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Plan of the Lecture

1. Review Lecture | and II.

1.1 Gaussian random matrices and Wigner law.
1.2 Free central limit theorem.
1.3 Random matrices models for Marchenko-Pastur law.

2. Infinitely Divisible Random Matrices.
3. Free Infinite Divisibility.

3.1 Free cumulant transform and infinite divisibility.
3.2 Main features and characterization.
3.3 In search of examples.

4. BP-Bijection between classical and free infinite divisibility.

5. Random Matrices Approach to the BP-Bijection.

5.1 General results.

5.2 Concrete realizations.



|. Wigner law for a Gaussian Unitary Ensemble (GUE)

» GUE: Z = (Z,)n>1, Zn is n X n Hermitian random matrix

Zy = (ZVh<ijen Z =277,

Re (Z)) ~1Im (ZE') ~ N(O, (1 +65)/2),

Re (Z{,’) ,Im (Z{,’) ,1 < i <j < nindependent r.v.

v

Distribution of Z, is invariant under unitary transformations.

v

If Ap1,..., Ann are eigenvalues of Z,, ESD is
N 10
Fn(X) = ; E I{A",jgx}'
j=1

ASD: F, converges, as n — ©o, to semicircle distribution

W(X)dX = % \V 4 — le‘x‘gzdx.

Similar to GOE and universal under appropriate conditions.

v

v



Gaussian Semicircle



|. Free Central Limit Theorem

Semicircle law as the free Gaussian

» Free independence was defined in Lecture 1 for elements of a
noncommutative probability space.

» Asymptotic free independence was also defined for ensembles
of random matrices with asymptotic spectral distributions.

> Let X1, X5,... be a sequence of freely independent random
variables with the same distribution with all moments, zero
mean and variance one. Then the distribution of

1
Z,= —(X1+ ...+ Xp)

Vvn
converges in distribution to the semicircle distribution.

» Free Gaussian distribution: the semicircle distribution plays
in free probability the role Gaussian distribution does in
classical probability.



. Marchenko-Pastur law for covariance matrices

> Xp=Xoxn=(Zjk:j=1,...,pk=1,.., n) complex iid.
under second moment assumptions.

v

W, = X X, is Wishart random matrix if
Re (Zj k) ~1m (Zjk) ~ N(O, (1 + %) /2).

Distribution of W, is invariant under unitary conjugations.

v

\4

Covariance matrix S, = %X:X,,, with ESD l?,, of nonnegative
eigenvalues Ap1, ..., App of Sp.

v

If p/n— c >0, I?,, converges to MP distribution

me(dx) = fe(x)dx, if ¢>1
AT = ©)do(dx) + fo(x)dx,  if 0<c<1,

folx) = 5/ (x = @) (b= )15y (x)
(1= Ve b=(1+ V)

a—=



. MP Law for a non covariance random matrix
Cavanal-Duvillard (2006)

> (N¢),~q Poisson distribution with mean p.

> (uj );>; a sequence of i.i.d. random vectors with uniform
distribution on the unit sphere of C”.

» Consider the n X n compound Poisson random matrix

N
*
M, = Z u; uj.
j=1
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. MP Law for a non covariance random matrix
Cavanal-Duvillard (2006)

> (N¢),~q Poisson distribution with mean p.

> (uj );>; a sequence of i.i.d. random vectors with uniform
distribution on the unit sphere of C”.
» Consider the n X n compound Poisson random matrix
N
M, = Z uJ’-kuj.

j=1
» Distributions of M,, is invariant under unitary conjugations.
» ASD of M = (M,), when p/n — c, is MP distribution m..
» As random matrices, M, is infinitely divisible, but the Wishart

random matrix W, is not.



. Covariance vs. Covariation process

» Covariance matrix
Sp = X X

v

Compound Poisson n X n random matrix

N
*
M, = Z u; uj.
j=1

Distribution of M, and Wishart W, are invariant under
unitary conjugations and have m. as their same ASD.
M,, comes from a quadratic variation process

My (t) = [X*, X](t) = }_ (AX(s)) ZU uj

s<t

N
t) = ; u, M, =[X*X](1).

v

v

v

The Wishart process W, (t) is a covariance process.
M,(t) is an infinitely divisible process, but W, (t) is not.

v



Compound Poisson

Poisson Marchenko-Pastur
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II. Infinitely divisible random matrices

>

>

My space of d X d matrices (real or complex entries).

