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In this paper2, we present a multi-robot exploration strategy for map-building. We consider an indoor
structured environment and a team of robots with different sensing and motion capabilities. We
combine geometric and probabilistic reasoning to propose a solution to our problem. We formalize the
proposed solution using Stochastic Dynamic Programming (SDP) in states with imperfect information.
Our modeling can be considered as a Partially-Observable Markov Decision Process (POMDP), which
is optimized using SDP. We apply the dynamic programming technique in a reduced search space that
allows us to incrementally explore the environment. We propose realistic sensor models and provide
a method to compute the probability of the next observation given the current state of the team of
robots based on a Bayesian approach. We also propose a probabilistic motion model, which allows us
to take into account errors (noise) on the velocities applied to each robot. This modeling also allows us
to simulate imperfect robot motions, and to estimate the probability of reaching the next state given
the current state. We have implemented all our algorithms and simulations results are presented.
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1. Introduction

Automatic environment exploration and map building are important problems in mobile robotics.
Autonomous robots must possess the ability to explore their environments, build representations
of those environments (maps), and then use those representations to navigate effectively. Maps
built upon exploration can be used later by the robot to perform other tasks such as object
finding [2].
A strategy for exploring an unknown environment and building its representation with a mobile

robot can be performed as follows: (i) the robot builds a local map with the sensor readings (ii)
a global map is updated merging the information between the current global map and the new
local map (iii) the robot moves to an intermediary goal, which is defined based on suitable
properties.
In the last two decades several approaches have been proposed for map-building, for instance

[3], [4], [5] and [6] just to name a few. Most previous research has focused on developing techniques
to extract relevant information from raw data and to integrate the collected data into a single
model. However, a robot motion strategy to explore the environment has been less studied.
In this work, we deal mainly with this latter problem. In this paper an exploration strategy is
proposed. Our exploration strategy considers sensing and motions capabilities of each robot. Our
algorithm outputs the sensing configurations to be visited and the trajectories to reach them.
The sensing configurations are associated to the borders between known and unknown space.

2A preliminary version of some portions of this work is reported in [1].
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Our method assigns a robot of the team for visiting a selected sensing configuration, according
to its capabilities and without considering predefined roles.
The remainder of this paper is organized as follows. In Section 2, we briefly describe related

works about exploration strategies, we also present the main contributions of our work with
respect to previous work from other authors, and with respect to our previous work. Then in
Section 3, we present the problem definition and the main elements of our modeling. In Section
4, we present the proposed observation model, which is a classifier. In Section 5, we describe the
probabilistic motion model used in this work. In Section 6, a solution to the problem addressed
in this work, is proposed using dynamic programming. In Section 7, we present our simulation
results. Finally, in Section 8, we present the conclusions and future work.

2. Related Work

Several robot’s exploration strategies for map building have been proposed. It is possible to
classify those exploration strategies into two main types: (i) systematic exploration and (ii)
strategies in which sensed information is taken into account to define the next sensing location.
In systematic explorations (exploration type (i)), the robots follow a predefined motion pattern,
for instance following walls, moving in concentric circles [7], and so forth. In non-systematic
exploration (type (ii)), information taken by the sensor is frequently used to select an appropriate
sensing location. Some exploration strategies of type (ii) use frontier-based exploration, originally
proposed by Yamauchi in [8]. In frontier-based exploration, the robot goes to the imaginary
line that divides the known and unknown parts of the environment. In [9–11], the proposed
exploration strategies lead the robot to locations in which maximal information gain is expected;
a utility function is defined to maximize the new information that will be obtained in the
next sensing location. Several works have proposed to generate random sensing locations for
exploration (e.g. [6, 12]). The work reported in [12] presents sensor-based exploration techniques.
The generated sensing locations are evaluated to select one that maximizes a utility function [6].
The exploration strategy presented in [6] is based on the computation of the next best view and
the use of randomized motion planning. In [6] the proposed motion strategy only considered the
case of a single robot.
In [13], an interesting experimental evaluation of several exploration strategies is presented.

However, in that work the case of multi-robot exploration is not studied. In [14], the authors
have presented a mapping system that uses an information-based exploration strategy and
that allows a mobile robot to efficiently build the map of an unknown environment. In [15],
a theoretically-grounded approach is proposed. This approach is based on Multi-Criteria De-
cision Making (MCDM). A result in [15] is that making more informed local decisions results
in a better global performance. The authors apply the method in search and rescue tasks and
they evaluated its performance in simulated environments. In [16], a comparison between dif-
ferent techniques for exploration and mapping is presented. The techniques were compared in
simulations using different criteria as exploration time or map quality.
Some works have proposed multi-robot exploration and mapping [17, 18]. In both of these

works, the information gain and the exploration cost are considered simultaneously to define
the next locations for each robot of the team. In [18], the map is represented using an occu-
pancy grid and the possible locations for the next exploration step are defined over cells lying on
the border between the known and unknown space. In [19], the authors propose a multi-robot
exploration strategy in which instead of frontiers, the authors use a segmentation of the envi-
ronment to determine exploration targets for the individual robots. This segmentation improves
the distribution of the robots over the environment.
We have already proposed motion strategies for exploration and mapping. In [20], we have

presented techniques that allow one or multiple mobile robots to efficiently explore and model
their environment. We developed a utility function that measures the quality of proposed sensing
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configurations, and a randomized algorithm for selecting the next sensing configuration.
In this work, we use some of the techniques proposed in [20]. We use a frontier-based explo-

ration; the frontiers between the known and unknown parts of the environment are found based
on visibility computations. We use sampling to generate candidate sensing configurations for
the robots. Visibility computation is also used to bias the sampling generation. The samples
are generated near to the border between the explored an unexplored environment. Finally, the
Hausdorff distance is used to find the best alignment between the global map and the new local
one. Nevertheless, we propose new techniques that have not been presented in [20]. We model
the exploration problem, as a resource allocation task. We consider heterogeneous robots with
different motion and sensing capabilities. We use dynamic programming as a tool to assign a

robot (which is the resource) to explore a part of the environment (which is the task), according
to the robot’s capabilities. We propose a probabilistic observation model, which is a classifier,
and we use a probabilistic motion model to move the robots from a state to another (more details
about our contributions are given in Section 2.1).
In [21], the authors propose a method for multi-robot exploration based on Decentralized

