are Gaussian. Let T = diag(τ̂1, τ̂2, . . . , τ̂p) be
the diagonal matrix of the p largest sample eigenvalues. Then we have the following results:

(a) (np/2)1/2[tr(T )/p − τi]/τi
w→ N(0, 1) as d → ∞, n → ∞, where the limits are applied

successively, for i = 1, 2, . . . , p.

(b) Let Ṽ = det(T )/[tr(T )/p]p and ρ = 1− (2p2 + p+ 2)/(6np), then Ũ = −nρ ln(Ṽ )
w→ X 2

r

as d → ∞, n → ∞, where the limits are applied successively and X 2
r is a chi-square

r.v. with r = (p+ 2)(p− 1)/2 degrees of freedom.

Proof. By Proposition 2.3.1(a) it follows that(np
2

)1/2
(

tr(T )/p− τi
τi

)
=
ntr(T )/τi − np

(2np)1/2

w−→
X 2
np − np

(2np)1/2
(2.24)

as d→∞, where X 2
np is a chi-square r.v. with np degrees of freedom. Since X 2

np is equal in
distribution to

∑n
j=1X 2

p,j, where X 2
p,j for j = 1, 2, . . . , n are independent r.v.’s with chi-square

distribution with p degrees of freedom, we have by the Central Limit Theorem (see [36, pp.
313]) that

X 2
np − np

(2np)1/2

w−→ N(0, 1) (2.25)
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as n→∞. Thus, from (2.24) and (2.25) we have (a). From Proposition 2.3.1(b) and Theo-
rem 1.1.3, (b) follows. �

2.3.1 Hypothesis testing for the p largest population eigenvalues

Let Md be the maximum of the d − p smaller population eigenvalues and suppose that we
have evidence that the sequence {Md}d∈N is bounded by a constant number M , that is
0 < Md ≤M for all d > n and d ∈ N. Consider the null hypothesis

H0 : τi/d
α → c as d→∞, for all i = 1, 2, . . . , p, (2.26)

where α > 1 and c > 0 are unspecified numbers. Under H0 we have a population covariance
matrix as in Remark 2.2.1; therefore all the results of Section 2.2.1 are valid in this case.

In order to test the null hypothesis H0 that the p largest population eigenvalues have
the same asymptotic order of magnitude and c1 = c2 = · · · = cp = c > 0, we can use

the ellipticity statistic Ṽ = det(T )/[tr(T )/p]p, where T = diag(τ̂1, τ̂2, . . . , τ̂p) is the diagonal
matrix of the p largest sample eigenvalues. The null hypothesis (2.26) can be tested in the
following two situations:

• When d→∞ and n is fixed. By Proposition 2.3.1(b) Ṽ
w→ V = det(`)/[tr(`)/p]p as

d→∞, where ` = diag(`1, `2, . . . , `p) and `1, `2, . . . , `p are the eigenvalues of a Wishart
matrix with distribution W(n, cIp). The explicit expression of the moments of V are
well known and using the Mellin transform approach (see [31, pp. 302]) they may be
used to obtain the exact expression for the density function of V ; see [26]. It is also
possible to calculate numerically the values of the distribution of V ; see [34]. Therefore

if Ṽ0 is the observed value of Ṽ , a test of asymptotic significance level β is to reject
H0 if Ṽ0 ≤ kβ, where kβ is the lower 100β% point of the distribution of V . We expect
that this rejection region works very well, because if A is a p× p random matrix with
distribution W(n,Ψ) and W0 is the observed value of W = det(A)/(tr(A)/p)p, then
the test that rejects H1 : Ψ = cIn if W0 ≤ kβ is unbiased; see [31, pp. 336].

• When d, n→∞ and d� n. By Proposition 2.3.2(b) the statistic Ũ = −nρ ln(Ṽ )
w→

X 2
r , where X 2

r is a chi-square r.v. with r = (p+ 2)(p− 1)/2 degrees of freedom. Thus,

if Ũ0 is the observed value of Ũ , a test of asymptotic significance level β is to reject
H0 if Ũ0 > kβ, where kβ is the upper 100β% point of the chi-square distribution with
r degrees of freedom.

2.3.2 Confidence intervals for the p largest population eigen-

values

Under the hypothesis H0 given in (2.26) we may be interested in a confidence interval for
the population eigenvalue τi, for i = 1, 2, . . . , p. Again we have two situations in which we
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may address this problem:

• When d → ∞ and n is fixed. From Proposition 2.3.1(a), for 0 < β < 1 and d is
large enough,

P

(
kβ/2
n
≤ tr(T )

τi
≤
uβ/2
n

)
≈ 1− β,

where kβ/2 and uβ/2 are the lower and upper 100(β/2)% points of the chi-square distri-
bution with np degrees of freedom, respectively. Therefore, a confidence interval with
asymptotic confidence level 1− β for τi is[

ntr(T )

uβ/2
,
ntr(T )

kβ/2

]
.

• When d, n → ∞ and d � n. From Proposition 2.3.2(a), for 0 < β < 1 and d, n
sufficiently large with d� n we have

P

(
−zβ/2 ≤

(np
2

)1/2
(

tr(T )/p− τi
τi

)
≤ zβ/2

)
≈ 1− β,

where zβ/2 is the upper 100(β/2)% point of the standard normal distribution. Thus, a
confidence interval with asymptotic confidence level 1− β for τi is[

tr(T )/p

1 + zβ/2[2/(np)]1/2
,

tr(T )/p

1− zβ/2[2/(np)]1/2

]
.

2.4 PCA under different settings

The study of the asymptotic behavior of the sample eigenvalues and their corresponding
eigenvectors under more general settings than the spiked covariance model (2.1) is considered
in [25]. In this section we present some results of [25] for several kinds of spiked covariance
models and discuss the differences with our results obtained in Section 2.2.

Suppose that the d × n matrix X satisfies the assumptions (a) and (b) of Section 2.2.
Let 1 ≤ p < n and let α1 > α2 > · · · > αr > 1 for some r ≤ p. Let k1, . . . , kr ∈ N such that∑r

i=1 ki = p. Define k0 = 0 and kr+1 = d− p. Let sl =
∑l−1

j=0 kj and

Jl = {sl + 1, . . . , sl + kl}, for l = 1, 2, . . . , r + 1.

In this section we consider the spiked covariance model (2.1) where τi = τi(d) and

τi
dαl
−→ ci as d→∞, (2.27)

for some ci > 0, ∀i ∈ Jl, ∀l = 1, 2, . . . , r.
Observe that when r = 1, we get the spiked covariance model with the p largest eigen-

values with the same asymptotic order of magnitude (2.2), studied in Section 2.2.



2.4 PCA under different settings 35

2.4.1 Asymptotic behavior of the sample eigenvalues

The following result is a special case of Lemma 1 of [25] for the spiked covariance model

with the assumption (2.27). Suppose that the p×n matrix Ỹn of assumption (b) is given by

Ỹn = [Y >1 , . . . , Y
>
p ]>. We define the matrix Ỹl,n as the kl × n matrix whose row vectors are

given by {Yj : j ∈ Jl}, for l = 1, 2, . . . , r.

Lemma 2.4.1 Assume that the covariance matrix Σ of the columns of X is given by the
spiked covariance model (2.1) where τ1 ≥ · · · ≥ τp satisfy (2.27). Consider the assumptions
(a) and (b) for X. Let τ̂1 ≥ · · · ≥ τ̂p be the p largest sample eigenvalues. Then for n fixed

τ̂i
dαl

w−→ ηl,i−sl
n

as d→∞ if i ∈ Jl, ∀l = 1, 2, . . . , r,

τ̂i
dαl

P−→ 0 as d→∞ if i = p+ 1, . . . , n

where ηl,1 ≥ ηl,2 ≥ · · · ≥ ηl,kl are the eigenvalues of the random matrix Ũl = C1/2
l Ỹl,nỸ

>
l,nC

1/2
l ,

where Cl = diag{cj : j ∈ Jl}.

