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Abstract Automated three-dimensional (3D) object

reconstruction is the task of building a geometric rep-

resentation of a physical object by means of sensing

its surface. Even though new single view reconstruc-

tion techniques can predict the surface, they lead to

incomplete models, specially, for non commons objects

such as antique objects or art sculptures. Therefore, to

achieve the task’s goals, it is essential to automatically

determine the locations where the sensor will be placed

so that the surface will be completely observed. This

problem is known as the next-best-view problem. In

this paper, we propose a data-driven approach to ad-

dress the problem. The proposed approach trains a 3D

convolutional neural network (3D CNN) with previous

reconstructions in order to regress the position of the

next-best-view. To the best of our knowledge, this is
one of the first works that directly infers the next-best-
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view in a continuous space using a data-driven approach

for the 3D object reconstruction task. We have vali-

dated the proposed approach making use of two groups

of experiments. In the first group, several variants of

the proposed architecture are analyzed. Predicted next-

best-views were observed to be closely positioned to the

ground truth. In the second group of experiments, the

proposed approach is requested to reconstruct several

unseen objects, namely, objects not considered by the

3D CNN during training nor validation. Coverage per-

centages of up to 90 % were observed. With respect

to current state-of-the-art methods, the proposed ap-

proach improves the performance of previous next-best-

view classification approaches and it is quite fast in run-

ning time (3 frames per second), given that it does not

compute the expensive ray tracing required by previous
information metrics.

Keywords Object reconstruction · 3d modeling ·
range sensing · next-best-view · deep learning

1 Introduction

Automated three-dimensional (3D) object reconstruc-

tion or inspection is the process of building a 3D rep-

resentation of a physical object by means of sensing its

surface [31]; its recent applications include inspection

of airplanes [13] or the reconstruction of heritage sites

[34]. Due to the limited field of view of current sensors

and incomplete models generated by single view recon-

structions (in particular for non common objects like

antique objects or art sculptures), the 3D models need

to be completed by placing a visual or range sensor

at several locations while the information is integrated

into a partial model.
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While state-of-the-art techniques for surface sens-

ing and model integration are already mature enough

for the task, for example, in Visual Simultaneous Local-

ization and Mapping techniques [28] [22], the search of

the optimal sensing locations remains as an open prob-

lem with growing interest by the robotics and computer

vision community [4].

Early work has defined the aforementioned problem

as the computation of the next-best-views (NBV) [5],

where each NBV is the sensor view (position and orien-

tation) that maximizes the reconstructed surface while

the positioning and registration constraints are satis-

fied [31]. Current methods can be classified into search-

based or surface-based methods. In search-based meth-

ods, a set of candidate views is generated and then eval-

uated by a utility function [6][37] [7]. On the other hand,

in surface-based methods, the reconstructed surface is

analyzed to determine the NBV [26][3]. Such meth-

ods require large computation times (search-based) or

they are limited by object’s auto occlusions (surface-

based). Recent paradigms, in [25] and [43], have ad-

dressed the problem of NBV planning as a supervised

learning problem where the objective is to find a func-

tion that predicts the NBV using previous knowledge.

In the case of [25], we have proposed a method for gen-

erating datasets and a 3D convolutional neural net-

work (3D-CNN), called NBV-Net, for predicting the

position of the NBV. However, such previous methods

are restricted to a classification, namely, the output of

the 3D-CNN is limited to a small set of possible sen-

sor views. In a real reconstruction case, such limita-

tion could lead to an incomplete model. Therefore, it is

necessary to obtain the NBV in a continuous domain.

Unlike previous approaches, this paper presents further

progress that is summarized as follows:

1. The works in [25] and [43] address a classification

problem, while the current paper solves a regres-

sion problem. The main implication is that in this

work, one is not limited to discrete predefined sens-

ing locations; instead, the NBV is determined in the

continuum.

2. The present paper provides an analysis in the terms

of the number of layers in the network architecture.

Such an analysis is not present in [25].

3. This work also presents an analysis in terms of the

presence of dropout.

4. A qualitative and quantitative analysis of predicted

NBVs compared with their ground truth is pro-

vided.

5. We tested the method with thirteen new objects

included neither in the training dataset [24] nor in

[25].

Fig. 1: Example of a predicted next-best-view. The par-

tial model is represented by a probabilistic grid where

the blue voxels indicate scanned surface and yellow vox-

els indicate unknown space. The predicted next-best-

view is drawn in red. We can see that from its position

it will observe unknown volumes while maintains an

overlap with already scanned surface. Figure best seen

in color.