A random matrix M in My is Infinitely Divisible (ID) iff ¥
n>1 4, i.i.d. random matrices M, ..., M,, in My such that

Ml+...+MnéM.
Gaussian random matrices in GOE and GUE are ID.
Wishart random matrix is not ID.
Compound Poisson matrix process M,, = Zszl uJ’-kuj is ID.

Open problem: ASD for ensembles of Hermitian unitary
invariant infinitely divisible random matrices.

Partial answer today (due to Benaych-Georges (05) and
Cavanal-Duvillard (05)) and more.



II. Why infinitely divisible random matrices?
Applied and theoretical reasons

1. Stochastic modelling (fixed dimension):

> There exists a matrix Lévy process (M), such that

M E M.

» Multivariate financial modelling via Lévy and non Gaussian
Ornstein-Uhlenbeck matrix processes: Barndorff-Nielsen &
Stelzer (09, 11), Pigorsch & Stelzer (09), Stelzer (10).

> ID random matrix models alternative to Wishart random
matrix: Barndorff-Nielsen & PA (08), PA & Stelzer (12).

2. Today: (asymptotic spectral distribution)

» Random matrices approach to the relation between classical
and free infinite divisibility.

» Benaych-Georges (05), Cabanal-Duvillard (05), PA & Sakuma
(08), Molina & Rocha-Arteaga (12), joint work in progress
with Molina & Rocha-Arteaga.



lIl. But before: Free infinite divisibility

Analytic tools similar to classical probability

» Fourier transform of probability measure # on R

fi(s) :/ eu(dx), s€R,
R
» Cauchy transform of u

1
Gy(z):/IRZ_Xy(dx), zeC/R.

» Classical cumulant transform

cu(s) = logji(s), scR.

» Free cumulant transform

Cu(z) = zGPfl(z) -1, zeT,



Ill. Classical and free convolutions
» Classical convolution g * po is defined by

Cua*piz (s) = Cm(s) + Cuy (s).

X1 & X; classical independent r.v. u; = L(X;),

v

p1 ko = L (X1 + Xo)

v

Free convolution p1 H y» is defined by

CmEyz(z) = Cm(z) + Cm(z), zE rm mr#z-

v

X1 & X, free independent, u; = L(X;),
p1B s = L (X1 + Xz)

v

Also in Lecture 1 free multiplicative convolution g1 X .
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» Voiculescu transform

Pu(z) = Q;l(z) —z, z€ FZ,/S'

» Barndorff-Nielsen & Thorbjgrnsen (06): Free cumulant
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[11. More on the free cumulant transform
» Reciprocal of Cauchy transform G,(z) = 1/G,(z).

v

Bercovici & Voiculescu (93): Right inverse Q’jl of G, exists
in I' = U0l g, where

Fa,ﬁ:{z:x+iy:y>,3,x<1xy},a>0,ﬁ>0.

Voiculescu transform

v

Pu(z) = Q;l(z) —z, z€ FZ,/S'

Barndorff-Nielsen & Thorbjgrnsen (06): Free cumulant
1 1
Gl(2) = 20p(3) = 26,*(5) ~ 1.

V4

v

v

¢u & C, linearize free additive convolution:
Pus By, (z) = 4’m(z> + Pu, (z2), ze€ FZ;,ﬁl N FZ§,52

1
C}llﬁﬂﬂz (Z) = C}l1 (Z) + C}tz (Z), ; S ryl N 1“”2

«1,B1 «2,B2°



lIl. Free infinite divisibility

» Let u be a probability distribution on R (¢ € P(R)).
» u is infinitely divisible w.r.t. x iff Vn > 1, 3 y;,, € P(R),

H=Hi/n* H1/n* " *H1/n-

» u is infinitely divisible w.r.t. B iff Vn > 1, 3 yy,, € P(R),

p=p1nBprn BBy

» Notation: /% (/*) class of all free (classical) ID distributions.
» Problems:

1. Characterization of /¥, criteria, examples.

2. In particular, characterize the class 1B similar to I*.

3. Search for examples.

4. Relations between /™ and /*.
» Two approaches: Combinatorial and analytic.



lI1. Free infinite divisibility: Combinatorial approach
Not today: Nica and Speicher (2006)

» Only for distributions y with compact support,

m () = /x”y(dx), n>1.