Markov Decision Process (Dec-MDP). Some important differences between the work in [21] and
the approach proposed in the paper are the following. Our work has as an advantage compared
with the work in [21], that in this work we consider heterogeneous robots, while in [21], the
authors consider homogeneous robots. Besides, in [21], the robots’ states are observable, while in
our work the robots’ states are partially observable. However, the work in [21] has the advantage
over this work that the approach is decentralized which might allow to handle a larger number
of robots.
Some previous works have already proposed exploration with multiple robots having different

capabilities. The work presented in [22] considers a team composed by robots of different sizes.
During the exploration, if a robot is too big to navigate among obstacles and reach a sensing
location, then it asks to a smaller robot to perform the task.
In [23], a formal study of multi-robot task allocation (MRTA) is presented. In that work an

interesting domain independent taxonomy of MRTA problems is provided. However, in [23] is
pointed out that the problem of assigning target locations to a team of robots for exploring an
unknown environment, one of the goals of this paper, is not captured by the proposed taxonomy.
A difficulty in the problem of assigning robots to target locations is that the cost for a robot to
target C depends on whether that robot first visit target A or target B.
In [24], a survey and analysis of market-based multi-robot coordination is presented. In that

work is stated that market-based techniques are proving to be versatile and powerful coordina-
tion schemes for multi-robot systems. However, in [24] is also indicated that in domains where
centralized approaches are feasible, market-based approaches can be more complex to imple-
ment and produce poorer solutions. In this work we propose several strategies to make feasible
a centralized approach (see Subsection 2.1 and Section 6). However, market based approaches
might be implemented in decentralized schemes, which will scale better for a larger number of
robot compared with a centralized approach.
In [25], robots have one of two roles: navigator or cartographer, navigators randomly move in

the environment until they find a target location for a cartographer, after that, the cartographer
moves to the target location. In the works mentioned above each robot follows a specific and
predefined role according to its type. In this work, we propose motion strategies for exploration
and map building considering the robots’ capabilities, but we do not assign pre-defined roles to
the robots of the team, instead, we model the robots’ capabilities probabilistically.

2.1 Main contributions and originality of the approach

Our modeling can be considered as a Partially-Observable Markov Decision Process (POMDP).
The team of robots does not have directly access to the state, but it is possible to get some
information about it through an observation model zk = h(xk). Furthermore, the next state
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of the system (xk+1 ∈ X ) (and consequently the next observation zk+1 = h(xk+1)) will only
depend on the current state, it does not matter how the current state was obtained (Markov
assumption).
It is well known, that finding optimal solution for POMDPs (for instance using dynamic

programming as in our approach) has very high computational cost. Indeed, it has been shown
that the problem of finding an exact optimal solution is intractable [26]. Consider 4 robots on
a 2-D environment divided in cells with a grid. Assuming that every robot can only reach its 8
neighboring cells, for optimizing one step-ahead greedy optimal policy, 212 possible controls must
be evaluated. Furthermore, while the problem is already expensive for one step-ahead evaluation,
when long term planning is done, an exponential branching of possibilities must be considered
due to the exponential growing number of possible sequences of observations [27].
In order to deal with those problems and propose a practicable approach we do the following:
1) For the exploration task, we test one-step ahead greedy optimization and compare it versus

long term plans. In other words, for a given discrete time or step k, we compare the result of
planning an order for visiting all the known frontiers between the know and unknown environ-
ment (long term plan), against the result of generating a plan, in which one robot is allowed to
move only once (short term plan) (see Section 7). We compare the results of these two planning
strategies, in terms of the traveled distance by the robots and the number of sensing locations
needed to explore the whole environment. 2) The sub-goals that the robots may reach are gener-
ated using sampling. Several previous works have already proposed a sampling based approach
for POMDPs [28–30] to obtain anytime solutions. However, notice that in our approach the
generation of sub-goals is biased using visibility computations. This approach improves existing
POMDPs sampling methods, in which the samples are generated without a suitable bias. 3)
Our probabilistic observation model p(z|x) is a classifier, the Bayes’ rule is used to estimate
this probability. In our modeling, the sensing of each robot is probabilistically dividing both
the observation and state spaces (see Fig. 1). An observation corresponds to a class, and there
is a relation between a type of local map (class) and a part of the state space, which is also
split. Note that, one observation might map to more than one state, two states x and x′ might
have equivalent observations h(x) = h(x′). Thus, two different geometric states might be indis-
tinguishable for the sensor. To see this, a very simple example is shown in Fig. 1. That figure
shows a corner in a polygonal map, there are three regions in the map R1, R2 and R3. Robot
configurations q1 in region R1 and q3 in region R3 sense two sets of points, which are classified
as a wall, while robot configuration q2 inside region R2 senses a set of points, which is classified
as a corner. The main idea of this work is to transform a geometric state x (typically, the state
depends on a robot configuration q and the local map e where the robot lies) to a label or type
tp, and to associate a probability to each label. Analogously, an observation z (which is a sensor
reading, e.g. points obtained with a laser range-finder) is also transformed to a symbol (a class
or type) and a probability is also associated to each class. This allows us to choose the most
appropriate robot according to its sensing and motion capabilities to explore that part of state
space. This equivalent relation also reduces both the number of samples to generate and the
sensibility of the solution respect to the sampling process. Note that a type of local map will not
change significantly in a neighborhood of a sampled configuration. This third point represents
the main originality and contribution of the proposed approach.
A preliminary version of portions of this work appeared in [1]. The main distinguishing features

of our current work compared with our previous research in [1] are: 1) We include a probabilistic
robot motion model, see Section 5. 2) We test one-step ahead greedy optimization and compare it
versus long term plans, see Section 7. 3) We include simulation results in larger environments with
a bigger number of robots, see Section 7. 4) We present a clearer and more detailed description
of the proposed approach.
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Figure 1. (a) Equivalent relation between observation and state space, (b), (c) and (d) a corner in a polygonal environment,
the light gray (yellow) region represents the area sensed, and the dots over the obstacles indicates laser reading.

3. Problem definition and system elements

The problem addressed in this paper consists in exploring an unknown environment and incre-
mentally building a model of that environment, with a team of mobile robots having different
sensing and motion capabilities. We assume that the sensors and motors of each robot are im-
precise. Our goal is to propose a robot motion strategy, which generates a fast and reliable map
building. We also want to profit the most of the different capabilities of each robot according to
the exploration and map building tasks.
We assume that the environment is unknown, in the sense that robots have not sensed it

previously, however, it is known that the environment corresponds to an indoor structured space.
We also assume that our robots are equipped with sensors having different range, resolution, and

different precision to determine the distance from the robot to the obstacles. Robots also have
different motion capabilities, in the sense that some of them have more precise motors compared
with other robots.

