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I. Ensembles of Gaussian random matrices

I Ensemble: Z = (Zn), Zn is n� n matrix with random entries.

I Symmetric (GOE) or Hermitian (GUE) RM with independent
Gaussian entries:

Zn =

24Zn(1, 1) � � � Zn(1, n)
�
�

�
�

Zn(n, 1) � � � Zn(n, n)

35
Zn(j , k) = Zn(k, j) � N(0, t), j 6= k,
Zn(j , j) � N(0, 2t).

I Distribution of Zn is invariant under orthogonal conjugations.

I Density of eigenvalues of λn,1, ...,λn,n of Zn:

fλn,1,...,λn,n(x1, ..., xn) = kn

"
n

∏
j=1

exp

�
� 1

4t
x2j

�# "
∏
j<k

jxj � xk j
#
.

I Nondiagonal RM: eigenvalues are strongly dependent.
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I. Wigner law
Wigner (Ann Math. 1955, 1957, 1958)

I Eugene Wigner: Beginning of RMT with dimension n! ∞.

I A heavy nucleus is a liquid drop composed of many particles
with unknown strong interactions,

I so a random matrix would be a possible model for the
Hamiltonian of a heavy nucleus.

I Which random matrix should be used?

I λn,1 � ... � λn,n eigenvalues of scaled GOE: Xn = Zn/
p
n.

I Empirical spectral distribution (ESD):

bFn(x) = 1

n

n

∑
j=1

1fλn,j�xg.

I Asymptotic spectral distribution (ASD): bFn converges, as
n! ∞, to semicircle distribution on (�2

p
t, 2
p
t)

wt(x) =
1

2π

p
4t � x2, jx j � 2

p
t.
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I. Simulation of Wigner law





I. Wigner law: Universality
Wigner (Ann Math. 1955, 1957, 1958)

I Theorem: t = 1, 8 f 2 Cb(R) and ε > 0,

lim
n!∞

P

�����Z f (x)dbFn(x)� Z f (x)w(x)dx ���� > ε

�
= 0.

where w(x)dx is the semicircle distribution on (�2, 2)

w(x) =
1

2π

p
4� x2, jx j � 2.

I Universality. Wigner law holds for more general random
matrices under moment assumptions for the random entries.

I Wigner random matrices:

Xn(k, j) = Xn(j , k) =
1p
n

�
Zj ,k , if j < k

Yj , if j = k

fZj ,kgj�k , fYjgj�1 independent sequences of i.i.d. r.v.

EZ1,2 = EY1 = 0, EZ 21,2 = 1.

I Complex Hermitian case can also be considered.
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I. Marchenko-Pastur law (1967)
I X = Xp�n = (Zj ,k : j = 1, .., p, k = 1, ..., n) complex i.i.d.

E(Z1,1) = 0,E( jZ1,1j2) = 1.
I Wn = XX � is Wishart matrix if X has Gaussian entries.

I Covariance matrix Sn =
1
nXX

�, eigenvalues
0 � λp,1 � ... � λp,p and ESD

bFp(λ) = 1

p

p

∑
j=1

1fλp,j�xg.

I If p/n! c > 0, bFn converges weakly in probability to
Marchenko-Pastur (MP) distribution

µc(dx) =
�

fc(x)dx , if c � 1
(1� c)δ0(dx) + fc(x)dx , if 0 < c < 1,

fc(x) =
c

2πx

q
(x � a)(b� x)1[a,b](x)

a = (1�
p
c)2, b = (1+

p
c)2.



I. Marchenko-Pastur law: comments

1. Applications: Large Dimensional RM (LDRM):

I Data dimension of same magnitude order than sample size.

I Wireless communication, MIMO channels.

Recent books:

I Bai & Silverstein (2010). Spectral Analysis of LDRM.
I Couillet & Debbah (2011). RM Methods for Wireless Comm.

2. Today:

I (Nt)t�0 Poisson process of mean n, (uj )j�1 i.i.d. random
vectors with uniform distribution on unit sphere of Cp.

I p � p matrix compound Poisson process

Xt =
Nt

∑
j=1

uju
�
j .

I Distribution of Xt is invariant under unitary conjugations.
I ASD of Xt , when n/p ! c , is M-P with parameter c .





II. In�nitely divisible random matrices

I Md space of d � d matrices (real or complex entries).

I A random matrix M in Md is In�nitely Divisible (ID) i� 8
n � 1 9n i.i.d. random matrices M1, ...,Mn in Md such that

M1 + ...+Mn
L
= M.