As it was just mentioned, in this paper we propose

a method for computing the NBV in a continuous do-

main. We have modeled the task as a regression prob-

lem where we want to learn a continuous function that

receives as input the current state of the object recon-

struction and predicts the NBV. To achieve the objec-

tive, we are using an extended dataset (with respect to

[25]) and we are presenting a new CNN architecture.

The proposed CNN regresses the position of the NBV,

while the orientation is computed geometrically. We

have validated the network performance using a test set

and we have obtained a relatively small absolute error

with respect to the ground truth NBV. In addition, the

trained and validated network has been used for pro-

viding each sensor location during the reconstruction

of completely unseen objects. The unseen objects are

entities that were not seen by the network during train-

ing nor validation. As a result, the proposed approach

has been capable of providing each sensor location in

the continuous six-dimensional space (position and ro-

tation). See Fig. 1 as an example of a computed NBV.

With respect to the current approaches, the proposed

method is quite fast, one third of a second, because it

avoids the ray tracing step, required by the majority

of current state-of-the-art methods [6][37], and it only

requires a forward pass of the network.
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A possible application of this work is verification of

the size and shape of a given object. That is, the auto-

matic modelling can be used to determine how well the

object matches the design specifications. Another ap-

plication is to use the model as an input to perform an

automatic manipulation task with a robot. Moreover,

the fast performance achieved in the present approach

is an important step toward online NBV computation

[32], in which new gathered information is used for fast

NBV recalculation as the sensor moves. Decreasing the

computation time of the NBV gives rise to a series of

potential benefits, for instance, it allows one to exe-

cute complex tasks such as simultaneous object recon-

struction and manipulation, fast building modeling and

inspection which may be critical for human safety in

emergency situations such as earthquakes and floods,

reactive obstacle modelling and collision avoidance for

reactive navigation, among others.

1.1 Comparison with related methods and paper

organization

In order to show the benefits and drawbacks of the pro-

posed method, a comparison, in terms of percentage

of object reconstruction and processing time needed to

compute the next-best-view, between the method pro-

posed in this work and other two related approaches

will be presented. One of the methods is based on clas-

sification [25] and the other uses information gain to

exhaustively evaluate a given number of views [18].

The rest of the paper is organized as follows. Sec-

tion 2 provides a brief overview of relevant recent work

on the field. Section 3 provides the background of the

proposed method, including the description of the used

dataset. Section 4 presents the proposed method for

addressing the problem. Section 5 describes the exper-

iments, including networks training as well as the re-

construction of unseen objects. Finally, section 6 gives

the conclusions and future research directions.

2 Related work

As we have already mentioned, the present paper is

about the computation of the next-best-view (NBV)

for 3D object reconstruction. There is a lot of work

available in this area. In [31,4,42] interesting surveys

about object reconstruction are presented. Some rele-

vant works among many contributions are the following.

The work in [36] presents a method for planning a next-

best-view for object reconstruction in the workspace.

The approach uses inverse kinematics computation to

get a configuration matching the desired sensor loca-

tion. In [19], the authors have as a main objective to

obtain a high quality surface model allowing applica-

tions such as grasping and manipulation. That work

integrates 3D modeling, autonomous view planning and

motion planning in a coherent manner.

The authors in [19] use Probabilistic Road Maps

(PRMs) [15] and Rapidly-Exploring Random Trees (RRTs)

[21] to find collision free paths. In [16], the authors pro-

pose a method to determine the next-best-view for an

efficient reconstruction of highly accurate 3D models.

The approach is based on the classification of the ac-

quired surfaces, it also combines that classification with

a best view selection algorithm based on mean shift.

In [29], the authors present an information gain-based

variant of NBV problem for a cluttered environment.

They propose a belief model that allows one to ob-

tain an accurate prediction of the potential information

gain of new viewing locations. In [6] the authors inves-

tigate which formulation of information gain is best for

a volumetric 3D reconstruction with a robot, which is

equipped with a dense depth sensor. The authors also

provide a comparative study about the performance of

information gain metrics for active 3D object recon-

struction.

In [37], the authors propose a method for next-best-

view/state planning for 3D object reconstruction. The

proposed method generates a set of candidates in the

state space, later only a subset of these views is kept

by filtering the original set. A utility function that in-

tegrates several aspects of the problem and an effi-

cient strategy to evaluate the candidate views is pro-

posed. The work in [20] addresses NBV planning for

multiple depth cameras and propose a utility function

that scores sets of view-points and avoids overlap be-

tween multiple sensors. The authors proved that multi-

sensor NBV planning with such utility function is an

instance of submodular maximization under a matroid

constraint, allowing them to propose a polynomial-time

greedy algorithm.

