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Notation

a(x , s) density of arcsine distribution a(x , s)dx

a(x , s) =
{ 1

π (s − x2)−1/2, |x | <
√
s

0 |x | ≥
√
s.

(1)

As random variable with density a(x , s) on (−
√
s,
√
s). (A = A1).

ϕ(x ; τ) density of the Gaussian distribution ϕ(x ; τ)dx zero mean
and variance τ > 0

ϕ(x ; τ) = (2πτ)−1/2e−x
2/(2τ), x ∈ R. (2)

Zτ random variable with density ϕ(x ; τ). (Z = Z1).
fτ(x) density of exponential distribution fτ(x)dx , mean 2τ > 0

fτ(x) =
1
2τ
exp(− 1

2τ
x), x > 0. (3)

Eτ random variable with exponential density fτ(x). (E = E1).
Gaussian and exponential distributions are ID, but arcsine is not.
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Representation of the Gaussian distribution

Fact

ϕ(x ; τ) =
1
2τ

∫ ∞

0
e−s/(2τ)a(x ; s)ds, τ > 0, x ∈ R. (4)

Equivalently: If Eτ and A are independent random variables, then

Zτ
L
=
√
EτA.

Gaussian distribution is an exponential mixture of the arcsine distribution.
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Goal of the Talk

Fact

ϕ(x ; τ) =
1
2τ

∫ ∞

0
e−s/(2τ)a(x ; s)ds, τ > 0, x ∈ R. (4)

Equivalently: If Eτ and A are independent random variables, then

Zτ
L
=
√
EτA.

Gaussian distribution is an exponential mixture of the arcsine distribution.

Goal: show some implications of this representation in the
construction of infinitely divisible distributions.

Motivation comes from free infinite divisibility: construction of
free ID distributions.
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Content of the talk

I. Gaussian representation and infinite divisibility
1 Simple consequences.
2 Power semicircle distributions (next talk by Octavio Arizmendi)

II. Type G distributions again: a new look
1 Lévy measure characterization (known).
2 New Lévy measure characterization using the Gaussian representation.

III. Distributions of class A
1 Lévy measure characterization.
2 Integral representation of type G distributions w.r.t. LP
3 Integral representation of distributions of class A w.r.t to LP.

IV Non classical infinite divisibility
1 Non classical convolutions
2 Free infinite divisibility
3 Bijection between classical and free ID distributions
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I. Simple consequences, for example

Variance mixture of Gaussians: V positive random variable

X
L
=
√
VZ . (4)

Using Gaussian representation Z
L
=
√
EA: V , E are independent

X
L
=
√
VEA (5)

Well known: For R > 0 arbitrary and independent of E , Y = RE is
always infinitely divisible. Writing X 2 = (VA2)E :

Corollary

If X
L
=
√
VZ is variance mixture of Gaussians, V > 0 arbitrary

independent of Z , then X 2 is infinitely divisible.

Examples: X 2 is infinitely divisible if X is stable symmetric, normal
inverse Gaussian, normal variance gamma, t−student.
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I. A characterization of Exponential Distribution

G (α, β), α > 0, β > 0, gamma distribution with density

gα,β(x) =
1

βαΓ(α)
xα−1 exp(− x

β
), x > 0.

Yα, α > 0, random variable with gamma distribution G (α, β)
independent of A. Let

X =
√
YαA.

Then X has an ID distribution if and only if α = 1, in which case Y1
has exponential distribution and X has Gaussian distribution.
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I. Extension: Power semicircle distributions
Similar representations of the Gaussian distribution

PSD (Kingman (63)) PS(θ, σ): θ ≥ −3/2, σ > 0

fθ(x ; σ) = cθ,σ

(
σ2 − x2

)θ+1/2 − σ < x < σ (6)

θ = −1 is arcsine density,
θ = −3/2 is symmetric Bernoulli
θ = 0 is semicircle distribution,
θ = −1/2 is uniform distribution
θ = ∞ is classical Gaussian distribution: Poincaré´s theorem:
(θ → ∞)

fθ(x ;
√
(θ + 2)/2σ)→ 1√

2πσ
exp(−x2/(2σ2)).