I Gaussian random matrices GOE and GUE are ID.

I Wishart random matrix is not ID.

I Compound Poisson matrix process Xt = ∑Nt
j=1 uju

�
j is ID.

I Open problem: ASD for other Hermitian in�nitely divisible
random matrices.

I Partial answer today.



II. Why in�nitely divisible random matrices?
Applied and theoretical reasons

1. Stochastic modelling (�xed dimension):

I There exists a matrix L�evy process (Mt)t�0 such that

M1
L
= M.

I Multivariate �nancial modelling via L�evy and non Gaussian
Ornstein-Uhlenbeck matrix processes: Barndor�-Nielsen &
Stelzer (09, 11), Pigorsch & Stelzer (09), Stelzer (10).

I ID random matrix models alternative to Wishart random
matrix: Barndor�-Nielsen & PA (08), PA & Stelzer (12).

2. Today: (asymptotic spectral distribution)

I Random matrices approach to the relation between classical
and free in�nite divisibility.

I Benaych-Georges (05), Cabanal-Duvillard (05), PA & Sakuma
(08), Molina & Rocha-Arteaga (12), Molina, PA,
Rocha-Arteaga (in progress).



III. Free Central Limit Theorem
Very roughly speaking

I The concept of free independence is de�ned for
noncommutative random variables: LDRM, operators, etc.

I Distribution is the spectral distribution of an operator or ASD
of an ensemble of random matrices.

I Let X1,X2,... be a sequence of freely independent random
variables with the same distribution with all moments, with
mean zero and variance one. Then the distribution of

Zn =
1p
n
(X1 + ...+Xn)

converges in distribution to the semicircle distribution.
I Free Gaussian distribution: the semicircle distribution plays
in free probability the role Gaussian distribution does in
classical probability.

I Free Poisson distribution: The Marchenko-Pastur
distribution plays in free probability the role the Poisson
distribution does in classical probability.



III. Motivation to study RMT and Free Probability
From the Blog of Terence Tao (Free Probability, 2010):

1. The signi�cance of free probability to random matrix theory
lies in the fundamental observation that random matrices
which are independent in the classical sense, also tend to be
independent in the free probability sense, in the large limit.

2. This is only possible because of the highly non-commutative
nature of these matrices; it is not possible for non-trivial
commuting independent random variables to be freely
independent.

3. Because of this, many tedious computations in random matrix
theory, particularly those of an algebraic or enumerative
combinatorial nature, can be done more quickly and
systematically by using the framework of free probability.



III. Motivation to study RMT and Free Probability
Independence and free Independence

A) Basic question: knowing eigenvalues of n� n random
matrices Xn & Yn, what are the eigenvalues of Xn + Yn?

I If Xn & Yn are freely asymptotically independent, ASD of
Xn + Yn is the free convolution of ASD of Xn & Yn.

I Several independent random matrices Xn & Yn become freely
asymptotically independent.

B) Classical analogous: X & Y real independent r.v.
µX = L(X ), µY = L(Y ).

I Distribution of X + Y is the classical convolution

µX+Y = µX � µY .

C) Something similar for the distribution of the product XY
(multiplicative convolution).
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IV. Classical and free convolutions
Analytic tools

I Fourier transform of probability measure µ on R

bµ(s) = Z
R

eisxµ(dx), s 2 R,

I Cauchy transform of µ

Gµ(z) =
Z

R

1

z � x µ(dx), z 2 C/R.

I Classical cumulant transform

cµ(s) = log bµ(s), s 2 S .

I Free cumulant transform

Cµ(z) = zG
�1
µ (z)� 1, z 2 Γµ
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IV. Classical and free convolutions
I Classical convolution µ1 � µ2 is de�ned by

cµ1�µ2(s) = cµ1(s) + cµ2(s).

I X1 & X2 classical independent r.v. µi = L(Xi ),

µ1 � µ2 = L (X1 + X2)

I Free convolution µ1� µ2 is de�ned by

Cµ1�µ2(z) = Cµ1(z) + Cµ2(z), z 2 Γµ1 \ Γµ2 .

I X1 & X2 free independent, µi = L(Xi ),

µ1� µ2 = L (X1 +X2)
I Free multiplicative convolution µ1� µ2 can also be de�ned.
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IV. Example: free convolution of Wigners

I Semicircle distribution wm,σ2 on (m� 2σ,m+ 2σ) centered
at m

wm,σ2(x) =
1

2πσ2

q
4σ2 � (x �m)21[m�2σ,m+2σ](x).