Remark 2.4.1 This result is analogous to that of Theorem 2.2.1, but here only the marginal
convergence is taken into account. The advantage of considering the joint convergence in dis-
tribution of the vector of nonzero sample eigenvalues is that it is possible to derive asymptotic
results for functions of them, as we did in Section 2.3 using Theorem 2.2.1. Furthermore,
these asymptotic results are useful to consider inference problems as we have done in sec-
tions 2.3.1 and 2.3.2. The joint convergence of the vector (τ̂i/d

αl : i ∈ Jl)
> to the vector

(ηl,i−sl/n : i ∈ Jl)> as d→∞, for l = 1, 2, . . . , r, follows from the proof of Lemma 1 in [25].
Therefore, analogously as we did in Section 2.3.1 it is possible to test the hypothesis

H0 :
τ̂i
dαl
→ c∗l as d→∞, for all i ∈ Jl

where αl > 1 and c∗l > 0 are unspecified numbers.

In the Gaussian case, by Corollary 3 of [25] it follows that when kl = 1 and i ∈ Jl

τ̂i
τi

w−→ X
2
n

n
as d→∞,

where X 2
n is a r.v. with chi-square distribution with n degrees of freedom. Thus, since

X 2
n/n

w→ 1 as n → ∞, in this case we have that the i-th sample eigenvalue increases
at the same speed as its population eigenvalue under the two different limiting schemes
considered here. Therefore, if the p largest population eigenvalues have different asymptotic
order of magnitude, i.e. kl = 1 for all l = 1, 2, . . . , p, the p largest sample eigenvalues
have this property. However, the work in [25] does not address this asymptotic behavior of
the p largest sample eigenvalues in the non-Gaussian case and neither when the p largest
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population eigenvalues have same asymptotic order of magnitude; only the convergence in
distribution of these sample eigenvalues given in Lemma 2.4.1 is shown.

We have shown in Section 2.2.1 that the p largest sample eigenvalues increase jointly at
the same speed as their population eigenvalues, with r = 1 and k1 > 1, under a non-Gaussian
assumption. Specifically, by our Corollary 2.2.1 we have(

τ̂1

τ1

,
τ̂2

τ2

, . . . ,
τ̂p
τp

)>
w−→ n−1

(
`1

c1

,
`2

c2

, . . . ,
`p
cp

)>
as d→∞,

where `1 ≥ `2 ≥ · · · ≥ `p > 0 are the eigenvalues of the random matrix Ũ0. Thus, by
Theorem 2.2.3 we have that the vector of ratios of the p largest sample and population
eigenvalues converges to the vector of ones when d, n→∞ and d� n, without considering
the Gaussian assumption for the columns of X and when the p largest population eigenvalues
have same asymptotic order of magnitude.

An open problem is to obtain the joint weak convergence in the case of more general
spiked covariance models. As a first step we obtain the joint weak convergence of the vector
of nonzero eigenvalues of a linear transform of the sample covariance matrix. This result is
presented in the next theorem.

Theorem 2.4.1 Under the same assumptions as in Lemma 2.4.1, let β be the d×d diagonal
matrix where the i-th diagonal element for 1 ≤ i ≤ p is βi,i = d−αl if i ∈ Jl and for
p + 1 ≤ i ≤ d is βi,i = d−αr . Let O be the d × d matrix of eigenvectors of Σ given by (2.1)
and define B1/2 = Oβ1/2O>. Let τ̃1 ≥ · · · ≥ τ̃n be the nonzero eigenvalues of B1/2SB1/2,
where S = n−1XX> is the sample covariance matrix. Then for n fixed,

(τ̃1, τ̃2, . . . , τ̃n)>
w−→ n−1(`1, `2, . . . , `p, 0, . . . , 0)> d→∞

where `1 ≥ `2 ≥ · · · ≥ `p > 0 are the eigenvalues of Ũ0 = C1/2
p ỸnỸ

>
n C

1/2
p , where Cp =

diag(c1, c2, . . . , cp).

Proof. Let Z = Λ−1/2O>X, X̃ = B1/2X and Z̃ = Λ−1/2X̃. Define S̃D = n−1X̃>X̃ and
note that S̃D has the same nonzero eigenvalues as B1/2SB1/2 = n−1X̃X̃>. Observe that

nS̃D = X>Oβ1/2O>Oβ1/2O>X = X>OβO>X

= Z>Λ1/2O>OβO>OΛ1/2Z = Z>βΛZ

=

p∑
i=1

βi,iτiWi + d−αrσ
d∑

i=p+1

Wi,

where Wi = Z>i Zi, Zi = 1, 2, . . . , d, are the row vectors of Z. Since βi,iτi → ci as d → ∞,
following the same ideas as in the proof of Theorem 2.2.1 we have

nS̃D
w−→ Ũ = Ỹ >n CpỸn as d→∞,
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where Cp = diag(c1, . . . , cp). Furthermore Ũ has the same nonzero eigenvalues as the ran-

dom matrix Ũ0 = C1/2
p ỸnỸ

>
n C

1/2
p . Thus, the vector of nonzero eigenvalues of S̃D, or of

B1/2SB1/2, converges in distribution to the vector n−1(`1, `2, . . . , `p, 0, . . . , 0)> as d → ∞,

where `1 ≥ `2 ≥ · · · ≥ `p > 0 are the eigenvalues of Ũ0. �

Observe that in the particular case when r = 1, Theorem 2.4.1 becomes Theorem 2.2.1
since τ̃i = d−ατ̂i for i = 1, 2, . . . n.

2.4.2 Subspace consistency of the sample eigenvectors

Recall that the spiked covariance model (2.1) has population eigenvectors the column vectors
of the matrix O. The next result follows from [25].

Theorem 2.4.2 Under the same assumptions as in Lemma 2.4.1 we have for n fixed

Angle(vi, EJl)
P−→ 0 as d→∞ if i ∈ Jl, ∀l = 1, 2, . . . , r, (2.28)

Angle(vi, oi)
P−→ π

2
as d→∞ ∀i = p+ 1, . . . , n. (2.29)

That is, the first p sample eigenvectors are subspace consistent and the rest of the eigen-
vectors, corresponding to the nonzero sample eigenvalues, are strongly inconsistent when
d→∞. Note that if kl = 1 then vi for i ∈ Jl is consistent when d→∞. In Theorem 2.2.4
we give the proof of (2.28) under our spiked covariance model. This proof shows that (2.28)
holds when d, n→∞ and d� n. The conjecture is that (2.29) is also true if d, n→∞ and
d� n.

Most of the results in [25] are for the case when d → ∞ and n is fixed. However, it is
shown in [25] that if ci > cj for i > j and i, j ∈ Jl, ∀l = 1, 2, . . . , r, then ∀i ≤ p

Angle(vi, oi)
P−→ 0 as d→∞, n→∞,

where the limits are applied successively. That is, in this case the sample eigenvectors are
distinguishable and consistent. They conjecture that the inconsistent sample eigenvectors
are still strongly inconsistent when d, n→∞ and d� n.





Chapter 3

Binary discrimination analysis for
high dimensional data

This chapter deals with Binary Discrimination Analysis in the High-Dimension, Low Sample
Size (HDLSS) framework. We focus on the study of asymptotic behavior of four methods for
two-class discrimination: Support Vector Machine (SVM), Mean Difference (MD), Distance
Weighted Discrimination (DWD) and Maximal Data Piling (MDP). The HDLSS asymptotics
of the first three methods have been previously studied in Hall, Neeman and Marron [19],
where the probability of correct classification of a new data is considered when the dimension
d of the data sets tends to infinity. The comparison of the four methods has been done by
simulation studies in Marron, Todd and Ahn [28], [29]. As contributions of this work we
extend the results of [19] and give theoretical proofs of some empirical results of [28] and [29],
by specifically studying the asymptotic behavior of the orthogonal vectors to the separating
hyperplanes of the four methods, as data dimension increases. We also compare the Mean
Difference method with the Support Vector Machine method when the dimension of the data
is large but fixed.

