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Abstract We propose a holistic approach for three-

dimensional (3D) object reconstruction with a mobile

manipulator robot with an eye-in-hand sensor; consid-

ering the plan to reach the desired view/state, and the

uncertainty in both observations and controls. This is

one of the first methods that determines the next best

view/state in the state space, following a methodology

in which a set of candidate views/states is directly gen-

erated in the state space, and later only a subset of these

views is kept by filtering the original set. It also deter-

mines the controls that yield a collision free trajectory

to reach a state using Rapidly-Exploring Random Trees

(RRTs). To decrease the processing time we propose an

efficient evaluation strategy based on filters, and a 3D

visibility calculation with hierarchical ray tracing. The

next best view/state is selected based on the expected

utility, generating samples in the control space based

on an error distribution according to the dynamics of

the robot. This makes the method robust to position-

ing error, significantly reducing the collision rate and

increasing the coverage, as shown in the experiments.

Several experiments in simulation and with a real mo-

bile manipulator robot with 8 degrees of freedom show

that the proposed method provides an effective and fast

method for a mobile manipulator to build 3D models

of unknown objects. To our knowledge, this is one of

the first works that demonstrates the reconstruction of
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1 Introduction

Three-dimensional (3D) models from real objects have

several applications in robotics, for example, collision

detection, object recognition, pose estimation, etc. There-

fore, a mobile robot must have the ability of building 3D

models of the objects in its environment for interacting

with them further. The task of building a 3D model of

an object is known as automated 3D object reconstruc-

tion [25]. Given that the object is unknown, the recon-

struction is a cycling process of observing and deciding

where to see next. First, a range sensor is placed by the

robot at a certain location where a scan is taken. Then,

if there are scans taken from previous iterations, the

new one is transformed to a global reference frame and

registered with previous scans. After that, the robot

has to compute the next sensor pose which increases

the reconstructed surface based on the available infor-

mation, such sensor pose is called next best view. The

reconstruction is finished when a termination criterion

is satisfied.

A Next Best View (NBV) is a sensor pose, position

and orientation, that sees (covers) the greatest amount

of unknown area while several constraints are kept. We

assume that the sensor is mounted on the end effector

of a mobile manipulator robot. Therefore, to plan the

NBV requires to compute the robot state and to deter-

mine a trajectory to reach the NBV. In this paper we

propose a method that plans the Next Best View/State

(NBVS) and a trajectory to reach it, instead of using
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Fig. 1 The proposed method is able to plan each robot
view/state in order to reconstruct a real object. In our exper-
iments we use a mobile manipulator of 8 degrees of freedom
to reconstruct several objects. A Kinect sensor was mounted
on the robot’s end effector.

only the sensor pose. A view/state is a collision free

robot state that satisfies the constraints of the next best

view. When the robot moves it does not correct its pose

continuously; the robot is re-localized after each scan

using the overlap between the partial model of the ob-

ject and the new scanned surface. The re-localization is

done with respect to a reference frame defined by the

object.

A critical problem is that the reached robot’s state

differs from the planned one, due to the fact that the re-

sult from an applied control is uncertain [26]. The differ-

ence between the planned sensor pose and the reached

sensor pose is called positioning system error [24]. This

error reduces the measurement precision, sampling den-

sity, visibility and coverage. Furthermore, during the

execution of a trajectory the robot can collide with the

environment or the object.

In the early state of our research in this topic, we

have proposed an approach [33,36] that works for a

freeflyer sensor. That approach does not consider the

robot constraints. Later, in [34] we have proposed a hi-

erarchical ray tracing that efficiently computes approx-

imated robots visibility.

A preliminary version of some parts of this work

have been presented in [35]. In [35], we have proposed a

deterministic utility function that integrates several rel-

evant aspects of the problem and an efficient strategy to

evaluate the candidate views. We have also integrated

the hierarchical ray tracing [34] to the computation of

the deterministic utility function. The main differences

between the work presented here and the one presented

in [35] are the following:

1. In this work, we have proposed a planning method

that directly generates the robots controls yielding

trajectories to reach a view/state and an expected

utility function that reduces the collision rate during

the execution phase.

2. We have also tested the proposed approach under

several conditions. In [35] only one experiment in

the real robotic system is presented, in this work we

present two additional experiments that have not

been presented in [35]. One experiment is made in an

environment with obstacles and the other presents

the reconstruction of a complex object. In this work

we also present simulations comparing the proposed

approach versus the one presented in [12], as well as

simulations under motion uncertainty. These simu-

lation results have not been presented in [35].

3. We have included new simulation experiments com-

paring the expected utility versus a deterministic

one in a cluttered environment. These simulation

experiments show that the expected utility signifi-

cantly reduces the collision rate and increased the

object’s coverage.