I Cauchy transform:

Gwm,σ2
(z) =

1

2σ2

�
z �

q
(z �m)2 � 4σ2

�
,

I Free cumulant transform:

Cwm,σ2
(z) = mz + σ2z .

I �-convolution of Wigner distributions is a Wigner distribution:

wm1,σ21
�wm2,σ22

= wm1+m2,σ21+σ22
.



IV. Example: free convolutions of MPs

I MP distribution of parameter c > 0

mc(dx) = (1� c)+δ0 +
c

2πx

q
(x � a)(b� x) 1[a,b](x)dx .

I Cauchy transform

Gmc (z) =
1

2
�
p
(z � a)(z � b)

2z
+
1� c
2z

I Free cumulant transform

Cmc (z) =
cz

1� z .

I �-convolution of M-P distributions is a MP distribution:

mc1 �mc2 = mc1+c2



IV. Example: free convolution of Cauchy distributions

I Cauchy distribution of parameter θ > 0

cθ(dx) =
1

π

θ

θ2 + x2
dx

I Cauchy transform

Gcθ
(z) =

1

z + θi

I Free cumulant transform

Ccλ
(z) = �iθz

I �-convolution of Cauchy distributions is a Cauchy distribution

cθ1 � cθ2 = cθ1+θ2 .



IV. Classical and free in�nite divisibility

I Let µ be a probability distribution on R.

I µ is in�nitely divisible w.r.t. ? i� 8n � 1, 9 µ1/n and

µ = µ1/n ? µ1/n ? � � � ? µ1/n.

I µ is in�nitely divisible w.r.t. � i� 8n � 1, 9 µ1/n and

µ = µ1/n � µ1/n � � � �� µ1/n.

I Notation: I� (I �) class of all free (classical) ID distributions.

I Problem: characterize the class I� similar to I �.



IV. Classical and free in�nite divisibility
L�evy-Khintchine representations

I Classical L�evy-Khintchine representation µ 2 I �

cµ(s) = ηs� 1
2
as2+

Z
R

�
e isx � 1� sx1[�1,1](x)

�
ρ(dx), s 2 R.

I Free L�evy-Khintchine representation ν 2 I�

Cν(z) = ηz+ az2+
Z

R

�
1

1� xz � 1� xz1[�1,1](x)
�

ρ(dx), z 2 C�.

I In both cases (η, a, ρ) is the unique L�evy triplet: η 2 R,
a � 0, ρ(f0g) = 0 andZ

R
min(1, x2)ρ(dx) < ∞.



IV. Relation between classical and free in�nite divisibility
Bercovici, Pata (Biane), Ann. Math. (1999)

I Classical L�evy-Khintchine representation µ 2 I �

cµ(s) = ηs � 1
2
as2 +

Z
R

�
e isx � 1� sx1[�1,1](x)

�
ρ(dx).

I Free L�evy-Khintchine representation ν 2 I�

Cν(z) = ηz + az2 +
Z

R

�
1

1� xz � 1� xz1[�1,1](x)
�

ρ(dx).

I Bercovici-Pata bijection: Λ : I � ! I�, Λ(µ) = ν

I � � µ � (η, a, ρ)$ Λ(µ) � (η, a, ρ)

I Λ preserves convolutions (and weak convergence)

Λ(µ1 � µ2) = Λ(µ1)�Λ(µ2)



IV. Examples of free in�nitely divisible distributions
Images of classical i.d. distributions under Bercovici-Pata bijection

I Free Gaussian: For classical Gaussian distribution γm,σ2 ,

wm,σ2 = Λ(γm,σ2)

is Wigner distribution on (m� 2σ,m+ 2σ) with

Cwη,σ2
(z) = mz + σ2z2.

I Free Poisson: For classical Poisson distribution pc , c > 0,

mc = Λ(pc)

is the M-P distribution with

Cmc (z) =
cz

1� z .

I Bellinschi, Bozejko, Lehner & Speicher (11): γm,σ2 is free ID.

I Open problem: γm,σ2 = Λ(?).
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IV. Examples of free in�nitely divisible distributions
Images of classical i.d. distributions under Bercovici-Pata bijection

I Free Cauchy: Λ(cλ) = cλ for the Cauchy distribution

cλ(dx) =
1

π

λ

λ2 + x2
dx

with free cumulant transform

Cc(z) = �iλz .