3.1 System Elements

Since we assume uncertainty in both sensing and motion, we model our problem as a dynamic
system with imperfect information state; the dynamic system evolves between discrete times
k and k + 1. Let C, U and Z respectively denote the configuration, control and observation
spaces for the robot. The geometrical state space is X ⊂ C × E, E is the set of all possible
environments in which the robots might be. A robot configuration is denoted qi ∈ C, a robot
state xi ∈ X , a robot observation zi ∈ Z, a robot control ui ∈ U and i denotes the i-th robot.
Our dynamic system is defined as follows:

Robots: We have a system with n robots. All the robots are modeled as discs of the same
radius, but they have different sensing and motion capabilities. We consider robots that can
rotate in place (e.g. differential drive robots).

Observations: zi ∈ Z denotes the i-th robot’s observation. Each robot is equipped with a

5



March 21, 2014 Advanced Robotics paper13047(13055)

laser range-finder, the lasers mounted on each robot might be different (e.g. they might have
different resolution, range, or precision of measurements), more details are given in Section 7.
Points belonging to the obstacles (discrete sensor reading) are obtained from the laser sensor.
Every point is denoted sj ∈ R

2. The set of points sensed from configuration qi is denoted
S(qi) =

⋃

j sj. From this set of points, a class or type denoted tp is associated to each robot

observation zi (more details are given in Section 4).

States: Each robot state is denoted by xi, and it is defined by qi × ei, qi denotes the i-th
robot’s configuration and ei ∈ E denotes the local map in which the robot i lies. Based
on the set of points S(qi), a local map ei is modeled with poly-lines applying a line fitting
technique [20]. Thus, a local map is a list of segments. For n robots a state is defined by
x = q1 × e1 × · · · × qi × ei × · · · × qn × en, in which q1, qi and qn respectively denote the
configuration of robot 1, robot i and robot n. We assume mobile robots with 3 degrees of
freedom, so the configuration of each robot i is a vector qi = (px, py, θ)

T , px and py denote the
robot’s position in a two dimensions global reference frame, θ denotes the robot orientation
with respect to the abscissa axis in the global reference frame. Visibility computation over the
local map ei yields a visibility polygon V (xi) associated to robot i at state xi; V (xi) is used to
define the borders between the known and unknown environment and send robots to explore
the unknown environment.

Controls: The set of possible controls is denoted U , each element of the set ui ∈ U is a
vector having the controls for each robot. Each robot is controlled using an angular velocity wi

and a linear velocity vi. Thus, at the execution level ui = [vi, wi]
T . We model these controls

as random variables. This modeling allows us to take into account errors (noise) on the
velocities applied to each robot. This modeling also allows us to simulate imperfect robots’
motions. For exploration at the planning level, a control for a given robot i has the form
u(i,k) = x(i,k) → free-edgej, where x(i,k) represents the current state of robot i and free-edgej
a frontier or free edge j between known and unknown space. Uk denotes a set having the
controls of all robots. The set having the controls for the complete team of robots has the
form Uk = {x(i,k) → free-edgej, x(i,k) → x(i,k+1) = x(i,k)}, under the restriction that two robots
cannot visit the same free edge, but one or more robots at a given time k are allowed to remain
motionless, hence the control x(i,k) → x(i,k+1) = x(i,k) is allowed. For more detail see Section 5.

Observation Model: We use a probabilistic observation model, p(zk+1|uk, xk+1) is the prob-
ability of obtaining a type of observation zk+1 given that the system is at state xk+1, having
applied control uk, recall that k denotes a discrete time. We assume that the observation zk+1

is independent of the control uk. It means that robots sense the environment, when they are
motionless, after reaching a given sensing configuration. Hence, p(zk+1|xk+1, uk) = p(zk+1|xk+1).
Furthermore, we also assume these probabilities independent for each robot, thus:

p(zk+1|xk+1) = p(z(1,k+1)|x(1,k+1))p(z(2,k+1)|x(2,k+1)) . . . p(z(n,k+1)|x(n,k+1))

In Section 4 we propose a Bayesian approach to estimate p(zk+1|xk+1).

Motion Model: The system changes from a state xk in time k to other state xk+1 after having
applied control uk with probability p(xk+1|xk, uk). Since there are n robots, we have a probability
p(x(i,k+1)|x(i,k), u(i,k)), in which i denotes the i-th robot. We assume this probability independent
for each robot. Therefore, we have:

p(xk+1|xk, uk) = p(x(1,k+1)|x(1,k), u(1,k)) . . . p(x(n−1,k+1)|x(n−1,k), u(n−1,k))p(x(n,k+1)|x(n,k), u(n,k))

We estimate these probabilities using the probabilistic motion model presented in Section 5.
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In our motion model, the robots move following only two motion primitives: Rotation in place
without translation and straight line motions.

Dynamic programming for exploration: Dynamic programming is used to assign robots
to the next sensing configuration for exploring a frontier. This assignation uses the information
vector Ik [31]. The information vector is defined as Ik = (u1, . . . , uk−1, z1, . . . , zk); Ik is the
history of all observations until time k and all controls that have been applied to the system
until time k − 1. More details are given in Section 6.

4. Probabilistic observation model p(zk+1|xk+1)

Inspired by Bayesian approaches, we propose to use a priori information of the environment,
which can be incorporated to our models to make better decisions. Our observation model
zk+1 = h(xk+1) is a classifier. Indeed, we define the mapping zk+1 = h(xk+1) between the
observation zk+1 and the system state xk+1 as an equivalent relation, zk+1 ∼ tp; tp ∈ N. Our
observation model has the following form: h : x = q× (T : S(q)→ etp)→ z ∼ tp, transformation
T estimates a type (class) of local map etp by virtue of the nearest neighbor method using
the partial Hausdorff distance as metric, and transformation h estimates the type (class) of
observation tp using the Bayes rule. The Hausdorff distance is also used to find the best alignment
between the current sensor reading and the new one. We used original data, to align local maps
with the global one.
We want to estimate the probability of the next observation zk+1, given that the robots are

in the state xk+1. We assume this probability independent of the controls uk. The Bayes rule is
used to estimate p(zk+1|xk+1). The robots are provided with a training set of observations. In
this work, 5 types or classes are used Ω = {wall, corridor, corner, type T, crossroad} (see Fig. 2).
In practice, this a priori information might be obtained from blueprints or databases. Each type
itself has associated a probability of being sensed p(zk+1). In this work, this probability is set
equal for all types. The maximum a posteriori probability (MAP) is the one assigned to the
observation zk+1 given the state xk+1.

pmax(zk+1|xk+1) = max
tp∈Ω

{

p(xk+1|zk+1 = tp)p(zk+1 = tp)
∑

zk+1
p(xk+1|zk+1 = tp)p(zk+1 = tp)

}

(1)

p(xk+1|zk+1) is estimated using the nearest neighbor equation p(xk+1|zk+1) =
ζ

ntpφtp
[32], which

is discussed in detail in the next section.