In [32], a method is proposed for inspecting a par-

tially known environment. First, a target goal is com-

puted and then it determines a path until a local area

is inspected. The inspection is declared as complete if

the percentage of unknown volume with respect to the

whole unknown volume is lower than a threshold. In

[33], the same authors mentioned that the completion of

a volumetric map does not necessarily describe the com-

pletion of a 3D model, consequently, the model com-

pleteness is evaluated, according to the quality of the

reconstructed surfaces. Also concerning exploration and

inspection of 3D-environments, the authors of [9] uti-

lize a map representation based on a Truncated Signed
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Distance Function (TSDF). The TSDF data is used to

identify missing parts of the model and generate a list

of candidate sensor configurations, the visit of which is

scheduled using an NBV planning method.

In [30] a motion planning strategy for exploration

of ground-level structures is proposed. The method has

two main steps, in the first step, it follows the contour of

an unknown target, then the robot moves to the missing

portions of the reconstructed model. The work in [27]

consider the 3D model reconstruction problem in the

context of infrastructure maintenance. Their approach

first reconstructs an approximate 3D model using only

sparse point clouds generated from a Structure-from-

Motion method; the resulting rough model can be used

to predict the quality of the final dense model and for

an optimization-based view planning based on degraded

regions.

On the other hand, there are some related methods

based on machine learning. The majority address view

planning for object recognition. For example, Wu et

al. [40] proposed a deep belief network to perform sur-

face prediction for model completion in order to achieve

a faster object recognition. Such predicted surface is

used to guide the next sensing location. Johns et al.

[12] apply deep learning for computing the sequence of

views that increase the mutual probability of recogniz-

ing an object. Their method uses pairs of views such

that the problem become tractable. Their method uses

two neural networks, one for predicting the object class

and one for predicting the next-best-view from a pre-

defined view sphere. Even-though they show promising

results, the views are still limited to a given set and

their proposed method can not be directly applied to

object reconstruction. In consequence, for dealing with

object reconstruction, Hepp et al. [10] proposes to learn

a function that measures the utility of a candidate view.

The supervised learning process uses known volumet-

ric maps to determine the ground truth utility. Bai. [1]

proposes an exploration method based on a deep neu-

ral network for selecting the robot 2d position from a

discrete set of positions. The exploration method deter-

mines the best position in two steps: first, the network

outputs some candidate positions, then, those candi-

dates are evaluated by Mutual Information [14]. The

strategy proposed by Wang et al. [38] combines a hand-

crafted utility with a learned utility. The learned utility

is structured as a classification approach with a CNN

based on AlexNet. Inside it, the input is a range image

and the outputs is a vector with the scores of a fixed

set of views. In [39], a NBV method is proposed that

leverages deep learning for phenotyping plants. The ap-

proach uses a network based on the Point Completion

Network (PCN) [41], but with the capability to predict

the confidences of completed points. The network learns

the structural prior of plants, receives cloud points that

partially model the plant in question, and outputs a

completed point cloud of the plant. Subsequently, the

resulting point cloud is used to build a predicted oc-

tomap model, which in turn is used to guide NBV plan-

ning; the next-best viewpoint is defined as the one that

can provide the maximum amount of information for

the plant phenotyping. Zeng et al. [43] proposes a deep

neural network for evaluating a set of candidate views

efficiently. Their method, contrary to [25], require as

input the reconstructed point cloud, avoiding the need

of an intermediate representation such as the proba-

bilistic grid. Zeng et al. architecture provides efficient

evaluation. However, their method is still limited to a

predefined set of views. Therefore, to the best of our

knowledge, there is no method for estimating directly

the position of the next-best-view in the 3D space for

3D object reconstruction.

3 Background

In this section, we provide the background of the pro-

posed method for learning the next-best-view.

3.1 3D reconstruction

The automated 3D reconstruction is an iterative pro-

cess of four steps: positioning, sensing, registration-and-

update and next-best-view planning. The positioning

places the sensor at the desired pose, then the surface

is measured by the sensor, next, the registration-and-
update transforms the observed surface to a common

reference frame [2] and integrates the information into a

single partial model [11], then the next-best-view plan-

ning determines the next sensor pose. The process is

repeated until an stop condition.

Some assumptions that are made in this paper are

the following: the object of interest is encapsulated in

a cube, the center of the cube is assumed as the center

of the object, the sensor is capable of obtaining a point

cloud from the object’s surface.