4. We have also integrated in this work the efficient ray

tracing [34] and the efficient evaluation strategy [35],

which makes it possible to compute the expected

utility in a reasonable amount of processing time.

In more detail, here we propose a method that de-

termines a NBVS robust to positioning error. The pro-

posed search-based method ranks a set of candidate

views/states with the novel concept of expected util-

ity. The expected utility is the most likely utility that a

view/state will have under positioning error conditions.

To determine the expected utility we generate several

samples on the control space, based on the error distri-

bution, then we transform those samples to the utility

space and finally we compute the expected utility by

associating a probability to each sample.

One of the contributions of this work is the incor-

poration of the expected utility, which is suitable for

finding collision free trajectories under control errors

at the execution time. Note that even if a motion plan-

ning method does find a collision free trajectory at the

planning time, due to imperfect controls that trajectory

might produce a collision with the obstacles at the ex-

ecution time due to noise on the controls. The analysis

presented in Subsection 7.2 estimates the probability of

finding collision free trajectories at execution time and

it is based on statistics over the trajectories generated

with control errors. In that analysis we compute the

number of samples required to guarantee with certain

confidence that a trajectory is collision free.

We present experimental results in a simulated envi-

ronment. We also present experiments with a real robot
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where several objects are reconstructed. In those exper-

iments the expected utility method significantly reduces

the collision rate and increases the reconstruction cov-

erage.

The proposed approach provides an effective and

fast method for a mobile manipulator to build 3D mod-

els of unknown objects. Effective means that a large

percentage of the object surface is reconstructed, in our

experiments, it is in the order of 95%. Fast means that

the processing time to plan the NBV and a path to

reach it takes typically less than a minute for deter-

ministic utility and the processing time remains in the

order of minutes for expected utility. We present dif-

ferent experimental results. We validate the effective-

ness of our utility function, comparing it versus infor-

mation gain. The proposed utility function covers the

same surface’s percentage in a shorter processing time.

We also present experimental results with a real mobile

manipulator robot (see Fig. 1) with 8 degrees of free-

dom (DOF), showing the effectiveness of the method to

deal with real objects.

2 Related Work

Since the 80’s the next-best-view (NBV) problem has

been addressed. For a detailed review of classical meth-

ods see [25]. According to [25], our algorithm is volu-

metric and search-based, so we will mainly review sim-

ilar methods in this section.

The work of Connolly [2] was one of the first in this

field, it represents the object with an octree and deter-

mines the NBV with one of two approaches. The first

one determines the NBV as the sum of normals from

unknown voxels. The second method, called planetary,

determines the NBV by testing views from a set around

the object.

A pioneering work in the field of 3D scene recon-

struction is the one presented in [20]. In that work the

authors combine visual servoing and Bayes nets to gen-

erate motion strategies for 3D scene reconstruction. Our

work proposes different techniques such as sampling

based motion planning algorithms in the state space

(configuration plus velocities), and an expected utility

to deal with controls errors at execution time.

Foissotte et al. [4] propose an optimization algo-

rithm to maximize the amount of unknown data in the

camera’s field of view (FOV). However, optimization

methods can easily fall into local minimum. Krainin et

al. [11] proposed a method in which the robot grasps

the object and moves it inside the camera’s FOV. In [1],

the authors propose a method in which a robot manipu-

lator actively manipulates a target object and generates

a complete model by accumulation and registration of

partial views. However, the robot might not have the

ability to grasp and move the object.

2.1 Path Planning for Next Best View

Few works have considered the problem of finding good

views and the problem of obtaining the robot paths

to reach them. In [29], the proposed method plans a

NBV in the workspace and then inverse kinematics is

calculated to obtain a configuration that matches the

desired sensor location in the workspace. In this work,

we select views/states directly in the state space and

we plan the controls to reach them. In [12], the authors

combine two approaches for determining the NBV, sur-

face based and volumetric based methods. First, they

compute a set of candidate paths over the border of the

reconstructed triangular mesh, then they evaluate the

goodness on the volumetric representation. Two impor-

tant differences with our approach are: (i) Kriegel et al.

propose the use of information gain (IG) to evaluate

views, while in this work, the unknown surface is mea-

sured to evaluate views (In section 8.1.4, we present a

comparison of both approaches), (ii) in this work we

consider a mobile manipulator, while in [12], the au-

thors consider a robot arm with perfect positioning.