In Section 3.1 we give a brief description of the four methods mentioned above. In
Section 3.2 we show that these methods have asymptotically the same behavior when d
tends to infinity. Specifically, we see that when the data sets are spherical Gaussian and one
set has mean zero and the other has mean vd, then the orthogonal vectors of the separating
hyperplanes tend to be in the same direction as vd when ‖ vd ‖� d1/2 and tend to be
orthogonal to vd when ‖ vd ‖� d1/2. This section also contains the HDLSS analysis of
behavior in the interesting boundary case ‖ vd ‖≈ d1/2. Since the data are Gaussian and the
only difference between the two data sets is the mean vd, this vector is the optimal direction
(the best direction) for the orthogonal vector of the separating hyperplane. In Section 3.3
we show in a particular setting that in the case when the data sets are very well separated,
that is ‖ vd ‖� d1/2, MD is better than the SVM method when d is large, in the sense that
AMD, the angle between the MD orthogonal vector and the optimal direction vd, is always
smaller than ASVM , the angle between the SVM orthogonal vector and vd. In the case when
‖ vd ‖� d1/2 we conclude that the MD method is a little better than the SVM method when
d is large, meaning that generally (but not always) AMD is smaller than ASVM ; but the

39
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methods are almost indistinguishable when d grows, this means that half of the time AMD

is smaller than ASVM when d increases.

3.1 Binary discrimination methods

In this section we present the linear classification methods treated in this chapter, which are
based on separating hyperplanes. Suppose that we have the following training data set

(x1, w1), (x2, w2), . . . , (xN , wN), (3.1)

where xi ∈ Rd and wi ∈ {−1, 1}, for i = 1, 2, . . . , N . In particular, we have two classes
of data, the classes C+ and C− corresponding to the vectors with wi = 1 and wi = −1,
respectively. Let X = [x1, x2 . . . , xN ] be the d × N matrix of the training data and w =
(w1, w2, . . . , wN)> be the vector of the labels. The following notation will be used:

• W is the N ×N diagonal matrix with the elements of w in its diagonal,

• X+ (X−) is the sub-matrix of X corresponding to the class C+ (C−),

• m (n) is the cardinality of the class C+ (C−),

• 1k is the k-dimensional vector of ones.

We say that the training data set (3.1) is linearly separable if there exists a hyperplane
for which all the data of the class C+ are on one side of the hyperplane and all the data of
the class C− are on the other side. In this case a hyperplane with such property is called a
separating hyperplane of the training data set.

3.1.1 Support Vector Machine

A brief introduction to the Support Vector Machine (SVM) method for Binary Discrimination
Analysis is given in this section. For a more comprehensive and detailed study see for example
[11], [13], [14], [21], [40], [41].

The SVM method was proposed by Vapnik in [40] and [41]. It is one of the most useful
binary discrimination methods in the literature. In the linearly separable case, the SVM
method consists in finding a separating hyperplane that maximizes the distances of the
hyperplane to the nearest vector of each class.

More specifically, suppose that there exists a vector v and a scalar b such that the following
inequalities hold:

v>xi + b ≥ 1, if wi = 1,

v>xi + b ≤ −1, if wi = −1. (3.2)
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In this case the hyperplane
v>x+ b = 0

is a separating hyperplane of the training data set. Note that the inequalities in (3.2) can
be written as

wi(v
>xi + b) ≥ 1, i = 1, 2, . . . , N. (3.3)

The vectors xi that satisfy the equality in (3.3) are called support vectors. That is, the
support vectors are the training vectors that belong to one of the hyperplanes

v>x+ b = −1 or v>x+ b = 1. (3.4)

The set of support vectors will be denoted by SV .
Let d+ and d− be the shortest distances from the separating hyperplane to the nearest

vector in C+ and C−, respectively. Then the margin of the separating hyperplane is defined
as d0 = d+ + d−. Hence, the margin of the separating hyperplane is the distance between
the hyperplanes given in (3.4) which is

d0 =
2

‖ v ‖
.

In the separable case the optimal separating hyperplane or SVM hyperplane

v>0 x+ b0 = 0

is the unique separating hyperplane with a maximal margin. Thus, the SVM hyperplane
maximizes 2/ ‖ v ‖ subject to the conditions (3.3). Equivalently, the SVM hyperplane solves
the optimization problem

minimize
‖ v ‖2

2
,

subject to wi(v
>xi + b) ≥ 1, i = 1, 2, . . . , N. (3.5)

According to [11], [13] and [21], the optimal vector is given by

v0 = XWα̂, (3.6)

where α̂ solves the optimization problem

maximize 1>Nα−
1

2
‖ XWα ‖,

subject to α ≥ 0, α>w = 0. (3.7)

Furthermore we have that α̂i 6= 0 only if xi is a support vector, hence by (3.6) v0 is a linear
function only of the support vectors. Since the support vectors satisfy the equality (3.3), the
bias b0 can be calculated as

b0 = wi − v>0 xi, (3.8)
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for any xi ∈ SV .
From [29] we have that the optimization problem (3.7) is equivalent to the following

maximize
2

‖ XWα∗ ‖2

subject to 1>mα
∗
+ = 1>nα

∗
− = 1, α∗+, α

∗
− ≥ 0, (3.9)

where α∗+ and α∗− are the sub-vectors of α∗ corresponding to the class C+ and C−. respec-
tively. Note that XWα∗ = X+α

∗
+ − X−α∗−; thus we are minimizing the distance between

points in the convex hulls of the classes C+ and C−. Therefore, if α̂∗ solves the optimization
problem (3.9), the orthogonal vector of the SVM hyperplane can be taken as

v∗0 = XWα̂∗ = X+α̂
∗
+ −X−α̂∗−, (3.10)

which is the difference of a pair of closest points of the convex hulls of the classes and is
proportional to the vector v0 given by (3.6).

For the non-separable case see [11], [13] and [21].

3.1.2 Distance Weighted Discrimination

In the HDLSS situation Marron, Todd and Ahn [28] observe that the projection of the data
onto the orthogonal vector of the SVM separating hyperplane produces substantial data
piling (that is, many of these projections are the same), and they show that data piling may
affect the generalization performance (how well new data from the same distributions can
be discriminated). Therefore, they propose the Distance Weighted Discrimination (DWD)
method, which avoids the data piling problem and improves generalizability. The idea of
this method is to find a separating hyperplane that minimizes the sum of the reciprocals
of the distances of the training data to the hyperplane. Thus, all the training data have a
role in finding the hyperplane, but data close to the hyperplane have a bigger impact than
the data that are farther away. Here we describe briefly how this method works for the case
when training data are linearly separable. The non-separable case can be found in [28] and
[29].