3.2 Partial model

The partial model, M, stores the accumulated infor-

mation about the object of interest. In this paper, it is

implemented with a probabilistic grid where the space

is evenly divided into small cubes. Each cube is called

voxel and has associated a probability of being occu-

pied. The occupancy probability is updated with a Bayes
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filter using the perceptions from the sensor [35]. Con-

sidering m, n and o as the dimensions of the grid, the

partial model will also be written as Rm×n×o. A recon-

struction state is an instance of the partial model; two

partial models can contain the same object but they

can differ in the reconstruction state. In this paper, we

are using the Octomap library [11] to implement the

probabilistic grid.

3.3 Next-best-view

The next-best-view is defined as a six-tuple:

v = (x, y, z, α, β, γ) (1)

where x, y and z define a position in the 3D euclidean

space and α, β and γ define the yaw, pitch and roll

orientations according to the Tait-Bryan angles. Based

on the orientations, a rotation matrix, R(α, β, γ), that

transforms the sensor pose can be directly obtained

from the rotation angles.

3.4 Dataset

The dataset that we are using was proposed in a previ-

ous work from our research group [25]. This dataset con-

tains tuples of regressors and responsors. The regressor

is a partial model, Mi ∈ R32×32×32, and the responsor

is its corresponding next-best-view, vi = (x, y, z, α, β, γ),

where i is an index over the dataset. The dataset was

build by performing several reconstructions for differ-

ent objects. The reconstruction scene places the object

at the origin of the global reference frame and a large

set of possible sensor locations are generated forming

a sphere of radius 0.4 m. 12 object shapes were in-

cluded in the dataset. During the reconstructions, for

each partial model a next-best-view was computed by

performing an exhaustive search over the set of possi-

ble views. The view that maximized the increment of

reconstructed surface and satisfy an overlap was taken

as the ground truth NBV. In our previous work [25], we

restrict possible predictions to a finite set of views (14

classes) around the object. Unlike it, in this paper, we

are not restricting the predictions, therefore the possi-

ble predictions are in the 6D space. The dataset that

we are using in this paper is available at [24] and the

reduced dataset used in our previous work is available

at [23].

Fig. 2: Overall regression approach for next-best-view

planning.

4 Next-best-view regression

The next-best-view regression is the task of finding a

function

f(M) : Rm×n×o → R3 × SO(3) (2)

so that, the information perceived in v̂ = f(M) in-

creases the surface of the object contained in the par-

tial modelM satisfying the registration and positioning

constraints [25]. Notice that the input of f is the prob-

abilistic grid where m × n × o is the number of voxels

and the output is composed by a position in R3 and

a orientation represented by a rotation matrix in the

special orthogonal group SO(3).

4.1 Regression approach

In the proposed scheme, we use a 3D convolutional neu-

ral network, denoted by Φ, to regress the position of the

NBV. Then the orientation is computed by aligning the

sensor to the center of the object. This approach has the

advantage of being easier to train, given that only three

continuous variables, corresponding to the position, are

predicted by Φ, while the orientation is computed using

geometric reasoning. Fig. 2 depicts the whole approach

to compute the NBV. Formally, the network output is:

p̂ = Φ(M) (3)

where p̂ = (xp̂, yp̂, zp̂) is a position in R3 where the

sensor will be placed. Given that in running time the

objects can have different sizes w.r.t. the training sam-

ples, the predicted position (p̂) must be scaled in order

to fit the object size. This is achieved by maintaining

the same grid resolution (32 × 32 × 32) but changing

the voxel size according to the object size and scaling

the predicted position by a factor k:

s = k · p̂ (4)

The k factor can be calculated so that the sensor’s field-

of-view encloses the object of interest, that is, given the

smallest sensor’s opening angle and the object’s major

span, the k factor is the distance such that the object

lies within such an opening angle.

Once the position is predicted by the network, the

orientation is computed first as a unit vector,
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Fig. 3: NBV-net 4-5 architecture. The number 4-5

stands for 4 feature extraction layers and 5 fully con-

nected layers.

r̂ = (xr, yr, zr), indicating the orientation of the sen-

sor’s director ray, namely:

r̂ =
c− p̂
||c− p̂||

(5)

where c is the center of the object. Then, r̂ is converted

to Euler rotation angles:

α = arctan

(
yr
xr

)
(6)

β = arcsin (zr) (7)

It is worth to say that under this approach, r̂ pro-

vides the yaw and pitch parameters but the roll param-

eter (rotation over the camera axis) is omitted. In con-

sequence, γ = 0. Even though one degree of freedom is

lost, the roll angle is usually omitted in next-best-view

planning because it has the lowest impact on the built

model. Finally, the predicted NBV is given by:

v̂ = (sx, sy, sz, α, β, γ) (8)

4.2 NBV-net

In a previous work [25], our research group presented a

3D CNN for view classification. However, it has shown

poor performance for the regression task, as we will

discuss later in the experiments. Therefore, we propose

to extend our previous network to the regression task.