In [28,27] a mobile manipulator robot is used to

reconstruct an object. In that work, the authors present

a planner which integrates two next best view (NBV)

algorithms, one for modeling the object and the other

for exploration of the environment. For simplifying the

problem of finding collision free paths, path planning

is decoupled, the mobile base and the manipulator do

not move simultaneously (i.e., when the mobile base

is moving, the manipulator will remain still and vice-

versa). In contrast to [28], in this work we assume that

the workspace is known by the robot, but we allow the

robotic base and the arm to move simultaneously and

the controls for the whole robotic system are directly

generated by the planning algorithms. We also take into

account noise over the robot’s controls. Furthermore,

we introduce the expected utility which is useful for

reducing the collision rate at execution time.

The aim of the work presented in [13] is to obtain

a high quality surface model allowing for robotic ap-

plications such as grasping and manipulation. It in-

tegrates 3D modeling methods with autonomous view

planning and collision-free path planning. That work

uses Rapidly-Exploring Random Trees (RRTs) and Prob-

abilistic Road Maps (PRMs) to find collision free paths.

However, the integration of those planning methods in

the resulting robotic system is not described in detail.
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The work presented in [10] proposes an approach to de-

termine the Next Best View for an efficient reconstruc-

tion of highly accurate 3D models. The method is based

on the classification of the acquired surfaces into Well

visible and Barely visible combined with a best view se-

lection algorithm based on mean shift. That work has

been tested in a robotic cell including a robotic arm.

In [10] the authors propose as future work to deal with

issues mainly related to path planning. A key difference

between the work presented in this paper and the ap-

proach presented in [13] and [10] is that those works

do not deal with noise over the robot controls. The ex-

pected utility proposed here finds collision free trajec-

tories under control errors at execution time.

In the recent work presented in [23], the authors

present an interesting information gain-based variant

of the next best view problem for a cluttered environ-

ment. The authors propose a belief model that allows

them to obtain an accurate prediction of the potential

information gain of new viewing locations. However, the

authors do not deal with the problem of planning colli-

sion free paths under motion uncertainty. In this work,

we deal with that problem.

2.2 Motion Planning under Uncertainty

There are several approaches for motion planning un-

der uncertainty. In [31] a classification of these types

of methods is provided. This classification is based on

the type of uncertainty: i) motion uncertainty, ii) uncer-

tainty on the observation and state and iii) uncertainty

on the environment itself. In this work, we consider un-

certainty in the controls and observations but we as-

sume that the environment is not uncertain. We deal

with uncertainty on both, controls and states, using a

probabilistic motion model and a model to estimate

probabilistically a collision free state and trajectory to

reach it. We deal with uncertainty on the observations

using a probabilistic octree.

Motion planners that deal with uncertainty typi-

cally select the less uncertain paths or trajectories based

on an evaluation of candidates. Some selection criteria

are minimal uncertainty or the smallest collision prob-

ability. In [21], an extension to the Rapidly-Exploring

Random Tree (RRT) [16] is proposed, which modifies

the extension step in the RRTs performing simulations

based on a stochastic kinematic model. A set of sim-

ulations generates a set of particles representing the

robot state. The particles are grouped based on a given

distance. Each group of particles represents a possible

state. In [9] several extensions to deal with uncertainty

for RRTs are proposed. In particular, the authors deal

with rough terrains. The authors propose a probabilis-

tic model for the terrain and, based on this model, a

robot trajectory is selected.

The Probabilistic Road Map (PRM) technique [8]

has also been adapted to deal with uncertainty. In [6]

the shortest path that satisfies a threshold of the prob-

ability of collision is selected.

In a recent work [32], van den Berg et al. propose

an interesting local optimization approach to find lo-

cally optimal stochastic controls. The authors deal with

the case of an specific non-linear systems with a Par-

tially Observable Markov Decision Process (POMDP).

To make the problem tractable, the belief function is

represented in a finite dimensional space by consider-

ing Gaussian distributions and implementing the Bayes

filter as an extended Kalman filter. The key idea is to

recursively quadratize the optimal value function based

on the belief.

In contrast to previous work, in this paper we focus

on the effect that the uncertainty has over the task of

next best view/state planning for object reconstruction.

In particular we deal with the problem of generating

collision free states and trajectories to reach them. We

use a probabilistic motion model as the one proposed

in [26]. In the proposed method the samples are used to

determine the expected utility to reconstruct an object,

selecting the controls to reach the view/state with the

maximum expected utility.

3 Definitions and Notation

The workspace, W, is a 3D Euclidean space, W = R3

[15]. Let Wobj be the object which is a closed set of

points in the workspace. We assume that the object

shape is unknown but the position and maximum size

of the object is known, with this information an object

bounding box,Wbox ⊂ W, is established containing the

object to be reconstructed,Wobj ⊂ Wbox. The unknown

region is the space that hides the object surfaces until

a scan is made in that region. Let Wunk denote the

unknown region. At the beginning of the reconstruction

Wunk =Wbox.