» Classical cumulants (kn(#))n>1

6u(s) = Y knp)s" = log (s) — log (i o) oo




I1l. Examples of free ID distributions

» Semicircle distribution w, ;2 on (m — 20, m20)

1
Win o2 () = 5=—51/407 = (x = )L 20,m 2] (X)elx.
Cw_,(z) =mz+0°z.
w

m+my,02 o} = Wy o2 B W, 02

K1 = m, K2:a2,1c,,:0,n23



I1l. Examples of free ID distributions

» Semicircle distribution w, ;2 on (m — 20, m20)

1
27102

Wing2 (%) = 5—51/402 — (x = m)?L 0 ms20) (x)dx.
Cw_,(z) =mz+0°z.

Wmi+mp,024+02 = Wy o2 | Wmy,03+

K1 = m, K2:a2,1c,,:0,n23

» Marchenko-Pastur distribution m. of parameter ¢ > 0




Examples of free ID distributions

Example
Cauchy distribution of parameter 6 > 0

1 0

co(dx) = 2 72

1, crdx

Cauchy transform

1
Gey(2) = z+0i

Free cumulant transform

Ce,(z) = —ibz

H-convolution of Cauchy distributions is a Cauchy distribution

co, Hcg, = o, 10,
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lIl. Free infinite divisibility: Analytic approach

Bercovici & Voiculescu (93)

> The following three statements are equivalent:
1Lopel®
2. ¢y has an analytic extension C* — C~ UR.
3. There exists a € R & finite measure ¢ on R such that

B 1+tz 4
(py(z)—a—i—/]R —o(dx), zeCt.

> Facts:
» If up € 1%, n> 1, and pp = p, then p € 9.
» If 4 € 1%, u has at most one atom.
» A non trivial discrete distribution is not in /.

> If I > p # 5, then for n sufficiently large #®" has no atoms.

» Proofs based on Pick-Nevanlinna theory of analytic functions.



lIl. Not free infinitely divisible distribution

Examples
Arcsine distribution

1

A )

is not free infinitely divisible:

a(dx) =

(i) Its Voiculescu transform is not analytic:
Pa(z) = V22 +4—2
(i) But also, from Lecture 1, a = bHb with
b(dx) = % {80_1)(dx) + 811 (dx)}

and b is not free infinitely divisible.



I11. Classical and free infinite divisibility

Lévy-Khintchine representations
» Classical L-K: p € I*

1 isx
culs) =ns— 5352+/R (e —1—sx1_qy (x)> p(dx), s e R.

» Free L-K: v € [P

C,(2)=nz+az +/<

1—xz

—1—xzl_q (X)> p(dx), ze C™.

> In both cases (7, a, p) is a unique Lévy triplet: 1 € R, a > 0,

p({0}) = 0 anc
/Rmin(l,xz)p(dx) < o0



V. Relation between classical and free infinite divisibility
Bercovici, Pata (Biane), Ann. Math. (1999)

» Classical Lévy—Khintchine representation for u € I*

culs )_175— Zas +/ 1= sxl_y g () ) p(dx).

» Free Lévy-Khintchine representation for v € /5

Co(z) = nz + az? —|—/ ( —l—le[_m](x)> p(dx).

1—xz

» Bercovici-Pata bijection: A : I* — I%, A(u) =v

/*

s~ (1n,a,0) < Ap) ~ (17,a,p)

» A preserves convolutions (and weak convergence)

A(pr * p2) = A(p1) B A(p2)



IV. Image of classical ID distributions under BP bijection
» Free Gaussian: For classical Gaussian distribution 7y, ,2,
Wmo?2 = A(’Ym,(fz)
is Wigner distribution on (m — 20, m + 20) with

CW,7 o(z2)=mz+ 0?22
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IV. Image of classical ID distributions under BP bijection
» Free Gaussian: For classical Gaussian distribution 7y, ,2,
Wmo2 = AVm,2)
is Wigner distribution on (m — 20, m + 20) with
waz (z) = mz+ 0?22
» Free Poisson: For classical Poisson distribution p¢s, ¢ > 0,

me = A(pc)

is the M-P distribution with

Cnel2) = 12 :/R<1_1XZ—1> c61(dx).