The proposed architecture, NBV-net 4-5, receives

as input a probabilistic grid of dimension 32× 32× 32

and predicts the position of the NBV. It has four 3D

convolutional layers and five connected layers (giving

the name 4-5). The 3D convolutional layers extract fea-

tures from the grid to a 4D vector, then the features are

flattened and passed through the set of fully connected

layers. See Fig. 3.

To simplify the detailed network description, we will

use the following notation: C(f, k, s) defines a 3D con-

volutional layer with f filters of size k×k×k and stride

s×s×s, P (s) a max pooling layer of stride s×s×s and

FC(n) defines a fully connected layer with n nodes.

Then, NBV-net 4-5 is configured as follows: C(16,3,2),

P(2), C(32,3,2), P(2), C(64,3,2), P(2), C(64,3,2), FC(1500),

FC(500), FC(100), FC(50), FC(3). Note that, there is

no pooling after the fourth convolutional layer and the

4096 features are pass through three fully connected

layers. The activations are performed by Rectified Lin-

ear Units (ReLU) except for the last one which applies

a hyperbolic tangent activation function (Tanh).

5 Experiments

The main reason for selecting a particular CNN archi-

tecture or a set of hyper-parameters is to obtain a good

generalization on the task. In this context, a good gen-

eralization will be to provide a NBV that increases the

object surface despite the variability of i) the object

shape and ii) the current reconstruction state. Fig. 4

can be helpful to observe the different object shapes

and reconstruction states. In that sense, the dataset [24]

provides more than ten thousands of examples of recon-

struction states because the objects were reconstructed

several times from different initial positions. However,

the shapes are limited to 12. For this reason, the exper-

iments will focus on showing the network’s architecture

and parameters that provide a better generalization.

We present two groups of experiments. The first

group analyzes the training and validation of several

variants of the proposed architecture. The second group

of experiments test the most promising nework configu-

rations in the reconstruction of several unseen objects,

these objects were not seen by the CNN during training

nor validation. At the end of this section, we present

a discussion about the network advantages as well as

the current challenges. For all the experiments, the ar-

chitectures were implemented in PyTorch. The experi-

ments were carried out using an Intel i7 machine with

NVIDIA Geforce 1080 GPU.

5.1 Network training and architecture variants

In this group of experiments, we analyze the training

and validation performance of the proposed architec-

ture. First, we compare and analyze several variants

of the architecture including those reported previously.

Then, we analyze the use of the regularization method

dropout during training.

5.1.1 Architecture variants

Several architectures for 3D regression problems have

been proposed, for example to determine the pose of a

known object. However, in NBV planning for 3D object

reconstruction, the number of current methods is very

limited. Therefore, we compare the proposed network
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(a) Toy duck (b) Bowl (c) Work bench (d) Monkey

(e) Plant sprinkler (f) Cup (g) Paper punch (h) Drill

(i) Camera (j) Desk Lamp (k) Egg carton (l) Toy Cat

Fig. 4: Comparison of the predicted next-best-view versus the ground truth for several objects in the dataset. Blue

voxels indicate measured surface. Yellow voxels indicate unknown space. The predicted next-best-view is drawn in

red. The ground truth next-best-view is drawn in green. Figure best seen in color.

versus three variants, where one of them is a modified

version of an architecture reported for classification.

– NBV-net 3-3. The shortest network; it includes three

convolutional layers and 3 fully connected layers.

In detail, C(10,3,2), P(2), C(12,3,2), P(2), C(8,3,2),

P(2), FC(1024), FC(500), FC(3).

– NBV-net 3-5. Network proposed in [25] for NBV

classification. The last layer is replaced by three

nodes with a Tanh function as the activation func-

tion. In detail, C(10,3,2), P(2), C(12,3,2), P(2), C(8,3,2),

P(2), FC(1500), FC(500), FC(100), FC(50), FC(3).

– NBV-net 4-3. This variant increses the number of

feature extraction layers to 4 but decreases the fully

connected layers to 3. In detail, C(16,3,2), P(2),

C(32,3,2), P(2), C(64,3,2), P(2), C(64,3,2), FC(1024),

FC(500), FC(3).

– NBV-net 4-5. Both, feature extraction and fully con-

nected layers are increased. Description presented in

section 4.2.