We assume that the environment except Wbox is

known. Let Oenv denote the other obstacles in the en-

vironment. Let O denote the obstacle region so that

O =Wobj ∪Wunk ∪Oenv. The free space, Wfree, is the

complement of the obstacle region Wfree =W \O.

A range sensor is able to acquire a 2 1
2 image from

the scene, i.e., a set of 3D points with respect to the

sensor’s reference frame. Let V denote the view space

which represents all possible combinations of the sensor

position and orientation, V ⊆ R3×SO(3). Each element
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of V is called a view and it is represented as v. The

director ray of the sensor is a vector that points in the

orientation of the sensor.

The robot, A ⊂ R3 , is the device in charge of

placing the sensor at a given view. A configuration of

the robot is denoted by q. Our particular robot has

eight degrees of freedom (DOF). The position of the

robotic base is defined by x, y, the orientation of the

robotic base is denoted by θb, and θ1, θ2, θ3, θ4, θ5 de-

note the orientations of the links of the robotic arm.

The set of all possible configurations is the configu-

ration space, C. Let A(q) ⊂ W denote the physical

space occupied by the robot and the sensor at configu-

ration q. The free configuration space is a subset of C in

which the robot is not in collision with the environment,

Cfree = {q|A(q) ∩ O = ∅}. Cobs = C \ Cfree. Let X de-

note the state space in which a state, x ∈ X , is defined

as x = (q, q̇) [16]. Thus, in this work, the robot’s state is

a configuration plus the velocities applied to the robot’s

degrees of freedom used to reach such configuration. Be-

sides, those velocities are not perfect; we assume noise

over them, this noise appears in real robotic systems

(see Section 6).

We assume that the robot is controlled by a set of

velocities applied to each DOF, called control, u ∈ U .

The variation with respect to time of the robot’s state

is given by the state transition equation:

ẋ = f(x, u) (1)

The robot moves without correcting its pose contin-

uously, but the robot is re-localized after each scan us-

ing the matching between the reconstructed point cloud

and the new scanned surface. Before the first robot

motion, we assume that the positions and orientations

of the mobile base and the arm are accurately known

with respect to a reference frame defined by the object

bounding box.

4 Approach Overview

Here, we present a brief overview of the whole strategy

for 3D object reconstruction. Fig. 2 shows the flow dia-

gram of the NBVS planning for object reconstruction.

Below we describe the strategy.

The whole process involves two main parts: (i) 3D

reconstruction and (ii) next best view/state planning.

Our contributions in this work are mainly in the second

part.

The 3D reconstruction consists of integrating a se-

ries of scans of the object of interest taken from the

different sensing positions. The initial view/state is set

arbitrarily, and the next ones are determined by the

Fig. 2 3D object reconstruction with next best view/state
planning. The diagram shows the whole process of object re-
construction. The processes related with the NBVS compu-
tation are filled in gray.

Fig. 3 Partial Model of the scene. To the left is the re-
construction scene. To the right is the partial model. The
robot is represented by a triangular mesh. Unknown voxels
are painted in yellow and occupied voxels are painted in blue
(best seen in color).

NBVS planning algorithm. After each scan, the sensor

readings are integrated into an octree that represents

the object’s bounding box. From the octree the occu-

pied voxels that represent object surface are integrated

with the current surface model via a registration pro-

cess made possible by the overlap with the previous

views. At the same time the robot is re-localized based

on this registration step. Our planner assumes that the

environment (including the obstacles) is known, except

the object bounding box. However, as the robot discov-

ers the object to be reconstructed, the proposed planner

considers the new sensed information to avoid collisions

with the object to be reconstructed and to find the next

best view/state.

The NBVS phase starts by generating a set of view/

state points in the configuration space which are ranked

according to a utility function. The utility function com-

bines four factors: (i) position, (ii) registration, (iii) sur-

face, and (iv) distance. To perform this evaluation ef-

ficiently, it is done through several filters, so that the
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candidate view/state that does not pass a filter is elimi-

nated from the candidate set. The factors that consume

less processing time are evaluated first.

First the positioning factor is evaluated, the candi-

dates in collision are eliminated. Then the visibility of

each view/state is calculated using an efficient scheme

based on Hierarchical Ray Tracing (see section 5.4).

To perform the registration process, only the candi-

dates that guarantee a minimum overlap with previ-

ous views are maintained. The next step is to evaluate

that amount of unknown voxels that are observed, this

factor is normalized by the total number of remain-

ing unknown voxels. For a reduced set of candidates a

trajectory to each candidate state is planned using the

Rapidly Exploring Random trees method. The candi-

date states are evaluated according to their distance to

the current robot state considering the path followed by

the robot. Then, the remaining candidates are ranked

based on their expected utility. The expected utility is

the expected value of the utility that a view/state will

have under positioning error conditions. To determine

the expected utility we generate several samples on the

control space, based on the error distribution, then we

transform those samples to the utility space and finally

we compute the expected utility by associating a prob-

ability to each sample.