» Belinschi, Bozejko, Lehner & Speicher (11): v, ,2 is free ID.

» Open problems: 7, ;2 = A(?) and what is its Lévy measure?.



IV. Image of classical ID distributions under BP bijection
» Free compound Poisson distributions {o € P(R),A > 0}

PE = {A(u); u is classical CP}, i.e

—A / o(dx).
Can(2) = /\/R (1 _lxz _ 1> o(dx).

» Free Cauchy: A(c)) = c, for the Cauchy distribution

1 A
ald) = e ®
with free cumulant transform C,(z) = —iAz.

> Free stable (Bercovici, Pata, Biane, (99))

B — {A(n); u is classical stable} .



IV. Image of classical ID distributions under BP bijection

» Free GGC (PA-Sakuma (08))
GGC (B) = {A(p); p is GGC(x*)}.
» Free subordinators (Arizmendi, Hasebe, Sakuma (11))
19 = {A(u)ipnis 15},
I class of classical ID distributions with support on [0, o)

Gu(t) = itno + /R (eltx — 1) p(dx),

. 1
Crg (@) =iz + [ (12 —1) el

/]R+ min(1, x)p(dx) < o0, 90 > 0, p(—o0,0] = 0.




IV. Search for new examples of free ID distributions
Arizmendi, Barndorff-Nielsen & PA (2009)

» Special symmetric Beta distribution

1 _
Bs(dx) = o [x| 72 (2~ [x)2dx,  |x| <2

v

Cauchy transform

Gg, (2 :—\/1—\/7—

Free additive cumulant transform is Gz (z) = Vz2 +1—1.
Bs is free ID with triplet (0,0,a), a is arcsine on (—1,1)
For A1, Ay, ..., i.i.d. with distribution a & independent of
standard Poisson r.v. N

v

v

v

N
= A(;Aj)

Interpretation as multiplicative convolution Bs = m; X a.

v



IV. Search for new examples of free ID distributions
Motivated by the symmetric Beta distribution

> Important facts from the last example:

> Bs has Cauchy transform

Gs, (2) = ;\/1 [z 22— ),

> Free infinite divisibility of Bs = m; Ma
> Arizmendi & Hasebe (11):

G2 (2) = (1 it —s<—i>“>1/r>”“

S

r>0,0<a<2seC\{0}.
Hso = my Xag , is free ID,

> ag‘/4 is stable with respect to monotone convolution, where the
arcsine law a}‘/4 = a plays the role of Gaussian distribution.



IV. Search for new examples of free ID distributions
Type W distributions

» PA & Sakuma (12): Multiplicative convolutions with the
Wigner, o € P(Ry)
u=ocXw

> Is free infinitely divisible iff
oo e A(l}).
» Forany o € P(Ry)
W =cXoXRmp € A(l7).
> Arizmendi, Hasebe & Sakuma (11):

ceA(l})=cXo e A(l7),
ceAL) =Pt e A(IN), t> 1.



V. A remarkable semigroup
Belinschi & Nica (08)

>

1
@ 1+t

Bt(ﬂ) — (‘uEH(1+t)>

W is Boolean convolution.

thOv

B (1 M pi2) = Be(p1) BB (p2)-
Free divisibility indicator
@(u) =sup{t >0:p € B:(P(R))}.
There exists v € P(R) such that

v

v

P () (V) = p-

v

i is free infinitely divisible distribution iff ¢(u) > 1.

v

Divisibility indicator for free multiplicative convolution
(Arizmendi & Hasebe (12)).



Classical ID BP Free ID




/ GOE\

Gaussian BP Semicircle




Compound Poisson

Poisson BP Marchenko-Pastur




ID Matrix (?)

Classical ID BP Free ID




V. Random matrix approach to BP bijection

» Benachy-Georges (05, AP), Cavanal-Duvillard (05, EJP):
For u € I* there is an ensemble of unitary invariant random
matrices (My) 41, such that with probability one its ESD

converges in distribution to A(u) € I%.
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V. Random matrix approach to BP bijection

» Benachy-Georges (05, AP), Cavanal-Duvillard (05, EJP):
For u € I* there is an ensemble of unitary invariant random
matrices (My) 41, such that with probability one its ESD

converges in distribution to A(u) € I%.