Let v ∈ Rd be the orthogonal vector of the separating hyperplane and b ∈ R its bias.
Define the residual of the i-th data vector as

ri = wi(v
>xi + b). (3.11)

The DWD hyperplane
v>1 x+ b1 = 0,

solves the optimization problem

minimize

N∑
i=1

1

ri

subject to ‖ v ‖= 1, ri ≥ 0, i = 1, 2, . . . , N. (3.12)
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As can be seen in [29], the optimal vector v1 is given by

v1 =
XWβ̂

‖ XWβ̂ ‖
(3.13)

where β̂ solves the optimization problem

maximize 21>N
√
β− ‖ XWβ ‖,

subject to β ≥ 0, β>w = 0, (3.14)

with
√
β denoting the vector whose components are the square roots of the components of

β. Note that the optimization problem (3.14) is similar to that of (3.7) for the SVM method.
On the other hand, from [29] the residuals are given by

ri =
1√
β̂i

, i = 1, 2, . . . , N. (3.15)

Thus, from the equation (3.11) the bias can be calculated as

b1 =
wi√
β̂i

− v>1 xi, (3.16)

for any data vector xi.
Similar to the case of the SVM method, it is shown in [29] that the optimization problem

(3.14) is equivalent to

maximize
(1>m

√
β∗+ + 1>n

√
β∗−)2

‖ X+β∗+ −X−β∗− ‖
,

subject to 1>mβ
∗
+ = 1>nβ

∗
− = 1, β∗+, β

∗
− ≥ 0. (3.17)

Hence we are trying to minimize the distance between points in the two convex hulls, but
divided by the square of the sum of the square roots of the convex weights. Therefore, if
β̂∗ solves the optimization problem (3.17), the orthogonal vector of the DWD hyperplane is
proportional to

v∗1 = X+β̂
∗
+ −X−β̂∗−. (3.18)

3.1.3 Mean Difference Method

In the Mean Difference (MD) method, also called the nearest centroid method (see [37]), the
separating hyperplane is the one that orthogonally bisects the segment joining the centroids
or means of the two classes. That is, if the means of the classes C+ and C− are given by

x+ =
1

m

∑
xi∈C+

xi and x− =
1

n

∑
xi∈C−

xi, (3.19)



44 Chapter 3 Binary discrimination analysis for high dimensional data

respectively, then the MD hyperplane has orthogonal vector

v = x+ − x− (3.20)

and bisects the segment joining the means x+ and x−. Thus, as in the case of the SVM and
DWD hyperplanes the orthogonal vector of the MD hyperplane is the difference between two
points on the convex hulls of the two classes.

3.1.4 Maximal Data Piling

The Maximal Data Piling (MDP) method for binary discrimination was proposed by Ahn
and Marron [1]. This method was specially designed for the HDLSS context and we need to
assume d ≥ N−1 and that the subspace generated by the dataset has dimensionN−1. Under
these assumptions there exist direction vectors onto which the projection of the training data
are piled completely at two distinct points, one for each class. The orthogonal vector of the
MDP method is the direction vector for which the distance between these two points is
maximal. On the other hand, in [1] it is shown that the MDP method is equivalent to
the Fisher Linear Discrimination (FLD) in the non-HDLSS situation. However, Bickel and
Levina [10] have demonstrated that FLD has very poor HDLSS properties, while in [1] is
shown that, although data piling may not be desirable, the MDP method can work very well
and better than FLD under some settings in the HDLSS context.

In order to explain how to build the separating hyperplane for this method, let u = x+−x−
be the difference of the means of the two classes, where x+ and x− are given in (3.19). Define
C = [X+

c , X
−
c ], where X+

c and X−c are the centered versions of X+ and X− respectively, that
is

X+
c = X+ − x+1>d , X−c = X− − x−1>d .

The symmetric projection matrix onto the orthogonal complement of the column space of C
is given by Q = Id − CC†, where A† is the Moore-Penrose generalized inverse of A.

The MDP hyperplane
v>2 x+ b2 = 0

has the property that its unit orthogonal vector v2 is the direction for which the projections
of the two class means have maximal distance, subject to the constraint that the projection
of each training data onto the vector is the same as its class mean. In other words, v2 solves
the optimization problem

maximize (v>u)2,

subject to C>v = 0, v>v = 1. (3.21)

It is seen in [1] that the orthogonal vector is given by

v2 =
Qu

‖ Qu ‖
. (3.22)
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This means that v2 is orthogonal to the N−2 dimensional subspace generated by the columns
of C. Furthermore, the expression (3.22) is equivalent to

v2 =
(XcX

>
c )†u

‖ (XcX>c )†u ‖
, (3.23)

where Xc is the centered version of the the data matrix X. Therefore, v2 is also in the N −1
dimensional subspace generated by the globally centered data vectors. Finally, the bias b2

can be calculated as

b2 = −v>2 (mx+ + nx−)/N. (3.24)

3.2 Asymptotic results for the orthogonal vectors

In this section we consider the d × N matrix X = [x1, x2, . . . , xN ] whose columns are a
training data set for two classes. Suppose the first m columns of X are the vectors of the
class C+ and the remaining n = N −m columns are the vectors of the class C−. Therefore,
the matrices

X+ = [x1, x2 . . . , xm],

X− = [xm+1, xm+2, . . . , xm+n]

are the sub-matrices of X corresponding to the class C+ and C−, respectively. We assume
that the random vectors in C+ and C− are independent with d-multivariate normal distri-
butions Nd(vd, Id) and Nd(0, Id), respectively. Note that the difference between these classes
is made by the mean vector vd. So the length of vd, ‖ vd ‖, is crucial for classification
performance.

Because the separating hyperplanes of the discrimination methods described in Section
3.1 are determined by their orthogonal vectors, the behavior of classification is studied con-
sidering the direction of these vectors. When the dimension grows and the sample size is fixed
(HDLSS framework) asymptotic performance of all these methods will be related with the
distance between the two class distributions, in particular by ‖ vd ‖. Before giving the main
theorem of this section, we state the next lemma which tells us that when ‖ vd ‖ d−1/2 → c
with c ≥ 0, the orthogonal vectors of the three methods MD, SVM and DWD converge to
the same direction as d→∞.

Lemma 3.2.1 Let X+ and X− be as before and assume ‖ vd ‖ d−1/2 → c, with c ≥ 0. If
the vector ṽ = X+α+ −X−α−, where α ≥ 0 and 1>mα+ = 1>nα− = 1, is proportional to the
orthogonal vector of the MD, SVM or DWD hyperplane we have

αi,+
w−→ 1

m
, αj,−

w−→ 1

n
, (3.25)

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, as d→∞.
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Proof. Let yj = xm+j for j = 1, 2, . . . , n. By the Law of Large Numbers (LLN), see [36,
pp. 220], we have the following

‖ xi − xj ‖
d1/2

P−→ 21/2,
‖ yi − yj ‖

d1/2

P−→ 21/2 (3.26)

for i 6= j, as d→∞. We also have∑d
k=1 Var(x

(k)
i )

d
= 1 −→ 1,

∑d
k=1 Var(y

(k)
i )

d
= 1 −→ 1,

∑d
k=1(E(x

(k)
i )− E(y

(k)
j ))2

d
=
‖ vd ‖2

d
−→ c2,

as d→∞; then by Section 3.2 of [19]

‖ xi − yj ‖
d1/2

P−→ ` = (2 + c2)1/2, (3.27)

as d→∞. By [19], (3.26) and (3.27) imply that the data x1, . . . , xN tend to be the vertices
of an N -polyhedron (a figure in (N − 1)-dimensional space with just N vertices and all its
faces given by hyperplanes in (N − 1)-variate space) as d → ∞. This polyhedron has m
of its vertices arranged as those of an m-simplex (an m-polyhedron with all edges of equal
length) and the other n vertices arranged in an n-simplex. The data in C+ and C− tend to
be the vertices of the m-simplex and n-simplex respectively as d → ∞. Let x∗1, . . . , x

∗
m be

the vertices of the m-simplex and let y∗1, . . . , y
∗
n be the vertices of the n-simplex.

If ṽ = X+α+ − X−α− is proportional to the SVM orthogonal vector, as explained in
Section 3.1.1, ṽ is the difference between the two closest vectors of the convex hulls of the
classes C+ and C−. When d → ∞ these convex hulls tend to be the m-simplex and n-
simplex, respectively. We will show that the closest points of these simplices are the means
x∗ =

∑m
i=1 x

∗
i /m and y∗ =

∑n
i=1 y

∗
i /n. For the N -polyhedron we have

‖ x∗i − y∗j ‖= `,

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Since the distance from x∗i to any vertex of the n-
simplex is the same, we have that for any j, x∗i , y

∗
j and y∗ are the vertices of a right-angled

triangle where the hypotenuse is the line joining x∗i to y∗j . Thus, y∗ is the closest point in
the n-simplex to x∗i , for i = 1, 2, . . . ,m. Similarly, because the distance from y∗ to x∗i for
i = 1, 2, . . . ,m is constant, the closest point in the m-simplex to y∗ is x∗, hence the closest
points in the simplices are x∗ and y∗. Thus we have (3.25).