Octavio’s talk: symmetric Bernoulli, arcsine, semicircle and classical
Gaussian are the only possible "Gaussian" distributions.
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I. Other Gaussian representations

PSD PS(θ, σ): θ ≥ −3/2, σ > 0

fθ(x ; σ) = cθ,σ

(
σ2 − x2

)θ+1/2 − σ < x < σ (7)

Theorem (Kingman (63), Arizmendi- PA (10))

Let Yα, α > 0, r.v. with gamma distribution G (α, β) independent of r.v.
Sθ with distribution PS(θ, 1). Let ,

X
L
=
√
YαSθ (8)

When α = θ + 2, X has a Gaussian distribution.
Moreover, the distribution of X is infinitely divisible iff α = θ + 2 in
which case X has a classicial Gaussian distribution.

Proof uses a simple kurtosis criteria (Octavio’s talk)
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I. Recursive representations

Sθ is r.v. with distribution PS(θ, 1). For θ > −1/2 it holds that

Sθ
L
= U1/(2(θ+1))Sθ−1 (9)

where U is r.v. with uniform distribution U(0, 1) independent of r.v.
Sθ−1 with distribution PS(θ − 1, 1).

In particular, the semicircle distribution is a mixture of the arcsine
distribution

S0
L
= U1/2S−1. (10)

This fact and the Gaussian representation suggest that the arcsine
distribution is a "nice small" distribution to mixture with.
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II. Type G distributions
Recall: Definition and relevance

A mixture of Gaussians X =
√
VZ has a type G distribution if

V > 0 has an infinitely divisible distribution.

A type G distribution is a (symmetric) ID distribution.

Relevance: Type G distributions appear as distributions of
subordinated Brownian motion:

B = {Bt : t ≥ 0} Brownian motion

{Vt : t ≥ 0} subordinator independent de B and V1
L
= V .

Xt = BVt has type G distribution

[X 2t = (BVt )
2 is always infinitely divisible].
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II. Type G distributions: Lévy measure characterization

If V > 0 is ID with Lévy measure ρ, then µ
L
=
√
VZ is ID with Lévy

measure ν(dx) = l(x)dx

l(x) =
∫

R+

ϕ(x ; s)ρ(ds), x ∈ R. (11)

Theorem (Rosinski (91))
A symmetric distribution µ on R is type G iff is infinitely divisible and its
Lévy measure is zero or ν(dx) = l(x)dx, where l(x) is representable as

l(r) = g(r2), (12)

g is completely monotone on (0,∞) and
∫ ∞
0 min(1, r

2)g(r2)dr < ∞.

In general G (R) is the class of generalized type G distributions with
Lévy measure (12).
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II. Type G distributions: new characterization

Using Gaussian representation in l(x) =
∫

R+
ϕ(x ; s)ρ(ds) :

l(x) =
∫ ∞

0
a(x ; s)η(s)ds. (13)

where η(s) := η(s; ρ) is the completely monotone function

η(s; ρ) =
∫

R+

(2r)−1 e−s(2r )
−1

ρ(dr). (14)

Theorem (Arizmendi, Barndorff-Nielsen, PA (2010))
A symmetric distribution µ on R is type G iff it is infinitely divisible with
Lévy measure ν zero or ν(dx) = l(x)dx, where
1) l(x) is representable as (13),
2) η is a completely monotone function with

∫ ∞
0 min(1, s)η(s)ds < ∞.
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II. Useful representation of completely monotone functions
Consequence of the Gaussian representation

Lemma
Let g be a real function. The following statements are equivalent:
(a) g is completely monotone on (0,∞) with∫ ∞

0
(1∧ r2)g(r2)dr < ∞. (15)

(b) There is a function h(s) completely monotone on (0,∞), with∫ ∞
0 (1∧ s)h(s)ds < ∞ and g(r2) has the arcsine transform

g(r2) =
∫ ∞

0
a+(r ; s)h(s)ds, r > 0, (16)

where

a+(r ; s) =

{
2π−1(s − r2)−1/2, 0 < r < s1/2,

0, otherwise.
(17)
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II. Type G distributions: Summary new representation

Lévy measure is a (special) mixture of arcsine measure: There is a
completely monotone function η(s) on (0,∞) such that

l(x) =
∫ ∞

0
a(x ; s)η(s)ds. (18)

This is not the finite range mixture of the arcsine measure.