4.1 Nearest Neighbor Method

The k-nearest neighbor method is a classifier [32]. ζ is the number of elements inside φtp, ntp is
the number of elements used in a training set of type tp, and φtp is the size of the surface that
assigns a class. In general for a n dimensions features space, and assuming that the features
are normalized, the surface that assigns a class is a hyper-sphere. For a two dimensions features
space, that surface is a circle. For a training set in a feature space with a single characteristic,
φtp is defined by: φtp = 2rtp, where rtp is the distance to the k-nearest neighbor.
Since we need to measure how similar are two sets of points, we use the partial Hausdorff

distance as metric rtp, in the nearest neighbor method to estimate the resemblance between the
type of observation tp (related to the observation zk+1) and a hypothesized set S(qk+1) (which
depends on the system configuration qk+1). Indeed, we estimate p(zk+1|xk+1) without actually
taking the robot to state xk+1. We compute a hypothesized visibility region V (xk+1) based on
the global map built until time k (see Fig. 6 c)). Based on V (xk+1), a hypothesized set S(qk+1)
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is generated. In fact, we make a prediction about S(qk+1) from state xk.
We evaluate the partial Hausdorff distance considering a transformation including both

translation and rotation. Given two sets of points P and Q, the partial Hausdorff distance is
defined as (see [20]):

H(P,Q) = max(h(P,Q), h(Q,P )) (2)

where

h(P,Q) = Mp∈P min
q∈Q
‖p− q‖ and h(Q,P ) = Mq∈Qmin

p∈P
‖p− q‖ (3)

where ‖.‖ is the Euclidean metric for measuring the distance between two points p and q.
Mp∈Pf(q) denotes the statistical mean value of f(q) over the set P . f(q) = minq∈Q ‖p − q‖
denotes the Euclidean distance from the point p to a point q ∈ Q that is the one closest to p.
Thus, the Hausdorff distance is computed between the set S(qk+1) and the training set, which

is stored according to the tp classes.

(e)
single wall

Local map of type Local map of type corner Local map of type T
Local map of type

corridor

(a) (b) (c) (d)
Local map of type crossroad

Figure 2. Classes of local maps.

Fig. 2 shows the five types of models that we use. We consider these five models as typical for
an indoor structured environment. The dots represent the sensor reading. We use models with
different number of points to simulate robots equipped with sensors having different resolutions,
and the training data considers some variants of each one of the five main patterns shown in
Fig. 2.
Obviously, our approach has the disadvantage that other types of observations can appear.

However, the class is only used for selecting the most appropriate robot according to its sensing
and motion capabilities. At the end, the local map integrated to the global map corresponds to
the actual sensor readings obtained when the system has reached the state xk+1 [20].
An example of the Nearest Neighbor Method is presented here. The input data to be classified

are the points shown in Fig. 3.
The elements of training set, with the smallest Hausdorff distance to each class are shown in

Fig. 4.

zk P (zk|xk)
Single wall 0.0942
Corridor 0.2342
Corner 0.1249
Type T 0.1373
Crossroad 0.4091

Table 1. P (zk|xk).
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Figure 3. Input data.

Single wall Corridor Corner

Type T Crossroad

Figure 4. Best matching (smallest Hausdorff distance) per class.

The best matching, which assigns a class, between the input data and all the elements of the
training set is shown in Fig. 5. The input data is shown in the figure with dark gray (red) points
and the element of the training set is shown with light gray (cyan) points.

Figure 5. Best matching.

The probability for each class (next observation zk+1), given that a robot is at a state xk+1
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(local map and robot configuration) are presented in Table 1. The Bayes’ rule is used to calculate
those probabilities.

5. Probabilistic motion model p(xk+1|xk, uk)

We assume robots that can rotate in place (e.g. differential drive robots). The robots move
executing only two motion primitives: a rotation in place and a straight line motion. The robots
are controlled using a linear velocity v and an angular velocity w. These velocities are not
perfect, there is noise modifying them. To model the imperfection over the velocities we use
random variables with 0 mean and variance σ2. Thus, the linear and angular velocities are given
by Equations 4 and 5, where ǫσ2 is an error variable with variance σ2.

v̂ = v + ǫσ2
v

(4)

ŵ = w + ǫσ2
w

(5)

To obtain instances of this error, we use the following simple model. Function sample(.) generates
a random sample of the error, with zero mean and variance σ2. The sample is taken from a normal
distribution. Thus, the imperfection over the robot motions depends on the values of both σ2

v

and σ2
w. Larger values correspond to larger errors.

v̂ = v + sample(σ2
v)

ŵ = w + sample(σ2
w)

To simulate uncertainty over the robots motions, we use an Euler integration method over the
robot configuration variables (x, y, θ). Thus, we have:

xt+1 = xt + v̂ cos(θt)∆t

yt+1 = yt + v̂ sin(θt)∆t

θt+1 = θt + ŵ∆t

These equations are iterated to move a robot close to a final desired configuration.
Note that these motions are not perfect and a goal configuration is never reached precisely,

because of the noise. Thus, the probability of reaching the next state or equivalent the next
configuration is given by Equation 6.

p(xk+1|xk, uk) = p(ǫσ2
w
)p(ǫσ2

v
)p(ǫσ2

w
) (6)

Recall that, a control for a given robot i has the form u(i,k) = x(i,k) → free-edgej, x(i,k)
represents the current state of robot i and free-edgej a free edge to be sensed. To determine one
sample per free edge, the sample with the maximal probability per free edge is selected. The
probability of each sample is given by Equation 6. To compute an exploration plan, dynamic
programming with imperfect information is used (see Section 6).

5.1 Visibility and Frontiers based Exploration

We use a frontier-based exploration. To explore the environment robots move to visit free edges.
A free edge (frontier) is defined as the border between the visibility region V (xi) and the unseen
environment. Exploring the unknown space is equivalent to sending a robot to visit a free edge.
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Each free edge is visited only once to explore the space beyond it, and two different robots do
not visit the same free edge.
A robot is free to move in the interior of its visibility polygon, as long as it does not collide with

an obstacle. We denote by F (xi) the visibility polygon reduced by the robot radius, i.e., F (xi)
is a safe region for navigation that is visible from state xi. We define Vtot as the total visibility
region for the team of robots, and Ftot as the total visible region i.e., Vtot =

⋃

i V (xi) and Ftot =
⋃

i F (xi).

Distance

Area

(c)

Motion model Area and traveled distance

Figure 6. (a) and (b) Motion model (c) Expected discovered area and traveled distance.