5.1.2 Training

According to the proposed model, we require to predict

the NBV position, equation (3). Thus, the ground truth

positions are normalized to unit vectors. Then, the net-

works are trained to reduce the Mean Squared Error
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Fig. 5: Training loss.
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Fig. 6: Validation loss.

(MSE) loss between prediction p̂ and ground truth po-

sition p:

loss (p, p̂) =
1

N

N∑
i=1

(p̂i − pi)2 (9)

where N = 3 is the number of elements in the posi-

tion vector. To minimize the error, we use the Adam

optimizer [17] which auto-adjusts the learning rate.

The dataset was divided randomly into 80% for train-

ing and 20% for validation. In this way, both subsets

contain examples from the 12 objects but with differ-

ent reconstruction states, this imply a different distri-

bution of the occupied, unknown and free voxels. The

training was performed during 600 epochs with learning

rate 0.0001 and batch size 250. Each network training

required an average time of five hours.
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Fig. 7: Mean absolute error (MAE) over validation set.

The graph shows how far in the euclidean space are the

predictions from the ground truth next-best-view.
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Fig. 8: Mean square error (MSE) over validation set

for different dropout configurations. The regularization

method dropout is inserted at several network layers.

Nomenclature “Conv N D” indicates that dropout is in-

cluded from convolutional layer N until the last network

layer. Network tested: NBV-net 4-5.

5.1.3 Precision analysis

The training loss, calculated with eq. (9), for the train-

ing set is shown in Fig. 5. As we can see, all networks

reduce the loss, but the best fitting ones, according to

MSE, are the networks that include four convolutional

layers instead of only three. On the other hand, with

respect to the validation set, all networks reach a sim-

ilar loss, see Fig. 6; however, we can observe that the

networks with four convolutional layers start to over-

fit after 200 epochs, namely, the loss increases for such
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networks. For that reason, we stop growing the depth

of the proposed network. Some examples of the predic-

tions made by NBV-net 4-5 are shown in Fig. 4.

Previous analysis focus on training performance, how-

ever, in order to provide additional information about

how well in the Euclidean space the predictions are, Fig.

7 shows the mean absolute error (MAE) as the train-

ing epochs advance. Note that MAE was not used for

training.

MAE(p, p̂) =
1

N

N∑
i

|p̂i − pi| (10)

We can observe from Fig. 7, that NBV-net 4-5 was

the one with the best result, in terms of the small-

est Euclidean distance between the predictions and the

ground truth next-best-view. NBV-net 4-5 is the archi-

tecture that has the largest number of convolutional

and fully connected layers. We can also observe that

NBV-net 4-3 has also a good performance, particularly

in the first epochs, where it has better results than

NBV-net 4-5.

5.1.4 Regularization

Regularization is used for avoiding overfitting over the

training set. In this context, we want to prevent learn-

ing the object’s shapes in the dataset. Therefore, in this

experiment we analyze how the regularization dropout

method affects network performance. The experiment

inserts dropout with probability 0.5 layer by layer, start-

ing from the fully connected layer until the first convo-

lutional. Fig. 8 shows the MSE over the validation set

using the NBV-net 4-5. As we can see in the graph,

after 600 epochs, inserting dropout from the third con-

volutional layer until the last one (Conv 3 D) leads to

the smallest MSE loss, meaning that even though some

intermediate features are not present the output is ade-

quate. However, if dropout is applied from the first con-

volutional layer (Conv 1 D.), then the MSE increases

dramatically. Our hypothesis for this phenomenon is

that low level feature extraction is very important, there-

fore by missing any of such features the NBV regression

is affected.

5.2 3D Reconstruction of unknown objects

In this experiment, we will use the the full proposed ap-

proach (Fig. 2) as the view planner in a simulated 3D

reconstruction task, where an unknown object is placed

in the scene and the approach has to provide each NBV

until the stop criteria is reached. Unlike previous exper-

iment, in this case there is no ground truth NBV since

the objects are unknown and they were not used during

training, therefore, we will measure the capacity of the

method for completing the object.

The reconstruction scene places the object over a ta-

ble, except for the chair. The sensor is simulated with

a range camera. The positioning systems is simulated

and directly places the sensor in the planned pose. The

performance metric is the percentage of coverage, calcu-

lated as the ratio between the matching scanned points

and the points in the reference model given a distance

of 0.001m. Scale factor k was set to 2.5. The objects

to be modeled are thirteen: a sphere, the mask of Tu-

tankhamun, a Corinthian helmet, a Egyptian sarcopha-

gus, the Stanford bunny, the Stanford dragon, a teapot,

a caster wheel, a Moai head, a butterfly valve, an ar-

madillo, a chair and a hammer. The objects are de-

picted in Fig. 9. Our simulation was implemented us-

ing the view planning library (VPL) [37] and Blensor

simulator [8].