Not type G : ID distributions with Lévy measure the arcsine or
semicircle measures (more generally, power semicircle measures).

In free probability the (free) ID distribution with arcsine Lévy measure
plays a key role (motivation).

Next problem: Characterization of ID distributions which Lévy
measure ν(dx) = l(x)dx is the arcsine transform

l(x) =
∫ ∞

0
a(x ; s)λ(ds). (19)
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III. Distributions of Class A

Definition
A(R) is the class of A of distributions on R : ID distributions with Lévy
measure ν(dx) = l(x)dx , where

l(x) =
∫

R+

a(x ; s)λ(ds) (20)

and λ is a Lévy measure on R+ = (0,∞).

Arizmendi, Barndorff-Nielsen, PA (10): Univariate and symmetric
case (also in context of free ID).
Further studied: Maejima, PA, Sato (11): A(Rd ) including
non-symmetric case, stochastic integral representation, relation to
Upsilon transformations, comparison to other known ID classes.
G (R) ⊂ A(R).
How large is the class A(R)?
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III. Recall some known classes of ID distributions
Characterization via Lévy measure

ID(Rd ) class of infinitely divisible distributions on Rd .

Polar decomposition of Lévy measure ν (univariate case ξ = −1, 1)

ν(B) =
∫

S
λ(dξ)

∫ ∞

0
1B (rξ)hξ(r)dr , B ∈ B(Bd ). (21)

U(Rd ), Jurek class: hξ(r) is decreasing in r > 0.
L(Rd ), Selfdecomposable class: hξ(r) = r−1gξ(r) and gξ(r)
decreasing in r > 0.
B(Rd ), Goldie-Steutel-Bondesson class: hξ(r) completely
monotone in r > 0.
T (Rd ), Thorin class: hξ(r) = r−1gξ(r) and gξ(r) completely
monotone in r > 0.
G (Rd ), Generalized type G class hξ(r) = gξ(r2) and gξ(r)
completely monotone in r > 0.
A(Rd ), Class A(R), hξ(r) is an arcsine transform.
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Polar decomposition of Lévy measure ν (univariate case ξ = −1, 1)

ν(B) =
∫

S
λ(dξ)

∫ ∞

0
1B (rξ)hξ(r)dr , B ∈ B(Bd ). (21)

U(Rd ), Jurek class: hξ(r) is decreasing in r > 0.
L(Rd ), Selfdecomposable class: hξ(r) = r−1gξ(r) and gξ(r)
decreasing in r > 0.
B(Rd ), Goldie-Steutel-Bondesson class: hξ(r) completely
monotone in r > 0.
T (Rd ), Thorin class: hξ(r) = r−1gξ(r) and gξ(r) completely
monotone in r > 0.
G (Rd ), Generalized type G class hξ(r) = gξ(r2) and gξ(r)
completely monotone in r > 0.
A(Rd ), Class A(R), hξ(r) is an arcsine transform.
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III. Relations between classes

T (Rd ) ∪ B(Rd ) ∪ L(Rd ) ∪ G (Rd ) ⊂ U(Rd )

In general

B(Rd )\L(Rd ) 6= ∅, L(Rd )\B(Rd ) 6= ∅

G (Rd )\L(Rd ) 6= ∅, L(Rd )\G (Rd ) 6= ∅.

It is known
T (Rd )  B(Rd )  G (Rd )

Lemma (Maejima, PA, Sato (11))

U(Rd ) ( A(Rd )

Observation: Arcsine density a(x ; s) is increasing in r ∈ (0,
√
s)
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III. Relation between type G and type A distributions

µ ∈ ID(Rd ), X (µ)t Lévy processes such that µ: L
(
X (µ)1

)
= µ.

Theorem (A, BN, PA (10); Maejima, PA, Sato (11).)