In the case when ṽ is proportional to the DWD orthogonal vector, by Section 3.1.2 we
have that α solves the optimization problem (3.17). For the N -polyhedron this α is given
by

α̂i,+ =
1

m
, α̂j,− =

1

n
, i = 1, 2, . . . ,m, j = 1, 2, . . . , n.
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This is because if β satisfies 1>mβ+ = 1>nβ+ = 1 then

‖ X∗+β+ −X∗−β− ‖≥‖ x∗ − y∗ ‖=‖ X∗+α̂+ −X∗−α̂− ‖

where X∗+ = [x∗1, . . . , x
∗
m] and X∗− = [y∗1, . . . , y

∗
n], since x∗ and y∗ are the closest points of the

simplices. Furthermore

(1>m
√
β+ − 1>n

√
β−)2 ≤ (

√
m+

√
n)2 = (1m

√
α̂+ + 1n

√
α̂−)2,

thus

(1m
√
β+ + 1n

√
β−)2

‖ X∗+β+ −X∗−β− ‖
≤

(1m
√
α̂+ + 1n

√
α̂−)2

‖ X∗+α̂+ −X∗−α̂− ‖
,

and α̂ solves the optimization problem (3.17) for the N -polyhedron, hence we have (3.25).
For the case of the MD method ṽ = x+ − x− and

αi,+ =
1

m
, αj,− =

1

n
, i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

Then we have (3.25). �

When ‖ vd ‖ is large the classification becomes easy, and it is rather challenging when
‖ vd ‖ is small. In view of the results of Hall, Marron and Neeman [19], who showed that
spherical Gaussian data tend to lie at a distance d1/2 from the mean when d is large, it is not
surprising that ‖ vd ‖≈ d1/2 is a critical boundary. This is confirmed by the next theorem
where we show that all the linear methods are consistent in the sense that the angles between
the orthogonal vectors of the hyperplanes and the optimal vector vd converge to zero, in the
case ‖ vd ‖� d1/2, while for the case ‖ vd ‖� d1/2 the orthogonal vectors do not converge to
the optimal direction. Furthermore they are strongly inconsistent, in the sense that they are
asymptotically orthogonal.

Theorem 3.2.1 If v represents the orthogonal vector of the Mean Difference (MD), Support
Vector Machine (SVM), Distance Weighted Discrimination (DWD) or Maximal Data Piling
(MDP) hyperplane we have that

Angle(v, vd)
w−→


0, if ‖ vd ‖ d−1/2 →∞;
π
2
, if ‖ vd ‖ d−1/2 → 0;

arccos(c/(γ + c2)1/2), if ‖ vd ‖ d−1/2 → c, c > 0,

as d→∞, where γ = 1
m

+ 1
n

.

Proof. Case 1: When v is the orthogonal vector of the MD, SVM or DWD hyperplane.
We have seen in Section 3.1 that v is proportional to the vector ṽ = X+α+−X−α− given in
Lemma 3.2.1. We also have

cos(Angle(ṽ, vd)) =
〈ṽ, vd〉
‖ ṽ ‖‖ vd ‖

.
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Let zi = xi − vd be the centered version of the data xi and let yj = xm+j, for i = 1, 2, . . . ,m
and j = 1, 2, . . . , n. It can be seen that

〈ṽ, vd〉 =
d∑

k=1

(
m∑
i=1

z
(k)
i αi,+ −

n∑
i=1

y
(k)
i αi,−

)
v

(k)
d + ‖ vd ‖2

=
m∑
i=1

αi,+

d∑
k=1

z
(k)
i v

(k)
d −

n∑
i=1

αi,−

d∑
k=1

y
(k)
i v

(k)
d + ‖ vd ‖2 .

Therefore

〈ṽ, vd〉 =‖ vd ‖

(
m∑
i=1

αi,+Ni,+ −
n∑
i=1

αi,−Ni,−

)
+ ‖ vd ‖2, (3.28)

where Ni,+ = ‖ vd ‖−1
∑d

k=1 z
(k)
i v

(k)
d and Nj,− = ‖ vd ‖−1

∑d
k=1 y

(k)
j v

(k)
d , for i = 1, 2, . . . ,m

and j = 1, 2, . . . , n, are independent random variables with the standard normal distribution.
Furthermore

‖ ṽ ‖2 =
d∑

k=1

(
m∑
i=1

z
(k)
i αi,+ −

n∑
i=1

y
(k)
i αi,−

)2

+ 2
d∑

k=1

(
m∑
i=1

z
(k)
i αi,+ −

n∑
i=1

y
(k)
i αi,−

)
v

(k)
d + ‖ vd ‖2

=
m∑
i=1

α2
i,+

d∑
k=1

z
(k)2
i + 2

∑
i<j

αi,+αj,+

d∑
k=1

z
(k)
i z

(k)
j +

n∑
i=1

α2
i,−

d∑
k=1

y
(k)2
i

+ 2
∑
i<j

αi,−αj,−

d∑
k=1

y
(k)
i y

(k)
j − 2

m∑
i=1

n∑
j=1

αi,+αj,−

d∑
k=1

z
(k)
i y

(k)
j

+ 2 ‖ vd ‖

(
m∑
i=1

αi,+Ni,+ −
n∑
i=1

αi,−Ni,−

)
+ ‖ vd ‖2 . (3.29)

Note that by the LLN we have∑d
k=1 z

(k)2
i

d

w−→ 1,

∑d
k=1 y

(k)2
j

d

w−→ 1,

∑d
k=1 z

(k)
i y

(k)
j

d

w−→ 0, ∀i,∀j,∑d
k=1 z

(k)
i z

(k)
j

d

w−→ 0,

∑d
k=1 y

(k)
i y

(k)
j

d

w−→ 0, i 6= j, (3.30)

as d→∞. It is also true that

Ni,+

d1/2

w−→ 0,
Nj,−

d1/2

w−→ 0 as d→∞. (3.31)

For the case when ‖ vd ‖ d−1/2 → ∞, from (3.28)-(3.31) and since 0 ≤ αi,+, αj,− ≤ 1 we
have

‖ ṽ ‖2

‖ vd ‖2

w−→ 1,
〈ṽ, vd〉
‖ vd ‖2

w−→ 1 (3.32)
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as d→∞. Thus,
〈ṽ, vd〉
‖ ṽ ‖‖ vd ‖

=
〈ṽ, vd〉 / ‖ vd ‖2

‖ ṽ ‖ / ‖ vd ‖
w−→ 1

and

Angle(ṽ, vd) = arccos

(
〈ṽ, vd〉
‖ ṽ ‖‖ vd ‖

)
w−→ 0,

as d→∞.
For the case when ‖ vd ‖ d−1/2 → c, with c ≥ 0, from (3.28)-(3.31) and Lemma 3.2.1 it

can be seen that

‖ ṽ ‖2

d

w−→ γ + c2,
〈ṽ, vd〉

d1/2 ‖ vd ‖
w−→ c, (3.33)

as d→∞, where γ = 1
m

+ 1
n
. Therefore,

〈ṽ, vd〉
‖ ṽ ‖‖ vd ‖

=
〈ṽ, vd〉 /(d1/2 ‖ vd ‖)
‖ ṽ ‖ /d1/2

w−→ c

(γ + c2)1/2

and

Angle(ṽ, vd) = arccos

(
〈ṽ, vd〉
‖ ṽ ‖‖ vd ‖

)
w−→ arccos

(
c

(γ + c2)1/2

)
as d→∞. In particular, for c = 0 we have arccos( c

(γ+c2)1/2
) = π

2
.