Finally the best candidate according to the expected

utility is selected as NBVS. The 3D reconstruction–

NBVS cycle is repeated until the surface factor is lower

than a threshold (see SubSection 7.6), or no path was

found for any of the candidate views/states.

5 Observation Model

In this section we describe the representation of the ob-

ject bounding box, the integration of the sensor read-

ings and the visibility calculation for a view/state.

5.1 Probabilistic Octree

To represent the object bounding box, Wbox, we use

a probabilistic occupancy map based on the octomap

structure [5], which is an octree with probabilistic oc-

cupancy estimation. See Fig. 3. In this representation

each voxel has associated a probability of being occu-

pied. We use a probabilistic octree because it is able to

deal with noise on the sensor readings. From now on we

refer to a probabilistic occupancy map as octree.

Similarly to the work presented in [13], in this work,

we transform a sensed observation (a set of 3D points)

to classes. For doing so we use as elementary unit the

voxels. Depending on the probability of been occupied,

we classify each voxel with one of three possible classes:

i) occupied, which represents surface points measured

by the range sensor, ii) free, which represents free space

and iii) unknown, whose space has not been seen by the

sensor. Each class has a defined probability interval. In

our implementation the unknown voxel class has the in-

terval [0.45, 0.55]. Class free has a probability less than

0.45 and class occupied has a probability larger than

0.55. One main adventage of defining these classes is

that they allows us to know the amount of overlapped

surface (voxels classified as occupied) between the new

sensed surface and the partial model of the object. The

amount of overlap is central to achieve a successful reg-

istration between the new data and the model of the

object (see Section 7.1.)

5.2 Scanning

A scan recovers information of the workspace inside the

sensor’s frustum. Let F(vx) denote the subset of the

workspace that lies inside the sensor’s frustum at the

view vx. Due to the fact that the sensor is attached

to the end-effector of the robot, we simply specify the

frustum with F(x). vx is calculated by direct kinemat-

ics in order to get the pose of the sensor given a robot

state [15]. We use a Denavit-Hartenberg model of our

mobile manipulator robot to perform the direct kine-

matics computation.

The set of points that belongs to the object surface

is denoted by S. S = {p|p = [x, y, z]T }. Let Siknown
denote the subset of the object surface that becomes

known in the i-th iteration [29]. The accumulated sur-

face after k scans is denoted by Sknown =
⋃
i=1:k S

i
known.

With respect to a sensing state, x, the surface of the ob-

ject discovered is denoted by Sxknown.

5.3 Octree Update

Once a scan has been made, the sensor readings are in-

tegrated into the octree. Given an iteration i, for each

point, p, of the measured surface points, Siknown, a ray

is traced between the sensor position and p. The oc-

cupancy probability, p(n|z1:i), of a traveled voxel, n, is

updated according to the octomap sensor fusion model

[5].

5.4 Visibility Calculation

The visibility calculation is the simulation of a scan in-

side the octree. This simulation allows us to determine

which type of voxels are visible for a given sensor pose.
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(a) (b) (c)

Fig. 4 Examples of uniform ray tracing and hierarchical ray
tracing. (a) Uniform ray tracing. All sensor rays are traced in
the octree. (b) Rays traced in a coarse octree. (c) Ray tracing
in a finer octree only for touched voxels.

Therefore, it will help us to determine the goodness of

a state (given the associated sensor pose). Usually, this

task is achieved with a uniform ray tracing, it traces

a number of rays inside the map simulating a range

sensor (Fig. 4(a)). However, such process can be highly

expensive if the voxels’ size is small. To reduce the pro-

cessing time, we use a variant of the hierarchical ray

tracing presented in [34].

In [34], we introduce a Hierarchical Ray Tracing

(HRT). It is based on tracing few rays in a rough resolu-

tion map; then, only when occupied voxels are touched

by a ray, the resolution is increased for observing details

(see Fig. 4). The coarsest resolution where the HRT

starts is defined by a resolution parameter (a); when a is

equal to 0 a uniform ray tracing is performed: for a > 0

the voxel size increases by a factor of 2a times the orig-

inal size. Such strategy typically reduces the processing

time needed to evaluate a view in at least one order

of magnitude. In our previous work we only increase

the resolution when an occupied voxels is touched. In

this work, we increase the resolution when occupied and

unknown voxels are touched. The advantage of refin-

ing the resolution for an unknown voxel is to discard

empty part of the space (voxels classified as free). In

this way the evaluation of the utility function will be

more precise. Section 8.1.2 details several experiments

where there is 60% of processing time reduction with

only a loss of 1% of coverage.