I Free stable

S� = fΛ(µ); µ is classical stableg .

I Free Generalized Gamma Convolutions (GGC)

GGC� = fΛ(µ); µ is classical GGCg











V. Random matrix approach to BP bijection

I Benachy-Georges (2005, AP), Cavanal-Duvillard (2005, EJP):
For µ 2 I � there is an ensemble of unitary invariant random
matrices (Md )d�1, such that with probability one its ESD

converges in distribution to Λ(µ) 2 I�.

I Md is in�nitely divisible in the space of matrices Md .

I The existence of (Md )d�1 is not constructive.

I How are the random matrix (Md )d�1 realized?

I How are the corresponding matrix L�evy processes fMd (t)gt�0
realized?

I The jump ∆Md (t) = Md (t)�Md (t
�) has rank one!

I Open problem: ∆Md (t) has rank k � 2.



V. Concrete realization for RM models to BP bijection
I Cavanal-Duvillard (05):

I If µ is Gaussian, Zd GUE independent of g
L
= N(0, 1)

Md =
1p
d + 1

(Zd + dg Id )

I If µ is Poisson with parameter c > 0

Md =
Nt

∑
k=1

uku
�
k

I Molina & Rocha-Arteaga (12): If for some 1-dim L�evy process
fXtgt�0 and for a non random function h

µ = L
�Z ∞

0
h(t)dXt

�
,

there exists a d � d matrix L�evy process Xt such that

Md
L
=
Z ∞

0
h(t)dXt .

I PA-Sakuma (08): Xt ,Xt 1-dim and matrix Gamma processes.
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V. Matrix L�evy processes for BP bijection
Molina, PA, Rocha-Arteaga:

I How is the matrix L�evy process Md (t) realized?

I Simple case: µ CP(ν,ψ), ν p.m. on R, ψ 2 R

M1(t) = tψ+
Nt

∑
j=1

Rj

Nt PP independent of (Rj )j�1, independent L(Rj ) = ν.

I Λ(µ) = ν�m1, free multiplicative convolution, m1 is MP.

I For each d � 2

Md (t) = ψtId +
Nt

∑
j=1

Rjuju
�
j

(uj )j�1 independent d-vectors uniform on unit sphere of Cd ,
independent of (Nt) and (Rj )j�1.
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V. Matrix L�evy processes for BP bijection
Molina, PA, Rocha-Arteaga:

I

Md (t) = ψtId +
Nt

∑
j=1

Rjuju
�
j

I Realization as quadratic covariation Md (t) = [Xd ,Yd ]t .

I fXd (t)gt�0 , fYd (t)gt�0 are Cd -L�evy processes

Xd (t) =
q
jψjBt +

Nt

∑
j=1

q
jRj juj , t � 0,

Yd (t) = sign(ψ)
q
jψjBt +

Nt

∑
j=1

sign (Rj )
q
jRj juj , t � 0,

fBtg is Cd -Brownian motion independent of (Rj ), (uj ), fNtg.
I For general bounded variation µ, "explicit" quadratic
covariation realization is possible for Md (t).
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VI. Open problems
Corresponding Dyson process?

Matrix Brownian process:

Bn(t) = (bij (t)), t � 0

I bij , 1 � i � j � n 1-dim independent Brownian motions,
I 8 t > 0 Bn(t) is a GOE of parameter t.
I (λ1(t), � � �,λn(t)) eigenvalue process of Bn(t).

Dyson Brownian motion:

I 9n n independent 1-dimensional Brownian motions eb1, ...,ebn
I If λ1(0) < � � � < λn(0) a.s.

λi (t) = λi (0)+ebi (t)+∑
j 6=i

Z t

0

1

λj (s)� λi (s)
ds, i = 1, ..., n.

I What is the Dyson process associated to the matrix L�evy
process Md (t)?



Tudor and Mario
Final remarks

Constantin Tudor

I Matrix valued and corresponding Dyson processes:

I Functional limit theorems for trace processes in a Dyson
Brownian motion, vpa & C. Tudor, COSA (2007).

I Traces of Laguerre Processes, vpa & C. Tudor, EJP (2009).

I Eigenvalues of operator Wishart and Laguerre processes.

Mario Wschebor

I Conditioning number of random matrices

I Remarks on the condition number of a real random square
matrix. J.A. Cuesta & M. Wschebor. J. Complexity (2003).