Case 2: When v is the orthogonal vector of the MDP hyperplane. Let x =
∑m

i=1 xi/m,
z =

∑m
i=1 zi/m, y =

∑n
i=1 yi/n, where zi and yj, for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, are

as in Case 1. Note that

‖ xi − x ‖2= 〈zi − z, zi − z〉 =

〈(
1− 1

m

)
zi −

∑
j 6=i

zj
m
,

(
1− 1

m

)
zi −

∑
j 6=i

zj
m

〉

=

(
1− 1

m

)2 d∑
k=1

z
(k)2
i − 2

(
1− 1

m

) d∑
k=1

z
(k)
i

∑
j 6=i

z
(k)
j

m
+

d∑
k=1

(∑
j 6=i

z
(k)
j

m

)2

=

(
1− 1

m

)2 d∑
k=1

z
(k)2
i − 2

(
1− 1

m

)
(m− 1)1/2

m

d∑
k=1

z
(k)
i N

(k)
−i +

m− 1

m2

d∑
k=1

N
(k)2
−i (3.34)

where N
(k)
−i = (m − 1)−1/2

∑
j 6=i z

(k)
j , for k = 1, 2, . . . , d, are independent random variables

with standard normal distribution and they are independent of zi. Let u = x − y, if ‖ vd ‖
d−1/2 → ∞ using (3.29), (3.34) and the LLN we can see that cos(Angle(xi − x, u))

w→ 0 as
d→∞. Analogously, cos(Angle(yi − y, u))

w→ 0 as d→∞. Thus

Angle(xi − x, u)
w−→ π

2
, Angle(yj − y, u)

w−→ π

2
(3.35)

as d→∞. The same is true if ‖ vd ‖ d−1/2 → c, with c ≥ 0.
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Let C be the matrix whose columns are the vectors xi − x, yj − y, for i = 1, 2, . . . ,m
and j = 1, 2, . . . , n. By Section 3.1.4 the orthogonal vector of the MDP method is given by
v = Qu/ ‖ Qu ‖ where Q is the symmetric projection matrix on the orthogonal complement
of the column space of C. According to (3.35), u tends to be in the orthogonal complement
of the column space of C. Thus, when d is large Qu can be approximated by u and v can
be approximated by u/ ‖ u ‖. Therefore,

cos(Angle(v, vd)) =
〈v, vd〉
‖ v ‖‖ vd ‖

(3.36)

can be approximated by 〈u, vd〉 /(‖u ‖‖ vd ‖). Hence by Case 1, this converges to 1 if ‖ vd ‖
d−1/2 →∞ and converges to c/(γ + c2)1/2 if ‖ vd ‖ d−1/2 → c with c ≥ 0. �

Remark 3.2.1 Recall that by Lemma 3.2.1 the MD, SVM and DWD orthogonal vectors
converge to the same direction when ‖ vd ‖ d−1/2 → c ≥ 0 as d → ∞. Due to the proof of
the last theorem, the unitary MDP orthogonal vector converges to the same direction as the
other three methods as d → ∞, since it can be approximated by the unitary MD orthogonal
vector when d is large.

3.3 Comparison of the MD and SVM methods

In the case when ‖ vd ‖ d−1/2 →∞, by Theorem 3.2.1 we have that all the orthogonal vectors
converge to the optimal vector, but an interesting question is which of them is better in the
HDLSS context. In the case when ‖ vd ‖ d−1/2 → 0 and the orthogonal vectors are strongly
inconsistent, another interesting question is which of them is closer to the optimal direction
vd. In order to compare the SVM and the MD methods in these cases we first obtain a useful
result that gives an explicit form for the orthogonal vector of the SVM hyperplane in some
particular settings.

Lemma 3.3.1 Suppose ‖ vd ‖= dδ, with δ > 0. Let x1 be a vector in the class C+ and let
y1, y2 be vectors in the class C−. If ρ is the probability that the orthogonal projection of x1

onto the line passing through y1 and y2 is on the segment joining these vectors, then

ρ −→


1, if δ < 1;
2Φ(2−1/2)− 1 ≈ 0.52, if δ = 1;
0, if δ > 1,

as d→∞, where Φ(·) is the standard normal distribution function.

Proof. Let z1 = x1 − vd. Note that the orthogonal projection of x1 into the line passing
through y1 and y2 is on the segment joining these vectors if and only if Angle(x1−y1, y2−y1) ≤
π/2 and Angle(x1 − y2, y1 − y2) ≤ π/2, if and only if

〈x1 − y1, y2 − y1〉 ≥ 0 and 〈x1 − y2, y1 − y2〉 ≥ 0.



3.3 Comparison of the MD and SVM methods 51

Thus,

ρ = P ([〈x1 − y1, y2 − y1〉 ≥ 0] ∩ [〈x1 − y2, y1 − y2〉 ≥ 0])

= 1− P ([〈x1 − y1, y2 − y1〉 < 0] ∪ [〈x1 − y2, y1 − y2〉 < 0])

= 1− [P (〈x1 − y1, y2 − y1〉 < 0) + P (〈x1 − y2, y1 − y2〉 < 0)]

= 1− 2P (〈x1 − y1, y2 − y1〉 < 0). (3.37)

One can see that

P (〈x1 − y1, y2 − y1〉 < 0) = P

(
〈x1 − y1, y2 − y1〉
‖ y2 − y1 ‖

< 0

)
= P

(
〈z1 − y1, y2 − y1〉
‖ y2 − y1 ‖

+
〈vd, y2 − y1〉
‖ y2 − y1 ‖

< 0

)
. (3.38)

From [19], when d tends to infinity z1, y1, y2 tend to form an equilateral triangle where each
edge has length approximately (2d)1/2. Therefore, the projection of the vector z1−y1 onto the
vector y2−y1, given by 〈z1 − y1, y2 − y1〉 / ‖ y2−y1 ‖, is approximately (2d)1/2/2 = (d/2)1/2.
Thus, when d is large enough (3.38) is approximately

P

(
(d/2)1/2 +

〈vd, y2 − y1〉
(2d)1/2

< 0

)
= P

(
(d/2)1/2 <

21/2 ‖ vd ‖ N1

(2d)1/2

)
= P

(
N1 >

d

21/2 ‖ vd ‖

)
= P

(
N1 >

d1−δ

21/2

)
= 1− Φ

(
d1−δ

21/2

)
,

where N1 = 〈vd, y1 − y2〉 /(21/2 ‖ vd ‖) is a r.v. with standard normal distribution and Φ(·)
is its distribution function. Hence

P (〈x1 − y1, y2 − y1〉 < 0) −→


0, if δ < 1;
1− Φ(2−1/2), if δ = 1;
1/2, if δ > 1,

(3.39)

as d→∞, and from (3.37) we have the result. �

We now consider m = 1 and n = 2, which is a simple but very illustrative case. Let p be
the orthogonal projection of x1 onto the line passing through y1 and y2. If p is outside the
segment joining y1 and y2, define p0 as y1 or y2 depending on whether x1 is closer to y1 or
closer to y2, respectively. Recall that the SVM orthogonal vector is the difference between
the two closest points of the convex hulls of the classes. In this case the convex hulls are the
point x1 and the segment joining y1 and y2. From Lemma 3.3.1 we have that when d→∞
the SVM orthogonal vector tends to be vSVM = x1 − p, if 0 < δ < 1; vSVM = x1 − p0,
if δ > 1; vSVM = x1 − p with probability 2Φ(2−1/2) − 1 ≈ 0.52 and vSVM = x1 − p0 with
probability 2− 2Φ(2−1/2) ≈ 0.48, if δ = 1.

Now we will compare the SVM method with the MD method under the cases when
0 < δ < 1 and when δ > 1, in the setting m = 1 and n = 2. We find that when ‖ vd ‖= dδ
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with 1/2 < δ < 1, i.e. when the distance between classes, ‖ vd ‖, is bigger than the
distance within classes, the MD classification is better than SVM, in the sense of having an
asymptotically smaller angle between the orthogonal vector and the optimal direction. This
is because the difference between the squares of Angle(vSVM , vd) and Angle(vMD, vd) tends
to be positive since this difference is approximately a multiple of a chi-square r.v. when d is
large. Note that this case corresponds to the setting ‖ vd ‖ d−1/2 →∞.