Based on sampling, we generate candidate sensing configurations over the configuration space
C. The samples are only generated close to the free edges using an angle φ and a distance ρ

as in [20]. See Fig. 6 (a). Besides, only the samples inside Ftot are considered. Thus, visibility
computations are used to bias the sampling. Since selected samples are close to the border
between the explored an unexplored environment, they have a good chance of seeing unknown
environment. The exploration starts assuming that Ftot has a single connected component. We
also assume that the robots will always be inside Ftot. Looking for that assumption to hold, only
the sample candidate configurations that are further than a minimal distance from a given free
edge are evaluated. We only evaluated these sample configurations to avoid that a robot crosses
the free edge, due to the noise in the robot velocity, which might result in a collision of the robot.
Additionally, to move the robots, we combine the probabilistic model described above, with a
feedback motion model based on corners’ locations.
We make the robots move over the reduced visibility graph (RGV) 1 computed over C to follow

the shortest path between the two configurations. The global map built until time k is used to
compute this RGV [20].
In the feedback motion model, a robot corrects its heading based on the relative position

of corners with respect to the robot’s configuration. Since the robot is using the location of a
corner while it moves, then at each motion’s step the robot determines a new heading to reach
the corner, and hence the error in the heading does not monotonically increases. For more details
see [34].
To illustrate the combination of these two motion models, Fig. 6 (b) is used. While robot moves

between its initial configuration qi to the first corner A and then from corner A to corner B, robot
corrects its heading based on the location of the corners, then from corner B to attempt to reach
the final configuration qg, the probabilistic motion model described above is used to simulate
the robot motion. While the robot corrects its heading the motion is assumed deterministic,
given that the feedback over corners corrected the motion’s error. For reaching the configuration

1The reduced visibility graph of a polygonal environment, also known as the shortest-path roadmap, is built in the next
way: first of all, the vertices in the RVG are the reflex vertices (vertices with an internal angle larger than π) of the polygonal
environment. Second, the edge between two vertices in the RVG is generated if the two vertices are endpoints of the same
edge of an obstacle, or if a bitangent line can be drawn between such vertices [33].
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to explore the free edge (last motion in the sequence) the probabilistic model is used, since no
feedback can be used over the configuration sample to be reached. In this case a robot moves
as follows: 1) a robot first rotates in place until its heading is pointing to the goal configuration
then 2) it moves in straight line until it reaches a goal configuration and finally 3) it rotates
again to reach the desired final orientation. These motions are estimated using the probabilistic
model. The case when the robot does not move between corners also occurs when a clear line of
sight between the initial and goal configuration does not intersect the obstacles in C.
When the global map does not contain free edges the exploration is finished. Since we are

updating the global map, we are able to determine whether or not there is a gap (free space) in
the boundary of the global map that corresponds to a free edge.

6. Stochastic dynamic programming for selecting an action

We select the action to be executed at time k based on Ik = {u0, u1, · · · , uk−1, z0, z1, · · · , zk},
which is the history of all controls applied until time k− 1 and all the sensed observations until
time k. The Stochastic Dynamic Programming (SDP) considering Ik is given by Equation 7 [31].
Equation 7 is evaluated backwards, starting with the last step.

JN−1(IN−1) = max
uN−1∈U

g̃N−1(IN−1, uN−1) and

Jk(Ik) = max
uk∈U

[

g̃(Ik, uk) + Jk+1(Ik, zk+1, uk)
∑

xk+1

pmax(zk+1|xk+1)
∑

xk

p(xk+1|xk, uk) p(xk|Ik)

]

(7)

In Equation 7, Jk+1 is the utility function, which depends on Ik, zk+1 and uk. N is the
planning horizon. The probability of the next state p(xk+1|xk, uk) is obtained with Equation 6
(see Section 5). The probability of the state given the information vector p(xk|Ik) is computed
using Equation 11 (see Subsection 6.2). In general, in SDP, there is an expected value computed
over all possible observations Ezk+1

, given an information vector Ik and a control uk. However, in
our approach we only use the observation with maximal probability pmax(zk+1|xk+1) (given by
Equation 1), we select only this observation zk+1 to avoid an exponential branching of possibilities
due to the exponential growing number of possible sequences of observations.
In Equation 7, g̃(Ik, uk) represents the utility (gain over cost) of applying an action. It indicates

how useful is to apply a control uk for an information vector Ik; g̃(Ik, uk) can be calculated in
terms of g(xk, uk) and p(xk|Ik) as follows [31].

g̃(Ik, uk) =
∑

xk

p(xk|Ik)g(xk, uk) (8)

Thus, g̃(Ik, uk) depends on both p(xk|Ik) and g(xk, uk) given that uncertainty in both sensing
and control is taken into account; p(xk|Ik) represents the likelihood that process resides in state
x at time k. Indeed, in [35], it has been shown that this is sufficient statistic of the information
state for a POMDP.
In SDP, the planning horizon N might be set to different values. In the exploration problem

addressed in this paper, short and long term plans can be made. In a short term plan N = 1,
yielding that each robot moves only once. But, differently to the work presented in [1], in our
current implementation, while executing a plan more than one robot can move at the same time
k. In contrast, in a long term plan we calculate N such that, all the free edges present at time
k must be visited, and robots are free to move more than once.
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While executing a plan to avoid collision between two moving robots, the following simple
motion coordination scheme is executed. The robots’ paths are tested for intersection, if they do
not intersect all robots move simultaneously. Otherwise the robot with shortest path to travel
moves first. Consider that our work aims mainly to the generation of a plan, assigning the
most appropriate robot to explore a part of the environment, recent approaches (e.g. [36]) can
be used to coordinate the execution of the robot paths for a large number of robots moving
simultaneously.

6.1 Objective function g(xk, uk)

g(xk, uk) indicates how useful is to apply a control uk given that the system is at state xk. For
each robot we define g(xi,k, ui,k) as a function depending only on two factors: (1) the new area
A(q(i,k+1)) that the robot can perceive at a next configuration and (2) the distance a robot would
travel to reach that configuration d(q(i,k), q(i,k+1)).
Fig. 6 (c) shows a robot at a configuration near to the border between the known and unknown

environment. The circle around the robot depicts the area within the sensor range (the radius
of the circle represents the sensor range). The shaded area is the maximum new area that the
robot can discover at that configuration. As in [6], we use the global map at time k to eliminate
portions of this area, since it is known that there are obstacles already sensed.
We define g(xk, uk) (Equation 9) as an objective function that relates the utility (ratio of gain

over cost) of the action with the control uk given the current state xk.

g(xk, uk) =
∑

i

g(x(i,k), u(i,k)) =
∑

i

A(q(i,k+1))

d(q(i,k), q(i,k+1)) + 1
(9)

Equation 10 defines the distance between configuration q(i,k) and configuration q(i,k+1), where
α = min{|θ(i,k) − θ(i,k+1)|, 2π − |θ(i,k) − θ(i,k+1)|}

d(q(i,k), q(i,k+1)) =
√

(px(i,k) − px(i,k+1))
2 + (py(i,k) − py(i,k+1))

2 + α2 (10)

The rationale in summing distances and angles is that we want the robots not only translate
a small distance, but also that they rotate a small angle. This is because an error in the rotated
angle induces an important error in the final robots’ locations. Reducing the rotation of the
robots has as a consequence that the time to explore the environment is reduced as well. In fact
Equation 10 defines a metric commonly used in motion planning (see [33] for more details).