5.2.1 Generalization

First, we test the different network variations on three

unseen objects that were not used during training nor

validation; this was done to show which architecture

provides the best generalization despite training and

validation performance. For this purpose, we have se-

lected the sphere, the bunny and the dragon, which con-

trast to dataset objects because of either their convex or

elongated shapes. For all the variants, the initial sensor

location is placed in front of the object. Once the first

scan is integrated to the probabilistic grid, each network

makes its prediction and the reconstruction continues,
in consequence, each variation follows a different se-

quence of sensing locations. The experiment was done

for ten scans in order to observe the coverage reached

for each variant.

As we can see in Figs. 10, 11 and 12, the architec-

ture that has the largest number of convolutional and

fully connected layers (NBV-net 4-5) with dropout from

convolutional layer 3, was the one with the best perfor-

mance, that is, the largest final reconstruction percent-

age. Its reconstruction coverage ranged from around

85% up to 95%. We believe that this result is due to

the increment in the network’s feature extraction lay-

ers (four wider convolutional layers), also due to the

dropout that avoided overfitting over the training set,

and due to the five fully connected layers that enhanced

the network’s capabilities to perform regression. It is

worth to say that network NBV-net 3-5 with dropout,

had a tendency to cover greater portions of the objects

at the beginning of the scanning. A possible explanation

for this phenomenon is that with fewer convolutional
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(a) Sphere (b) Mask (c) Helmet (d) Sarcophagus (e) Bunny

(f) Dragon (g) Teapot (h) Caster wheel (i) Moai head (j) Valve

(k) Armadillo (l) Chair (m) Hammer

Fig. 9: 3D models used for testing the 3D CNN.
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Fig. 10: Reconstruction coverage for the sphere object.

layers less features were modeled, but those were im-

portant to identify poses that provide coverage of large

portions of the object; however, once the scanning pro-

gresses, the missing modeled features are important to

cover details of the object, what NBV-net 4-5 was in-

deed able to do.
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Fig. 11: Reconstruction coverage for the bunny object.

5.2.2 Different object shapes

We carry out a comparison, in terms of percentage of

object reconstruction and processing time needed to

compute the next-best-view, between the method pro-

posed in this work (NBV-net 4-5) with other two related

methods. In [25], the authors address the next-best-
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Fig. 12: Reconstruction coverage for the dragon object.

Table 1: Reconstruction coverage for each tested object.

Object Classif. Regression Inf. Gain
Sphere 96.7 95.7 96.2
Mask 94.73 95.32 95.0

Helmet 82.7 84.9 86.5
Sarcophagus 64.2 71.7 94.1

Bunny 90.0 97.8 98.1
Dragon 71.3 85.4 90.4
Teapot 87.1 93.0 93.2
Caster 89.1 90.6 100

Moai Head 96.8 97.1 98.9
Valve 73.3 70.7 85.9

Armadillo 84.6 86.0 95.2
Chair 85.2 84.6 89.4

Hammer 53.2 56.8 57.0

Table 2: Processing time for next-best-view computa-

tion

Classif. Regression Inf. Gain
Time 0.01 s 0.3 s 29.9 s

view problem with a classification-based approach. The

output of the 3D-CNN is limited to a set of 14 possible

sensor views. The approach in [18] proposed an infor-

mation gain based method that exhaustively evaluates

20 views around the object. The three approaches were

tested in the reconstruction of thirteen proposed un-

known objects (Fig. 9). The stop criteria was ten scans.

Table 1 presents the percentage of object recon-

struction and Table 2 shows the processing time needed

to compute the next-best-view. the method proposed in

this work is called Regression, the one proposed in [25]

is labeled as Classif. and the one proposed in [18] based

on information gain is labeled Inf. Gain. Even though

less coverage is achieved with the proposed method

compared to exhaustive search methods, the resulting

models can be good enough for several tasks in which

a fast decision is required based on the constructed

model. Nonetheless, this can be alleviated by adding

a focused exhaustive search stage already available in

the literature.

We underline that the data reported in Table 2

called processing times, are the times that the net-

work needs to determine the next-best-view, and not

the time they need to learn from examples, that is, the

time the network needs to make the inference. We would

also like to point out that the reported processing time

for regression corresponds to architecture NBV-net 4-

5, which is the one with the most layers among the

tested regression architectures, and the one that takes

the longest to compute the NBV. Therefore, that re-

ported time serves as an upper bound, namely, all the

tested regression architectures are able to perform the

inference with a frequency of at least 3 Hz.