6 Probabilistic Motion Model

A mobile manipulator has several sources of position er-

ror. In the mobile base, the error comes up usually from

the slipping between the wheels and the ground; with-

out a re-localization process, the error is accumulated

and the pose uncertainty increases. The error sources

of the arm are kinematics calibration, dynamic errors

and position between links [19]; often a calibration step

is performed and only residual errors are kept, namely,

the uncertainty of the links positions with respect to

the base does not grow. Given that the arm and sensor

are attached to the base, the sensor pose is affected in

position, and orientation and the error increments as

the robot executes larger trajectories.

6.1 Control with Noise

The robotic base is controlled by linear and angular

velocities. These velocities are not perfect. To model the

imperfection of the velocities we use random variables

with zero mean and variance σ2. Thus, the linear and

angular velocities are given by:

v̂ = v + εσ2
v

ŵ = w + εσ2
w

To obtain instances of this error we generate a random

sample of the error with zero mean and variance σ2.

We take samples from a normal distribution. The im-

perfection of the robot motion depends on the values of

σ2
v and σ2

ω. Large values correspond to large errors.

v̂ = v + sample(σ2
v)

ω̂ = ω + sample(σ2
ω)

Function sample generates a random sample of zero

mean and variance σ2.

To model errors in the motion of the robotic arm a

similar approach is used, considering that the angular

velocity of each link of the robotic arm is not perfect.

Thus

ω̂i = ωi + sample(σ2
ωi

)

Typically, the motion of the robot arm is more accurate

than the robotic base. Thus, σ2
ωi

will be smaller than

σ2
ω.

6.2 Numerical Integration

To simulate the uncertainty over the robot motion we

use the Euler integration method over the robot state

variables (x, y, θb, θ1, θ2, θ3, θ4, θ5).

xt = xt−1 + v̂ cos(θb)t−1∆t

yt = yt−1 + v̂ sin(θb)t−1∆t

θb = (θb)t−1 + ω̂b∆t

θi = (θi)t−1 + ω̂i∆t



8 J. Irving Vasquez-Gomez et al.

6.3 Probability of Reaching the Next State

The probability of reaching a next state after having

applied a single control is given by

p(xt|ut, xt−1) = p(εσv
)p(εωb

)

n∏
i=1

p(εωi
) (2)

In general to reach a new state more than a single

control is needed. Assuming independence of the con-

trols over time, the probability of p(xt|u1:t, x0:t−1) is

given by:

p(xt|u1:t, x0:t−1) =

t∏
i=1

p(xi|ui, xi−1) (3)

7 View/State Planning for Object

Reconstruction

Object reconstruction is achieved by repeating the steps

of scanning, registration, model update, next best

view/state planning and execution of the calculated set

of controls to reach the planned view/state.

To plan the next best view/state (NBVS), we sam-

ple the robot’s state space and rank those samples with

a utility function, so that the sample with the high-

est evaluation is selected as the NBVS. Our approach

contrasts with related work where the candidates are

generated in the workspace and inverse kinematics is

required to reach them. The drawback of those meth-

ods is that the robot might not be physically able to

reach a planned view (e.g. to observe the top of a given

object). In addition, to generate samples in the state

space avoids inverse kinematics calculation.

Below we describe the utility function, the expected

utility calculation, an analysis of the number of samples

required to guarantee collision free trajectories, and the

efficient evaluation strategy to calculate the NBVS.

7.1 Utility function

The utility function ranks the candidate views/states

according to their goodness for the reconstruction pro-

cess. We propose a utility function as a product of fac-

tors:

g(x) = pos(x)· reg(x)· sur(x)· dist(x) (4)

where each factor evaluates a constraint, below we de-

tail each constraint. The utility function is a multipli-

cation because if any of the factors is zero then it is not

a valid state and it is worthless to calculate the others.

7.1.1 Positioning

pos(x) is 1 when a robot state is collision free, and a col-

lision free path from the current state to the evaluated

state is available; otherwise it is 0.

7.1.2 Registration

To register the new scan, previous works have proposed

to assure a minimum amount of overlap [34] or consider

all causes of failure [17]. A minimum overlap is a neces-

sary but not sufficient condition to guarantee registra-

tion. However, it requires a small processing time. On

the other hand, to measure all causes of failure guar-

antee a successful registration but is very expensive (as

described in [18]). In this work, we propose a simple

factor that is fast for evaluation, reg(x). It is 1 if a

minimum percent of overlap with previous surfaces ex-

ist, and 0 otherwise. See equation (5).

reg(x) =

1 if
oco(x)

oco(x) + uno(x)
> h

0 otherwise
(5)

where oco(x) indicates the amount of occupied voxels

that are touched by the sensor and lie inside Wbox,

uno(x) is the amount of unknown voxels in Wbox, and h

is a threshold. This factor allows us to evaluate a large

amount of views efficiently and has been tested in the

experiments with a real robot with good results.