6.2 Computing p(xk|Ik)

p(xk|Ik) is given by Equation 11, it is computed forward starting with the first step.

p(xk|Ik) =

∑

xk−1
p(xk−1|Ik−1)p(xk|xk−1, uk−1)p(zk|xk, uk−1)

∑

xk

∑

xk−1
p(xk−1|Ik−1)p(xk|xk−1, uk−1)p(zk|xk, uk−1)

(11)

Equation 11 is used in [37] to calculate the belief in Bayes Filter and in [33] for representing
a mapping on probabilistic information spaces. Equation 11 can be derived from the Bayes’
rule, applying joint probability methods and marginalization; p(xk|Ik) is expressed in terms of
p(zk|xk, uk−1), p(xk|xk−1, uk−1) and p(xk−1|Ik−1). To compute p(xk|Ik), p(x0|I0) is needed at the
first step. At the beginning, no control has been applied and the only observation is z0, therefore
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Algorithm 1: EXPLORATION(Qk,W)

Input : Qk: Robots Configurations at time k

W: Environment
Output:M: Global Map
begin1

repeat2

S ←− SENSORS READING(Qk, W);3

M.add(S);4

F ←− GET FREE EDGES(M);5

if F6= ∅ then6

Qk+1= SAMPLES(F , W);7

Π(k, Ik) = argmax
uk∈Uk

[

g̃(Ik, uk) +
8

Jk+1(Ik, zk+1, uk)
∑

xk+1

pmax(zk+1|xk+1)
∑

xk

p(xk+1|xk, uk) p(xk|Ik)

]

;

Xk+1 ←− MOVE NEW STATES(F , Qk, Qk+1,M, Π(k, Ik));9

end10

until F= ∅ ;11

ReturnM;12

end13

I0 = z0 and p(x0|I0) = p(x0|z0). This probability is computed using Equation 11, which for

k = 0 is simply equal to: p(x0|z0) =
p(z0|x0)p(x0)∑
x0

p(z0|x0)p(x0)
.

6.3 Assigning robots to new states related to the free edges (frontiers)

Algorithm 1 represents the general method to assign the robots to states in the exploration task.
In line 7 in this algorithm, candidates samples configurations are generated close to the free edges.
Then, only one sample per free edge is kept, this sample is the one with maximal probability
p(xk+1|xk, uk) per free edge. Recall that probability p(xk+1|xk, uk) is given by Equation 6. In line
8 and 9, dynamic programming is used to find the exploration strategy Π(k, Ik), which provides
the robots’ controls that when they are applied move the robots to the selected locations. Hence,
Π(k, Ik) also assigns robots to states according to their motion and sensing capabilities.

7. Simulation results

In this section, we present simulation results. All our simulation experiments were run on a
quad-core processor PC, equipped with 3 GB of RAM, running Linux. Our software is written
in C++. For distinguishing the robots, in all the following figures, robots with better sensing
capabilities are shown with a square and robots with better motion capabilities are shown with
a circle. However for finding collision free paths both robots are modeled as discs with the same
radius. The visibility region of robots with better sensing capabilities are shown in medium gray
(green) and the visibility region of robots with better control capabilities are shown in light gray
(yellow).
Seven different simulation experiments were performed in four different environments. The

motion capabilities are defined using two parameters σ2
v and σ2

w, which correspond respectively
to a variance of an error on the linear and angular velocities. Larger values correspond to more
imprecise motions. The parameters defining robots’ motion capabilities are shown by experiment
in Table 2. The sensing capabilities are defined with three parameters: 1) sensing range, 2)
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sensor’s resolution and 3) maximal error on the sensed distance to the obstacles; these parameters
are shown by experiment in Table 3. For each experiment, we have run 20 simulations with the
same initial robots’ configurations.
In all the experiments, we report, the mean and standard deviation of the following perfor-

mance metrics: (i) total number of sensing location needed for a team to explore the environment,
(ii) total angle rotated by the robots, (iii) total distance traveled by the robots, and (iv) per-
centage of area perceived. The average and standard deviation of the metrics of each experiment
have been computed over the number of simulations. We also present the computational running
time needed to generate a plan to explore the whole environment.
In Experiments 1, 2, 3 and 4, only two robots are used, each of them has diferent sensing

and motion capabilities with respect to the other. In Experiments 5, 6 and 7 the robots are
grouped in teams. Each team is composed by elements having better or worse motion or sensing
capabilities with respect to the other team. (BS) and (WS) denotes better sensing capabilities
and worse sensing capabilities. Analogously, (BM) and (WM) denotes better motion capabilities
and worse motion capabilities.

Experiments 1, 2, 3, 4, 5 and 6
(BM) σ2

v
(BM) σ2

w
(WM) σ2

v
(WM) σ2

w

0.06 0.04 0.7 0.5

Experiment 7
(BM) σ2

v
(BM) σ2

w
(WM) σ2

v
(WM) σ2

w

0.006 0.004 0.7 0.5
Table 2. Motion capabilities.

Experiment 1 and 2, Fig. 7
(BS) range (BS) maximal error in (BS) sensor (WS) range (WS) maximal error in (WS) sensor

sensed distance resolution sensed distance resolution
1200 units 2 units 2 degrees 800 units 4 units 4 degrees

Experiments 3 and 4, Fig. 8
(BS) range (BS) maximal error in (BS) sensor (WS) range (WS) maximal error in (WS) sensor

sensed distance resolution sensed distance resolution
1250 units 2 units 2 degrees 800 units 2 units 3 degrees

Experiments 5 and 6, Fig. 9
(BS) range (BS) maximal error in (BS) sensor (WS) range (WS) maximal error in (WS) sensor

sensed distance resolution sensed distance resolution
1300 units 2 units 2 degrees 900 units 5 units 3 degrees

Experiment 7, Fig. 10
(BS) range (BS) maximal error in (BS) sensor (WS) range (WS) maximal error in (WS) sensor

sensed distance resolution sensed distance resolution
1200 units 2 units 2 degrees 700 units 4 units 4 degrees

Table 3. Sensing capabilities.