We can observe that the method proposed in this

work, gets a larger percentage of object reconstruction

for ten of the thirteen objects compared with the Clas-

sif. method. In consequence, the Regression method im-

proves the coverage reached by the previous Classifica-

tion method. On the other hand, the Inf. Gain method

achieves a larger percentage of object reconstruction in

eleven of the thirteen objects w.r.t. the other two meth-

ods. As a result, the exhaustive search provided by Inf.

Gain. reaches the highest coverage. However, the Inf.

Gain method is two orders of magnitude slower than

the one proposed in this paper. Thus, the main draw-

back of the Inf. Gain. approach is the large processing

time that the method needs to compute the next-best-

view. One can also notice that the faster method is

the Classification method, which is an order or mag-

nitude faster than the one proposed in this work. It

only requires around 10 milliseconds to compute the

next-best-view. Nonetheless, the main limitation of the

Classification approach is that the fixed number of sen-

sor views could lead to an incomplete model. Also note

from the hammer statistics that thin objects are partic-

ularly hard to reconstruct for the three methods due to

the resolution of the probabilistic grid. Fig. 13 displays

the occupancy grids after reconstruction using the Re-

gression method. Fig. 14 shows an example of the first

three sensing views for the Bunny object.

5.3 Discussion

We have found that the proposed method is capable of

reconstructing the majority of the object surfaces de-

spite the object shape. The architecture that has the

largest number of convolutional and fully connected

layers (NBV-net 4-5), was the one with the best re-

sult, that is, largest final reconstruction percentage.

The main advantage of the proposed method is its rapid
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(a) Sphere (b) Mask (c) Helmet (d) Sarcophagus (e) Bunny

(f) Dragon (g) Teapot (h) Caster wheel (i) Moai head (j) Valve

(k) Armadillo (l) Chair (m) Hammer

Fig. 13: Probabilistic grids after reconstruction.

response in running time (0.3 seconds). Compared with

traditional next-best-view methods, the proposed one

eliminates the expensive ray tracing step required to

compute several information metrics. Even though train-

ing the network might be a time consuming task, it

is performed only once and offline. One disadvantage

could be that in some cases, it does not reach the high-

est coverage obtained by search-based methods, for those

cases, the current method could be complemented by

including a local search or a surface filling.

About the comparison between the method proposed

in this work with other two methods. One is a classification-

based method [25] and the other is a exhaustive search

using an information gain evaluation [18]. The method

based on exhaustive search and information gain gets

a larger percentage of object reconstruction, but it is

slow. In contrast, the method based on classification is

very fast but it gets poor results in terms of percentage

of object reconstruction. Based on the data in Tables

1 and 2, we conclude that the method proposed in this

work gets a good tradeoff between percentage of ob-

ject reconstruction and the processing time needed to

compute the next-best-view. It overcomes the method

in [25] in terms of percentage of object reconstruction,

and it needs a reasonable processing time to compute

the next-best-view, it only takes less than a half of a

second to get it.

With respect to the network training, we believe

that the current approach can be improved with a new

loss function that does not consider a single NBV as

the ground truth. Because in several cases there is more

than one good view, and they are separated in distance.

However, this is not a trivial task. In addition, for fu-

ture datasets it will be good to include more object

shapes, leaving for the validation set different shapes

(not included in the training set) as well as different

reconstruction states.

6 Conclusions

We have presented a deep learning based approach for

next-best-view regression. In this approach, we are ad-

dressing the next-best-view prediction in a continuous

space. The proposed network architecture is designed

for the particular problem and it has been trained and
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Fig. 14: First three sensing locations during the recon-

struction of the Bunny object. The arrow in front of the

Bunny is the initial view. The remaining arrows were

predicted by the Regression method.

validated. Our experiments have shown that the pro-

posed method generalizes well to object shapes that

have not been seen by the network during training nor

validation. The fast response of the proposed method is

one of its advantages given that it eliminates the expen-

sive ray tracing required by state of the art methods. We

have presented a comparison between the method pro-

posed in this work, with other two related approaches.
We can conclude that the method proposed in this

work gets a good trade-off between percentage of ob-

ject reconstruction and the processing time needed to

compute the next-best-view. For future research, we

will study new loss functions as well as applications

to the reconstruction of large scale buildings. Finally,

it is planned to continue expanding the training and

validation datasets including additional objects.
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