Let Ψ : ID(Rd )→ID(Rd ) be the mapping given by

Ψ(µ) = L
(∫ 1/2

0

(
log

1
s

)1/2

dX (µ)s

)
. (22)

An ID distribution µ̃ belongs to G (Rd ) iff there exists a type A
distribution µ such that µ̃ = Ψ(µ). That is

G (Rd ) = Ψ(A(Rd )). (23)

A Stochastic interpretation of the fact that for a generalized type G
distribution its Lévy measure is mixture of arcsine measure.
Next problem: integral representation for type A distributions?
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III. Stochastic integral representations for some ID classes

Jurek (85): U(Rd ) = U (ID(Rd )),

U (µ) = L
(∫ 1

0
sdX (µ)s

)
.

Jurek, Vervaat (83), Sato, Yamazato (83): L(Rd ) =Φ(IDlog(Rd ))

Φ(µ) = L
(∫ ∞

0
e−sdX (µ)s

)
,

IDlog(R
d ) =

{
µ ∈ I (Rd ) :

∫
|x |>2

log |x | µ(dx) < ∞
}
.

Barndorff-Nielsen, Maejima, Sato (06): B(Rd ) =Υ(I (Rd )) and
T (Rd ) =Υ(L(Rd ))

Υ(µ) = L
(∫ 1

0
log

1
s

dX (µ)s

)
.
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IV. Class A of distributions
Stochastic integral representation

Theorem (Maejima, PA, Sato (11))

Let Φcos : ID(Rd )→ID(Rd ) be the mapping

Φcos(µ) = L
(∫ 1

0
cos(

π

2
s)dX (µ)s

)
, µ ∈ ID(Rd ). (24)

Then
A(Rd ) = Φcos(ID(Rd )). (25)

.
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III. General framework

Upsilon transformations of Lévy measures:

Υσ(ρ)(B) =
∫ ∞

0
ρ(u−1B)σ(du), B ∈ B(Rd ). (26)

[Barndorff-Nielsen, Rosinski, Thorbjørnsen (08)].

Fractional transformations of Lévy measures:

(Aα,β
q,pν)(C ) =

1
Γ(p)

∫ ∞

0
r−q−1dr

∫
Rd
1C (r

x
|x | )(|x |

β − r α)p−1+ ν(dx),

p, α, β ∈ R+, q ∈ R [Maejima, PA, Sato (in progress), Sato (10)].
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IV. Nonclassical convolutions of probability measures
Transforms of measures

Notation µ probability measure on R,

C+ = {z ∈ C : Im(z) > 0} , C− = {z ∈ C : Im(z) < 0}

Cauchy (-Stieltjes) transform Gµ(z) : C+ → C−

Gµ(z) =
∫ ∞

−∞

1
z − x µ(dx)

Inversion formula

µ(dx) = − 1
π
lim
y→0+

ImGµ(x + iy)dx

Reciprocal Cauchy transform Fµ(z) : C+ → C+,

Fµ(z) = 1/Gµ(z)
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IV. Free analogous of classical cumulant transform

Bercovici & Voiculescu (1993): There exists a domain Γ = ∪α>0Γα,βα

where the right inverse F−1µ of Fµ exists (Fµ(F−1µ (z)) = z)

Γα,β = {z = x + iy : y > β, |x | < αy} , α > 0, β > 0

Voiculescu transform

φµ(z) = F−1µ (z)− z

Free cumulant transform

C�µ (z) = zF
−1
µ (

1
z
)− 1
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IV. Free convolution: Analytic approach
Bercovici & Voiculescu (1993)

µ1, µ2 pm on R: The free additive convolution µ1 � µ2 is the
unique pm such that

φµ1�µ2(z) = φµ1(z) + φµ2(z)

or equivalently
C�µ1�µ2

(z) = C�µ1(z) + C
�
µ2(z)

Recall the classical convolution µ1 ∗ µ2

C ∗µ1∗µ2(t) = C
∗
µ1(t) + C

∗
µ2(t)

Classical cumulant transform:

C ∗µ (t) = log µ̂(t), ∀t ∈ R

µ̂(t) =
∫

R
exp(itx)µX (dx), ∀t ∈ R.
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IV. A difference with classical convolution

Example
Free convolution of atomic measures can be absolutely continuous
Symmetric Bernoulli measure

j(dx) =
1
2

(
δ{−1}(dx) + δ{1}(dx)

)
a = j� j is the Arcsine measure on (−1, 1)

a(dx) =
1

π
√
1− x2

1(−1,1)(x)dx
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IV. Free infinite divisibility

Definition
A pm µ is infinitely divisible with respect to free convolution � iff
∀n ≥ 1, ∃ pm µ1/n and

µ = µ1/n � µ1/n � · · ·� µ1/n

ID(�) is the class of all free infinitely divisible distributions.