7.1.3 New surface

sur(x) evaluates a view/state depending on how much

surface from the unknown volume is seen, i.e. the amount

of visible unknown voxels. Such function returns values

between 0 and 1. If no new information is obtained then

the function returns zero and the maximal amount of

information obtained corresponds to see the whole vol-

ume of the object, in that case the function returns one.

See equation (6).

sur(x) =
uno(x)

untotal
(6)

where untotal is the total amount of unknown voxels

inside Wbox.

7.1.4 Distance Factor

Candidate states are also evaluated according to their

distance to the current robot state. The function is

shown in eq. (7):
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dist(xn) =
1

1 + ρ(x0, xn)
(7)

where ρ is the summation of the weighted Euclidean dis-

tance between the nodes of the path P = {x0, x1...xn}
between the current robot state x0 and the candidate

state xn, as defined in equation (8).

ρ(x0, xn) =

n∑
i=1

√√√√ m∑
j=1

wj(xi(aj)− xi−1(aj))2 (8)

where x(aj) is the j-th degree of freedom of the state

x, wj is a weight assigned that degree of freedom (we

have determined appropriated weights experimentally,

see Section 8), and m is the number of degrees of free-

dom.

Unlike our previous approach, where a distance in

the workspace was defined [36], this distance measures

the path followed by the robot, which in most of the

cases is not a straight line, i.e., the robot has to avoid

obstacles or needs a trajectory different to a straight

line due to non-holonomic constraints.

Note that this measure is already normalized be-

tween zero and one, in the sense that if the robot does

not move, the measure is one, and as the length of the

robot motion increases, tending to infinity, the measure

tends to zero.

7.2 Expected Utility

To deal with spatial uncertainty, we propose to evaluate

a candidate view/state with the expected utility instead

of a deterministic utility. The expected utility denotes

the most likely utility of a view/state, x, when a given

trajectory between the robot current state, xc, and x is

executed. In other words, the average utility when the

robot moves to the indicated state many times. For-

mally, let the utility of a candidate view/state, x, be a

random variable Gx, with probability distribution p(g).

The expected utility of x is defined by equation (9).

E(Gx) =

∫ ∞
−∞

g · p(g)dg (9)

In the view planning problem, g depends on the

shape, surface and size of the object plus the restric-

tions described in section 7.1, therefore its calculation

is very expensive. In addition, the distribution over the

utility is not trivial to determine, given that the error

is modeled by a distribution over the control space, and

such distribution has to pass through several non linear

transformations, from the control space, U , to the state

space, X , and then to the utility G. Given the previ-

ous reasons, we approximate equation (9) with equation

(10).

E(Gx) ≈
k∑
i=1

gi · p(gi) (10)

where k is a number of samples, gi the utility of the i-

sample and p(gi) the probability of reaching that sam-

ple.

Next, we describe the expected utility calculation,

summarized in algorithm 1. The idea is to compute the

expected utility using several states around x whose

distribution depends on the executed trajectory. The

set of samples is denoted by S = {s1, s2...sk}, S ⊂
X . The algorithm generates the samples and for each

sample, its utility and probability of being reached is

computed. Finally, the probabilities are normalized and

the expected utility is computed.

In detail, the algorithm generates k samples by sim-

ulating k times the execution of the trajectory as a

stochastic process. For each simulation, the algorithm

starts from the current state (line 2) and applies each

control according to a motion model (line 4). The sam-

ple motion model, described by Thrun in [26], returns

the next state given a current state and an applied con-

trol; however the applied control is perturbed with an

stochastic error. Each generated state, xt, is tested for

collision (line 6), if one of them is in collision then the

candidate state, x, is denoted as unfeasible (line 7).

Marking the candidate as unfeasible when at least one

generated state of the simulations is in collision is a con-

servative strategy that could be replaced by a weighted

strategy. The last state of each simulation is taken as a

sample (line 10). The utility of each sample is calculated

using equation (4) (line 9). To compute the probability

of occurrence of each sample, we assume independence

of the errors over time, therefore the probability of each

sample is calculated as the product of the probabilities

of the occurrence of each intermediate state (line 10).

Finally, we normalize the probabilities of the k samples

and compute the expected utility (lines 11 and 12).