I Upper and lower bounds for the tails of the distribution of the
condition number of a Gaussian matrix. Aza��s, JM & M.
Wschebor. SIAM J. Matrix Anal. Appl. (2005).

I Some work of Mario Wschebor on condition number of
random matrices. Jean-Marc Aza��s, Clapem Caracas 2009.



References
Free Probability, Random matrices and Asymptotic Freeness

I Voiculescu, D (1991). Limit Laws for random matrices and
free products. Inventiones Mathematica 104, 201-220.

I Nica, A. & R. Speicher (2006). Lectures on the Combinatorics
of Free Probability. London Mathematical Society Lecture
Notes Series 335, Cambridge University Press, Cambridge.

I D. Voiculescu, J.K Dykema & A. Nica (1992). Free Random
Variables. American Mathematical Society.

I Hiai, F. & D. Petz (2000). The Semicircle Law, Free Random
Variables and Entropy. Mathematical Surveys and
Monographs 77, American Mathematical Society, Providence.

I G.W. Anderson, A. Guionnet and O- Zeitouni (2010). An
Introduction to Random Matrices. Cambridge University
Press. (Chapter 5).



References for Bercovici-Pata bijection

I H. Bercovici & V. Pata with an appendix by P. Biane (1999).
Stable laws and domains of attraction in free probability
theory. Ann. Math.

I O. E. Barndor�-Nielsen & S. Thorbj�rnsen (2004). A
connection between free and classical in�nite divisibility. Inf.
Dim. Anal. Quantum Probab.

I O. E. Barndor�-Nielsen and S. Thorbj�rnsen (2006). Classical
and free in�nite divisibility and L�evy processes. LNM 1866.

I F. Benaych-Georges, F. (2005). Classical and free i.d.
distributions and random matrices. Ann. Probab.

I T. Cabanal-Duvillard (2005): A matrix representation of the
Bercovici-Pata bijection. Electron. J. Probab.

I A. Dominguez & A. Rocha Arteaga (2012). Random matrix
models of stochastic integral type for free in�nitely divisible
distributions. Period. Math. Hung.



References for free in�nite divisibility
Analytic approach

I H. Bercovici & D. Voiculescu (1993). Free convolution of
measures with unbounded supports. Indiana Univ. Math. J.

I O. Arizmendi, O.E. Barndor�-Nielsen & VPA (2009). On free
and classical type G distributions. Rev. Braz. Probab. Statist.

I VPA & Sakuma Noriyoshi (2008). Free generalized gamma
convolutions. Elect. Comm. Probab.

I O. Arizmendi and VPA (2010). On the non-classical in�nite
divisibility of power semicircle distributions. Comm.
Stochastic Analysis.

I VPA & Sakuma Noriyoshi (2012). Free multiplicative
convolutions of free multiplicative mixtures of the Wigner
distribution. J. Theoretical Probab.

I O. Arizmendi, T. Hasebe & N. Sakuma (2012). On free
regular in�nitely divisible distributions.



References for free multiplicative convolutions

I D. Voiculescu (1987). Multiplication of certain
non-commuting random variables. J. Operator Theory.

I H. Bercovici & D. Voiculescu (1993). Free convolution of
measures with unbounded supports. Indiana Univ. Math. J.

I H. Bercovici & J.C. Wang (2008). Limit theorems for free
multiplicative convolutions. Trans. Amer. Math. Soc.

I N. Raj Rao & R. Speicher (2007). Multiplication of free
random variables and the S-transform: The case of vanishing
mean. Elect. Comm. Probab.

I O. Arizmendi & VPA (2009). The S-transform of symmetric
probability measures with unbounded supports. Proc. Amer.
Math. Soc.



References for L�evy matrix modelling

I O.E. Barndor�-Nielsen & VPA (2008). Matrix subordinators
and related Upsilon transformations. Theory Probab. Appl.

I O.E. Barndor�-Nielsen & R. Stelzer (2011). The multivariate
supOU stochastic volatility model. Math. Finance.

I O.E. Barndor�-Nielsen & R. Stelzer (2011): Multivariate
supOU processes. Ann. Appl. Probab.

I VPA & R. Stelzer (2012). A class of ID multivariate and
matrix Gamma distributions and cone-valued GGC.

I C. Pigorsch & R. Stelzer (2009). A multivariate
Ornstein-Uhlenbeck type stochastic volatility model.

I R. Stelzer (2010). Multivariate COGARCH(1, 1) processes.
Bernoulli.