If µ is �-infinitely divisible, µ has at most one atom.

No nontrivial discrete distribution is �-infinitely divisible
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IV. Free infinite divisibility

Theorem
Bercovici & Voiculescu (1993). The following are equivalent

a) µ is free infinitely divisible

b) φµ has an analytic extension defined on C+ with values in C− ∪R

c) Barndorff-Nielsen & Thorjensen (2006): Lévy-Khintchine representation:

C�µ (z) = ηz + az2 +
∫

R

(
1

1− xz − 1− xz1[−1,1](x)
)

ρ(dx), z ∈ C−

where (η, a, ρ) is a Lévy triplet.
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IV. Relation between classical and free ID

Classical Lévy-Khintchine representation µ ∈ ID(∗)

C ∗µ (t) = ηt − 1
2
at2 +

∫
R

(
e itx − 1− tx1[−1,1](x)

)
ρ(dx), t ∈ R

Free Lévy-Khintchine representation ν ∈ ID(�)

C�ν (z) = ηz+ az2+
∫

R

(
1

1− xz − 1− xz1[−1,1](x)
)

ρ(dx), z ∈ C−

Bercovici-Pata bijection (Ann. Math. 1999) Λ : ID(∗)→ ID(�)

ID(∗) � µ ∼ (η, a, ρ)↔ Λ(µ) ∼ (η, a, ρ)

Λ preserves convolutions (and weak convergence)

Λ(µ1 ∗ µ2) = Λ(µ1)�Λ(µ2)
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IV. Examples of free infinitely divisible distributions
Images of classical ID distributions under Bercovici-Pata bijection

For classical Gaussian measure γη,σ, wη,σ = Λ(γη,σ) is Wigner
distribution on (η − 2σ, η + 2σ) (free Gaussian) with free cumulant

C�wη,σ
(z) = ηz + σz2

For classical Poisson measure pc , mc = Λ(pc ) is the
Marchenko-Pastur distribution (free Poisson).
Λ(cλ) = cλ for the Cauchy distribution

cλ(dx) =
1
π

λ

λ2 + x2
dx

Free stable distributions S� = Λ(S∗), S∗ classical stable
distributions.

Free Thorin distributions = Λ(T (R))
Free type G distributions = Λ(G (R)) (free subordination?)
Free class A distributions = Λ(A(R))
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IV. New example of free ID distribution
Arizmendi, Barndorff-Nielsen and PA (2010)

Special symmetric Beta distribution

b(dx) =
1
2π
|x |−1/2 (2− |x |)1/2dx , |x | < 2

Cauchy transform

Gb(z) =
1
2

√
1−

√
z−2(z2 − 4)

Free additive cumulant transform is

C�b (z) =
√
z2 + 1− 1

b is �-infinitely divisible with triplet (0, 0, a), Lévy measure a is
Arcsine measure on (−1, 1).
Interpretation as multiplicative convolution: b = m1 � a
This was the motivation to study class A distributions
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V. Non classical convolutions
Introduction to Octavio’s talk

µ1, µ2 probability measures on R

Classical convolution µ1*µ2

log µ̂1 ∗ µ2(t) = log µ̂1(t) + log µ̂2(t)

Free convolution: µ1 � µ2

ϕµ1�µ2(z) = ϕµ1(z) + ϕµ2(z)

Monotone convolution: µ1 B µ2

Fµ1Bµ2(z) = Fµ1(Fµ2(z)), z ∈ C+

Boolean convolution: µ1 ] µ2

Kµ1]µ2 (z) = Kµ1(z) +Kµ2 (z) , z ∈ C+,

Kµ(z) = z − Fµ(z).
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