Theorem 3.3.1 (Case m = 1, n = 2) Suppose ‖ vd ‖= dδ with 1/2 < δ < 1. Let vSVM
and vMD be the corresponding vector ṽ given in Lemma 3.2.1 for the SVM and MD method,
respectively. Let ASVM = Angle(vSVM , vd) and AMD = Angle(vMD, vd), then

A2
SVM − A2

MD = 2
X 2

1

d
+Op(d

−(1+ε)) as d→∞,

for some ε > 0 and where X 2
1 is a r.v. with the chi-square distribution with one degree of

freedom.

Proof. Let z1, y, yi, for i = 1, 2, be as in the proof of Theorem 3.2.1. Since 1/2 <
δ < 1, by Lemma 3.3.1 when d is sufficiently large the orthogonal projection of x1 onto
the line passing through y1 and y2 is on the segment joining these vectors with probability
approximately one. Therefore, when d is large enough, if p is this projection we can consider
that

p = a1y1 + a2y2, with a1, a2 ≥ 0, a1 + a2 = 1. (3.40)

It can be seen that

a1 =
〈x1 − y, y1 − y2〉
‖ y1 − y2 ‖2

+
1

2
, a2 =

〈x1 − y, y2 − y1〉
‖ y1 − y2 ‖2

+
1

2
. (3.41)

From Hall, et al. [19] we have that

‖ y1 − y2 ‖2= 2d+OP (1), as d→∞.

Therefore, we use this asymptotic result to express a1 and a2 as

a1 =
〈x1 − y, y1 − y2〉

2d
+

1

2
, a2 =

〈x1 − y, y2 − y1〉
2d

+
1

2

for d sufficiently large. Thus,

p = a1y1 + a2y2 =

(
〈x1 − y, y1 − y2〉

2d
+

1

2

)
y1 +

(
−〈x1 − y, y1 − y2〉

2d
+

1

2

)
y2

=
〈x1 − y, y1 − y2〉

2d
(y1 − y2) + y

=
〈z1 − y, y1 − y2〉

2d
(y1 − y2) +

〈vd, y1 − y2〉
2d

(y1 − y2) + y. (3.42)
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Note that in this case vSVM = x1 − p = x1 − (a1y1 + a2y2) because x1 and p are the closest
points of the convex hulls. Therefore, (3.42) gives

〈vSVM , vd〉 = 〈x1 − p, vd〉 = 〈z1 − p, vd〉+ 〈vd, vd〉

= 〈z1 − y, vd〉 −
〈z1 − y, y1 − y2〉 〈y1 − y2, vd〉

2d

− 〈y1 − y2, vd〉2

2d
+ 〈vd, vd〉 . (3.43)

By (3.32) we have ‖ vSVM ‖2 / ‖ vd ‖2 w→ 1 as d→∞, so we can consider ‖ vSVM ‖ / ‖ vd ‖= 1
when d is large enough. Hence for large d we have that

cos(ASVM) =
〈vSVM , vd〉
‖ vSVM ‖‖ vd ‖

=
〈vSVM , vd〉
‖ vd ‖2

and substituting (3.43) into the last expression we have

cos(ASVM) =
〈z1 − y, vd〉
‖ vd ‖2

− 〈z1 − y, y1 − y2〉 〈y1 − y2, vd〉
2d ‖ vd ‖2

− 〈y1 − y2, vd〉2

2d ‖ vd ‖2
+ 1. (3.44)

Similarly we can see that

cos(AMD) =
〈z1 − y, vd〉
‖ vd ‖2

+ 1. (3.45)

Therefore, from (3.44) and (3.45) we have

cos(AMD)− cos(ASVM) =
〈y1 − y2, vd〉2

2d ‖ vd ‖2
+
〈z1 − y, y1 − y2〉 〈y1 − y2, vd〉

2d ‖ vd ‖2
. (3.46)

We observe that for the first term on the right side of (3.46)

〈y1 − y2, vd〉2

2d ‖ vd ‖2
=
N2

1

d
=
X 2

1

d
, (3.47)

where N1 = 〈y1 − y2, vd〉 /(
√

2 ‖ vd ‖) is a r.v. with standard normal distribution and X 2
1

is a r.v. with chi-square distribution with one degree of freedom. For the second term on
the right side of (3.46), observe that z1 − y and y1 − y2 are independent with distribution
Nd(0, γId) and Nd(0, 2Id) respectively, where γ = 3/2. Thus, the terms in the sum of the

inner product 〈z1 − y, y1 − y2〉 =
∑d

k=1(z
(k)
1 − y(k))(y

(k)
1 − y

(k)
2 ) are independent identically

distributed r.v.’s with mean 0 and variance 2γ. Then by the Central Limit Theorem (see
[36, pp. 313])

〈z1 − y, y1 − y2〉
(2γd)1/2

w−→ N2, (3.48)
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where N2 is a r.v. with standard normal distribution. By hypothesis we have ‖ vd ‖= dδ

with 1/2 < δ < 1, so let 2ε = δ − 1/2 > 0 and note that

〈z1 − y, y1 − y2〉 〈y1 − y2, vd〉
2d ‖ vd ‖2

=
〈z1 − y, y1 − y2〉

21/2d ‖ vd ‖
〈y1 − y2, vd〉
21/2 ‖ vd ‖

〈z1 − y, y1 − y2〉
21/2dδ+1

N1 =
γ1/2

dε+1

〈z1 − y, y1 − y2〉
(2γd)1/2

N1

dε
(3.49)

where N1 is as before. Using (3.48) and the fact that N1/d
ε w→ 0 as d→∞ we have

γ1/2 〈z1 − y, y1 − y2〉
(2γd)1/2

N1

dε
w−→ 0.

Thus, from (3.49)

〈z1 − y, y1 − y2〉 〈y1 − y2, vd〉
2d ‖ vd ‖2

= OP (d−(1+ε)), (3.50)

as d→∞.
The Taylor expansion of the cosine is given by cos(x) = 1− x2/2 +O(x4) in the limit as

x tends to 0. So we can use this result and the fact that ASVM and AMD converge to 0 in
probability as d→∞ by Theorem 3.2.1, to approximate the left side of (3.46) by

A2
SVM

2
− A2

MD

2

when d is large. Therefore, from (3.46), (3.47) and (3.50)

A2
SVM − A2

MD = 2
X 2

1

d
+OP (d−(1+ε)),

as d→∞. �

The next theorem considers the case 0 < δ < 1/2, that is when the distance between
classes is lower than the distance within classes and ‖ vd ‖ d−1/2 → 0. In this case we
have that the MD method tends to be a little better than the SVM method when d is large
because the difference between Angle(vSVM , vd) and Angle(vMD, vd) tends to be a multiple
of a product-normal distribution (which is symmetric around zero) plus a multiple of a chi-
square distribution. However, when d grows the two methods are indistinguishable because
the multiple of the chi-square r.v. converges to zero faster than the multiple of the product-
normal distribution. This provides a theoretical proof of the conjecture suggested by the
simulation results shown in Figure 2a of [28], where the proportion of wrong classification
of new data for the SVM method is always bigger than that for the MD method, and
these proportions tend to the same value as the dimension increases, considering a Gaussian
assumption for the data.
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Theorem 3.3.2 (Case m = 1, n = 2) Suppose vd = (dδ, 0, . . . , 0)> with 0 < δ < 1/2. Let
ASVM and AMD be as in Theorem 3.3.1, then

ASVM − AMD =
N0

d
+

X 2
1

γ1/2d3/2−δ +O(d−(3/2−δ+ε′))

=
N0

d
+Op(d

−(1+ε))

as d → ∞ for some ε′, ε > 0, where N0 converges in distribution to the product of two
independent standard normal random variables as d → ∞ and X 2

1 is a r.v. with the chi-
square distribution with one degree of freedom.