7.1 Experiments 1 and 2, short vs long term plans

Experiments 1 and 2 were performed in the same environment with the same initial robots’
configurations. In Fig. 7 corresponding to Experiments 1 and 2, the environment is 3000 units
long and 2300 wide, and both robots have a radius of 50 units. In Experiment 1 short term plans
are generated, while in Experiment 2 long term plans are computed.
Fig. 7 (a) shows the initial robots’ configurations, Fig. 7 (b) shows a snapshots of the explo-

ration; 15 over 20 times the following happened: the robot with better sensing capabilities, was
selected to explore the richer visual local maps (left part of the environment) and the robot
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(a) Initial robots’ configuration (b) Snapshot of exploration (c) Sensed points

Figure 7. Experiment 1.

with better motion capabilities was selected to explore local maps composed only by two par-
allel lines, the corridor in the right part of the environment (See Fig. 7 (b)), which are hard
to be matched with the global map. Notice that in corridors bounded with parallel featureless
walls, a matching procedure only finds an alignment between the local and global maps, in the
direction perpendicular to the walls. Fig. 7 (c) shows the sensed points collectively obtained by
both robots.
Comparing the resulting performance metrics for short term (Experiment 1) vs. long term

plan (Experiment 2), one can see that when long term plans are generated, robots travel and
rotate more. In long term plans the robots rotate almost three times more than in short term
plans, and they travel around 60 % more compared with short term plans. while the other
performance metrics remains almost the same. Furthermore, the computational running time
needed to generate long term plans are about 3 times larger with respect to short term plans.

Performance metric Robot 1 (BS) and (WM) Robot 2 (WS) and (BM)
Mean: number of sensing locations 4.55 4.8

Std. Dev: number of sensing locations 0.73 0.67
Mean: total angle (radians) 6.46 7.48

Std. Dev: total angle (radians) 2.10 1.94
Mean: total distance traveled 3019.41 5031.54

Std. Dev: total distance traveled 528.81 907.63
Mean: area perceived 86.96% 74.23%

Std. Dev: area perceived 2.28% 5.36%
Planning time

Mean 12.95 sec Std. Dev. 1.71 sec
Table 4. Statistics of Experiment 1 shown in Fig. 7, short term plan.

Performance metric Robot 1 (BS) and (WM) Robot 2 (WS) and (BM)
Mean: number of sensing locations 4.5 4.9

Std. Dev: number of sensing locations 0.59 0.53
Mean: total angle (radians) 16.16 17.44

Std. Dev: total angle (radians) 6.46 5.43
Mean: total distance traveled 5282.71 9064.66

Std. Dev: total distance traveled 2202.32 2894.15
Mean: area perceived 87.2825% 75.3732%

Std. Dev: area perceived 3.06 % 6.40%
Planning time

Mean 38.05 sec Std. Dev. 6.87 sec
Table 5. Statistics of Experiment 2, long term plan.
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7.2 Experiments 3 and 4, different inital configurations

In Experiments 3 and 4 the environment is 4000 units long and 4000 wide, and both robots have
a radius of 30 units. In both experiments short term plans are computed.

(a) First initial robots’ configurations (b) Other initial robots’ configurations

Figure 8. Experiments 3 and 4.

In these two experiments, the initial configurations of the two robots are modified. Fig. 8 (a)
shows the environment where Experiment 3 is performed, and the first initial configurations of
the two robots. In the same figure, the area perceived by the robot with better sensing but worse
motion capabilities is shown in medium gray (green), in light gray (yellow) is shown the area
perceived by the other robot, and with dark gray (dark blue) the area explored by both robots.
Fig. 8 (b) shows Experiment 4 with the others initial configurations of the two robots. Again,

the area perceived by the robot with better sensing but worse motion capabilities is shown in
medium gray (green), the area perceived by the other robot is shown in light gray (yellow), and
the area explored by both robots is shown in dark gray (dark blue).
For this environment, it is possible to see that independently of the initial robots’ configu-

rations, the robot with good sensing capabilities has the tendency to explore local maps with
corners, and the robot with good motion capabilities explores local maps composed by corridors.
In Fig. 8 (a) this behavior is very clear. Since both robots start perceiving at the same time both
a local map with corners and a corridor composed only by two straight line segments. The robot
with good motion explores the corridor and the other robot the local map with corners. In Fig. 8
(b), both robots start perceiving only a corridor, a robot moves to the left while the other moves
to the right. Once, they arrive to the part of map containing more corners, the robot with good
sensing capabilities explores a larger portion of this type of map. In Tables 6 and 7 statistics of
Experiments 3 and 4 are presented.

Performance metric Robot 1 (BS) and (WM) Robot 2 (WS) and (BM)
Mean: number of sensing locations 9.1 8.9

Std. Dev: number of sensing locations 0.7 0.83066
Mean: total angle (radians) 10.2328 6.95555

Std. Dev: total angle (radians) 1.6258 1.78402
Mean: total distance traveled 7082.54 7193.68

Std. Dev: total distance traveled 2607.13 1409.26
Mean: area perceived 61.9506 % 59.5007 %

Std. Dev: area perceived 7.59017 % 4.02811 %
Planning time

Mean 15.82 sec Std. Dev. 1.787 sec
Table 6. Statistics of Experiment 3 shown in Fig. 8 (a).

In Experiments 3 and 4, the team with (BS) and (WM) capabilities discovers a bit more area,
but both teams travels almost the same distance.
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Performance metric Robot 1 (BS) and (WM) Robot 2 (WS) and (BM)
Mean: number of sensing locations 7.8 9.05

Std. Dev: number of sensing locations 1.36382 1.24399
Mean: total angle (radians) 8.55254 7.04063

Std. Dev: total angle (radians) 2.49364 1.51604
Mean: total distance traveled 9317.03 6673.82

Std. Dev: total distance traveled 4206.27 676.41
Mean: area perceived 62.0572 % 56.4073 %

Std. Dev: area perceived 5.38649 % 5.67474 %
Planning time

Mean 14.84 sec Std. Dev. 1.2571 sec
Table 7. Statistics of Experiment 4 shown in Fig. 8 (b).

7.3 Experiments 5 and 6, short vs long term plans, with teams of robots

Experiments 5 and 6 are performed on the same environment shown in Fig. 9. The environment
is 8500 units long and 8700 wide, and all robots have a radius of 75 units. 6 robots are used in
each experiment. In Experiment 5 the robots make short term plans, while in Experiment 6 the
robots make long term plans. In a short term plan more than one robot can move at the same
time k but, each robot moves only once. In contrast in a long term plan, robots are free to move

more than once, such that, all the free edges present at time k must be visited.