» Some properties and questions:
» My is infinitely divisible in the space of matrices M.
> The existence of (My) 4~ is not constructive.
> How are the random matrix (My) 1 realized?

» How are the corresponding matrix Lévy processes {My(t)};>q
realized?

» The jump AMy(t) = My(t) — Mg(t™) has rank one!
» Open problem: AMy(t) has rank k > 2.
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V. Concrete realization for RM models to BP bijection
» Cavanal-Duvillard (05):
> If t is Gaussian, Z; GUE independent of g = N(0,1)

1
M, = Zy + dgl
d \/m(d g14)

> If u is Poisson with parameter ¢ > 0

N

Md = Z uzuk
k=1

» Molina & Rocha-Arteaga (12): If for some 1-dim Lévy process
{Xt} ;>0 and for a non random function h: Ry — R

W=L (/Oooh(t)dXt> ,

then, there exists a d X d matrix Lévy process X; such that
My £ / h(t)dX.
0

» PA-Sakuma (08): X, X; 1-dim and matrix Gamma processes.
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V. Matrix Lévy processes for BP bijection
Molina, PA, Rocha-Arteaga:

» How is the matrix Lévy process My (t) realized?
» Simple case: y CP(v,¢), v p.m. on R, € R

Ne
Mi(t) =tp+ ) R
j=1

N¢ PP independent of (R;)j>1, i.i.d, L(R;) = v.
» A(pu) = v m;y, free multiplicative convolution, my is MP.
» For each d > 2

N
My (t) = ptly + Z Rjufuj-

Jj=1

(uj)j>1 independent d-vectors uniform on unit sphere of C
independent of (N¢) and (R})j>1.
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V. Matrix Lévy processes for BP bijection
Molina, PA, Rocha-Arteaga:

N;
Md(t) = Ptly + Z Rjuj-‘uj

j=1
» Realization as quadratic covariation My(t) = [X4, Y4lt :
> {Xa(t)}is0. {Ya(t) 5o are Cy-Lévy processes

N
Xa(t) = \/1p1Be+ Y /IRl t>0,
j=1

N
Ya(t) = sign(p)y/[|Be + ) sign (R;) \/IRjluj, >0,
j=1

J
{Bt} is C4-Brownian motion independent of (R;), (uj), {N¢}.
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» Lecture 2: Matrix Brownian motion B,(t) = (bjj(t)),t >0
» (A1(t), -+, An(t)) eigenvalues process of Bp(t).
» Dyson-Brownian motion: 3, n independent 1-dim Brownian
motions b{"”) ., by such that if Ap1(0) < -+ < Apn(0)

Ani(t) = Ani(0) + 6" (1) + Y / s

» Corresponding measure valued process

(m_ 1y
LA DLW
Jj=1
converges weakly in C(R4P(R)) to {w¢, t > 0}.

» Open problems:
» Dyson process associated to the matrix Lévy process My (t)?

» Asymptotics for corresponding measure valued process?
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Matrix covariation
» If X, Y are M,y -semimartingales

(X, Y= (X, Y]y)

t>0
(X, Y] 1.{ =) [xi yigl,
k=1

> In general,

(X, Y], =X Yo+ [X, Y], + Z (AXs) (AYs),

s<t
[XC YC]U = 2::1 [x,-k,ykj]f .
» If continuous part is zero

(X, Y], = XoYo+ Y_ (AXs) (AYs).

s<t

» It holds

t t
Xth:/o Xsdes+/0 dX,Ys + [X, Y]



Infinitely divisible random matrices

Lévy-Khintchine representation

» Random matrix M is ID iff its Fourier transform
Eel'(©"M) — exp(1(®)) has Laplace exponent

$(©) = itr(O"Y ) — %tr CoER

w4 1(®F)
", ( P e ) e

» ¥YeMy
» A: M, — M, positive symmetric operator
» v Lévy measure on My, v({0}) = 0 and

2
/M,(“X” A1)u(dx) < oo.

» The triplet (A, v, ¥) is unique.
» Scalar product tr (AB*), norm ||Al| = [tr (AA*)]I/Q.