Proof. Let z1, y, yi, for i = 1, 2, be as in the proof of Theorem 3.2.1. Since 0 <
δ < 1/2, by Lemma 3.3.1 when d is sufficiently large the orthogonal projection of x1 onto
the line passing through y1 and y2 is on the segment joining these vectors with probability
approximately one. Therefore, for d sufficiently large we can consider this projection p as
in (3.40) with a1 and a2 as in (3.41). Thus, when d is large enough vSVM = x1 − p. As in
the proof of Theorem 3.3.1, using (3.43) and the fact that by (3.33) ‖ vSVM ‖2 /d

w→ γ as
d→∞, we have that for d sufficiently large

cos(AMD)− cos(ASVM) =
〈z1 − y, y1 − y2〉 〈y1 − y2, vd〉

2γ1/2d3/2 ‖ vd ‖
+
〈y1 − y2, vd〉2

2γ1/2d3/2 ‖ vd ‖
. (3.51)

Since cos(θ) = sin(π
2
− θ) ∀θ ∈ R, we have cos(ASVM) = sin(π

2
−ASVM) and cos(AMD) =

sin(π
2
− AMD). By the Taylor expansion of the sine around zero, sin(x) = x + O(x3) in the

limit as x tends to 0, and the fact that ASVM
w→ π/2, AMD

w→ π/2 as d→∞ (by Theorem
3.2.1), we can approximate the left side of (3.51) by ASVM − AMD when d is sufficiently
large. The right side of (3.51) is equal to

(z
(1)
1 − y(1))(y

(1)
1 − y

(1)
2 )2 +

∑d
k=2(z

(k)
1 − y(k))(y

(k)
1 − y

(k)
2 )(y

(1)
1 − y

(1)
2 )

2γ1/2d3/2
+

(y
(1)
1 − y

(1)
2 )2

2γ1/2d3/2−δ

= R +K,

where

R =

∑d
k=2(z

(k)
1 − y(k))(y

(k)
1 − y

(k)
2 )(y

(1)
1 − y

(1)
2 )

2γ1/2d3/2
=

1

d

(
d− 1

d

)2

N1

d∑
k=2

wk
(2γ)1/2(d− 1)1/2

,

(3.52)

with N1 = (y
(1)
1 −y

(1)
2 )/21/2 a r.v. with standard normal distribution, wk = (z

(k)
1 −y(k))(y

(k)
1 −

y
(k)
2 ), for k = 2, . . . , d, and

K =
(y

(1)
1 − y

(1)
2 )2

(2γ)1/2d3/2−δ +
(z

(1)
1 − y(1))(y

(1)
1 − y

(1)
2 )2

2γ1/2d3/2
. (3.53)
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Note that wk, k = 2, 3, . . . , d, are i.i.d. random variables with E(wk) = 0 and Var(wk) =
2γ, then by the Central Limit Theorem the sum of the right side of (3.52) converges in
distribution to a r.v. N2 with standard normal distribution independent of N1. Therefore,
for d large enough we have that R is approximately equal to N0/d, where N0 is a random
variable which converges in distribution to N1N2 as d→∞. Thus we have

ASVM − AMD =
N0

d
+K as d→∞. (3.54)

Writing ε′ = δ/2 > 0, we have

d3/2−δ+ε′ (z
(1)
1 − y(1))(y

(1)
1 − y

(1)
2 )2

2γ1/2d3/2

w−→ 0 as d→∞.

Therefore, the second term of K in (3.53) is Op(d
−(3/2−δ+ε′)) and

K =
X 2

1

γ1/2d3/2−δ +Op(d
−(3/2−δ+ε′)), (3.55)

where X 2
1 = (y

(1)
1 − y

(1)
2 )2/2 has a chi-square distribution with one degree of freedom. Now,

let 2ε = 1/2− δ > 0 and note that d1+εK
w→ 0 as d→∞. Thus we also have

K = Op(d
−(1+ε)) as d→∞. (3.56)

Therefore, from (3.54), (3.55) and (3.56)

ASVM − AMD =
N0

d
+

X 2
1

γ1/2d3/2−δ +Op(d
−(3/2−δ+ε′))

=
N0

d
+Op(d

−(1+ε))

d→∞. �

Finally for the case when δ > 1, which is in the setting ‖ vd ‖ d−1/2 → ∞, we also have
that the MD method tends to be better than the SVM method when d is large as we can
see in the next theorem.

Theorem 3.3.3 (Case m = 1, n = 2) Suppose ‖ vd ‖= dδ with δ > 1. Let ASVM and AMD

be as in Theorem 3.3.1, then

P (ASVM > AMD) −→ 1 as d→∞. (3.57)

Proof. Let z1, y, yi, for i = 1, 2, be as in the proof of Theorem 3.2.1. By Lemma 3.3.1,
since δ > 1 we have that the orthogonal projection of x1 onto the line joining y1 and y2

tends to be outside the segment joining these vectors when d → ∞, thus the closest point
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to x1 in the segment joining y1 and y2 is y1 or y2. Let p0 be this point, note that p0 = y1

if Angle(x1 − y1, y2 − y1) > π/2, that is if 〈x1 − y1, y2 − y1〉 < 0. Analogously, p0 = y2 if
〈x1 − y2, y1 − y2〉 < 0. Let IA be the indicator function of the set A. Then

p0 = y1I[〈x1−y1,y2−y1〉<0] + y2I[〈x1−y2,y1−y2〉<0]

and by (3.39) P (p0 = y1) = P (〈x1 − y1, y2 − y1〉 < 0) → 1/2 as d → ∞, analogously for
y2. Because the orthogonal vector of the SVM hyperplane is the difference between the two
closest points of the convex hulls of the classes we have vSVM = x1 − p0.

As in the proof of Theorem 3.3.2 we can approximate cos(AMD)−cos(ASVM) by ASVM−
AMD as d→∞. Therefore, for d sufficiently large P (ASVM > AMD) = P (ASVM−AMD > 0)
is approximately

P (cos(AMD)− cos(ASVM) > 0) = P

(
〈vMD, vd〉
‖ vMD ‖‖ vd ‖

− 〈vSVM , vd〉
‖ vSVM ‖‖ vd ‖

> 0

)
.

Since ‖ vSVM ‖2 / ‖ vd ‖2 w→ 1, ‖ vMD ‖2 / ‖ vd ‖2 w→ 1 as d→∞ by (3.32), we have that the
last probability is approximately

P

(
〈vMD, vd〉
‖ vd ‖2

− 〈vSVM , vd〉
‖ vd ‖2

> 0

)
= P (〈x1 − y, vd〉 − 〈x1 − p0, vd〉 > 0)

= P (〈p0 − y〉 > 0).

Recall that from [19] the vectors z1, y1, y2 tend to form an equilateral triangle as d→∞
because they are independent vectors with multivariate standard normal distribution. Thus
Angle(z1 − yi, y − yi) = Angle(z1 − yi, yj − yi) tends to be less than π/2 as d → ∞ and
therefore

P (〈z1 − yi, y − yi〉 > 0) −→ 1 as d→∞, (3.58)

for i, j ∈ {1, 2} and i 6= j.
Suppose p0 = yi for i ∈ {1, 2}, then 〈x1 − yi, yj − yi〉 < 0 and 〈x1 − yi, y − yi〉 < 0 but

〈x1 − yi, y − yi〉 = 〈z1 − yi, y − yi〉+ 〈vd, y − yi〉 ,

then
〈p0 − y, vd〉 = 〈yi − y, vd〉 > 〈z1 − yi, y − yi〉

and (3.58) implies that

P (〈p0 − y, vd〉 > 0) −→ 1 as d→∞.

Thus we have
P (ASVM > AMD) −→ 1

as d→∞. �

As a conclusion we have that the MD method seems to be better than the SVM method
under the settings of the last three theorems. We conjecture that these results can be
extended for the general case m,n ≥ 2.
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