(a) Initial configurations (b) Snapshot of robots’ motions (c) Snapshot of robots’ motions

(d) Partial exploration (e) Exploration, short term plan (f) Exploration, long term plan

Figure 9. Experiment 5 and 6.

Fig. 9 shows the result of Experiments 5 and 6. The results of Experiment 5 are presented in
Figs. 9 (a) (b) (c) (d) and (e). Fig. 9 (a) shows the initial configurations of the 6 robots, Figs. 9
(b) and (c) show snapshots of the robots’ motions; 5 of the 6 robots move simultaneously, while
one robot is not selected to explore a free edge. Fig. 9 (d) shows in light gray (cyan) the area
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Performance metric Team 1 (BS) and (WM) Team 2 (WS) and (BM)
Mean: number of sensing locations 43 33.85

Std. Dev: number of sensing locations 3.57 5.17
Mean: total angle (radians) 131.76 100.88

Std. Dev: total angle (radians) 15.88 22.40
Mean: total distance traveled 110257 95255.4

Std. Dev: total distance traveled 11187.8 15276.5
Mean: area perceived 87.73 % 54.34 %

Std. Dev: area perceived 3.57 % 5.46 %
Planning time

Mean 7 min 3 sec Std. Dev. 41.4 sec
Table 8. Statistics of Experiment 5, shown in Fig. 9 (a), (b), (c), (d) and (e).

Performance metric Team 1 (BS) and (WM) Team 2 (WS) and (BM)
Mean: number of sensing locations 42.35 37.2

Std. Dev: number of sensing locations 2.35 4.78
Mean: total angle (radians) 166.96 134.12

Std. Dev: total angle (radians) 33.97 30.86
Mean: total distance traveled 134656 119774

Std. Dev: total distance traveled 26666.4 27262.6
Mean: area perceived 86.53 % 59.11 %

Std. Dev: area perceived 3.65 % 7.59 %
Planning time

Mean 38 min 41 sec Std. Dev. 21 min 31 sec
Table 9. Statistics of Experiment 6, long term plans, shown in Figs. 9 (a) and (f).

collectively perceived for all robots until a given time before finishing the exploration. Fig. 9 (e)
shows the final exploration result, the area perceived by the team of robots with better sensing
but worse motion capabilities is shown in medium gray (green), in light gray (yellow) is shown
the area perceived by the other team, and with dark gray (dark blue) the area explored by
both teams. Performance metrics related to the exploration task are presented in Table 8. The
performance metrics of Experiment 6 are presented in Table 9. The final exploration is presented
in Fig. 9 f). Comparing the resulting performance metrics of Experiments 5 and 6, we can see
that when long term plans are generated, robots travel and rotate more (for these experiments
about 25%), while the other performance metrics remain almost the same. Furthermore, the
computational running time needed to generate long term plans is about 5 times larger with
respect to the one for short term plans.

7.4 Experiment 7, grouping the best robots in the same team

In Experiment 7, the environment is 4000 units long and 3500 wide, and all robots have a radius
of 50 units. There are two teams, each team consists of 2 robots, both teams compute short
term plans. In this experiment, the robots with better motion (BM) and better sensing (BS)
capabilities (with respect to the other team) are grouped in the same team. The objective is to
evaluate the performance of each team, when a team is composed by “better” robots, while the
other team is composed by robots with worse capabilities. In Fig. 10, the initial locations of the
robots and the total area discovered by each team are shown. The area discovered by the team
with better robots is shown in medium gray (green), The area discovered by the team composed
by “worse” robots is shown in light gray (yellow), and the area perceived by both teams is shown
in dark gray (blue).
Table 10 presents performance metrics measuring the exploration task in Experiment 7. The

robots with better sensing and motion capabilities discover more than the double of the area
discovered by the other team. The number of sensing locations is also almost the double for the
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team with better robots. However, the total distance traveled by both teams is almost the same.
As an interpretation of the results of this experiment, we conclude that while both teams move
almost the same, the team composed by better robots is able to discover a significant larger
portion of the environment.

Figure 10. Experiment 7.

Performance metric Team 1 (BS) and (BM) Team 2 (WS) and (WM)
Mean: number of sensing locations 8.15 4.85

Std. Dev: number of sensing locations 0.57 1.27
Mean: total angle (radians) 8.42 8.24

Std. Dev: total angle (radians) 3.20 4.93
Mean: total distance traveled 10141.8 8763.92

Std. Dev: total distance traveled 2586.42 3752.88
Mean: area perceived 95.6372 % 42.3139 %

Std. Dev: area perceived 2.58 % 6.28 %
Planning time

Mean 17.66 sec Std. Dev. 1.52 sec
Table 10. Statistics of Experiment 7 shown in Fig. 10.

Based on the results of all the experiments, we conclude that making long term plans with
partial and dynamic information will often produce unnecessary long trajectories. Notice that as
soon as new frontiers (free edges) appear (which have not been considered at time k), the robot
might need to come back to some configurations near to other configurations already visited,
thus traveling longer than required. We also conclude that for some environments, our approach
generates robot behaviors, that is, robots with good sensing capabilities are selected to explore
visually rich local maps, and robots with good motion capabilities are used to explore local
maps, which are hard to be matched with the global map. Hence, as in [15], one can notice that
making more informed local decisions results in a better global performance.

8. Conclusion and Future Work

In this paper, we have proposed a multi-robot exploration strategy for map-building. We have
modeled the exploration problem, as a resource allocation task. We consider heterogeneous
robots with different motion and sensing capabilities. We use dynamic programming in states
with imperfect information (also called stochastic dynamic programming) as a tool to assign a
robot (which is the resource) to explore a part of the environment (which is the task), according
to the robots capabilities. We have proposed a Bayesian method to estimate the probability of
the next observation given the state of the team of robots. Thus, an observation corresponds
to a class, and there is a relation between a type of local map (class) and a part of the state
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space. This allows us to choose the most appropriate robot according to its sensing and motion
capabilities to explore that part of state space. We have also proposed a sampling based one-step
ahead optimization, which improves both the quality of the plan and the time to generate it. Our
greedy approach avoids unnecessary robots’ motions that could arise from a lack of knowledge
about the unexplored part of the environment.
A disadvantage of our method is that our planner is centralized and assumes that all informa-

tion obtained for each robot at a given time k is available to make a decision. As future work,
we shall investigate methods to distribute the planning process. Finally, we also want to test our
approach in real robots.
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