7.3 Analysis

In order to generate a sample state each control is per-

turbed with a stochastic error, see section 6. Sampling

the error, ε, using all the domain of the distribution,

(−∞,∞), could generate a sample far away from the

mean. This situation becomes important given that any

sample that is in collision makes the candidate to be

discarded (line 7 of the algorithm 1). To deal with
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Algorithm 1: Expected utility. The algorithm

calculates the expected utility, E(x), of a can-

didate view/state x. It requires the candidate

view/state, x, the current configuration, xc, the

sequence of controls τ = {u1, ...um} that connects

xc with x and the number of samples, k.

input : x, xc, τ , k
output: E(x)

1 for i← 1 to k do
2 x0 ← xc;
3 for t← 1 to m do
4 xt ← SampleMotionModel(ut, xt−1) ;
5 pt ← p(xt|xt−1, ut) ;
6 if xt ∈ Xobs then
7 return Unfeasible;

8 si ← xm;
9 gi ← g(si); // Utility of the sample

10 Pi ←
∏m

t=1 pt; // Probability of the sample

11 η ← 1∑k
i=1

Pi
;

12 return E(x)←
∑k

i=1 gi · ηPi;

this issue, we restrict the samples to a closed interval,

ε ∈ [−β, β], see Fig. 5a. Considering the errors for a

given control, we could form a hyper-volume R, where

a sample could fall. See Fig. 5 b.
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Control error (ε)

p
(ε

)

µ−β β

(a) Error distribution

0

R

(b) Sampling region in X

Fig. 5 Figure a) shows the limits applied to the error distri-
bution during the sampling. Figure b) shows the hyper vol-
ume R which is the region in X where the samples could fall.
R region could be intersected by O as shown in the figure.
The size of R depends on the distribution of the error and
the maximum values of the error, [−β, β].

The hyper volume R does depend on both, the state

transition equation and the sampling interval [−β, β].

However, we do not need to know the exact shape of

R, since we estimate its volume by counting samples

of final states generated through simulations. That is,

we estimate the volume R, by simulating the robot tra-

jectory using the state transition equation ẋ = f(x, u),

numerical integration is used to obtain the robot’s tra-

jectories. The final robot’s states generating R are the

states that use the imperfect controls having a bound

over probabilistic density function given by the interval

[−β, β].

It is important to detect collisions inside R before

sending the robot, this issue is related to how many

samples are drawn. Below, we analyze how likely it is to

detect a collision as the number of samples, k, increases.

Let us assume that the obstacle region O intersects R.

The probability that a sample does not hit the obstacle,

event A, is equal to the probability of falling into R and

not inO, namely P (A) = P (O|R), using the conditional

probability definition:

P (A) =
P (O ∩R)

P (R)
(11)

given that O partitions R, P (R) = P (O∩R)+P (O∩R),

we rewrite eq. (11) as:

P (A) =
P (R)− P (O ∩R)

P (R)
(12)

by the distributive property,

P (A) = 1− P (O ∩R)

P (R)
(13)

given that we know the sampling interval, [−β, β], we

make the probability P (R) = P (−β ≤ ε ≤ β), such

probability depends on the error distribution. In our

experiments, we assume a normal distribution and we

sample ε inside the interval [−3σ, 3σ]. So, according to

the “empirical rule” the probability of P (−3σ ≤ ε ≤
3σ) = 0.997. Once that we have identified how to cal-

culate P (R), we simplify the notation defining η as:

η =
1

P (R)
(14)

On the other hand, P (O ∩ R) should be computed as

the probability that a sample ε belongs to [−β, β] and

at the same time that ε belongs to an interval Eobs such

that every ε ∈ Eobs leads to a collision with the ob-

stacle region. However, to determine analytically Eobs
is not trivial. In consequence an approximation can be

obtained through simulations.

For analysis purposes, let us assume γ = P (O ∩R).

Substituting η and γ, we rewrite equation (13) as:

P (A) = 1− ηγ (15)

Now, assuming that each sample is drawn indepen-

dently, the probability of drawing k samples and that

not a single one hits the obstacle is:

P (Ak) = (1− ηγ)
k

(16)

Bounding (16) by an α, lead us to (1− ηγ)
k ≤ α, then,

solving for k:

k log(1− ηγ) ≤ logα (17)
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k ≥ logα

log(1− ηγ)
(18)

Therefore, assuming certain probability of intersection,

γ, and for a larger enough k, we can expect with certain

(1 − α) probability that the real movement is collision

free. For example, making α = 0.01, η = 1
0.997 and

γ = 0.05 the number of samples should be more than

90 to be 0.99 sure that the movement is collision free.

In practice, we perform extensive off-line simula-

tions to estimate the probability γ = P (O∩R). This is

feasible, since the environment is known, including the

object’s bounding box.

Thus, we estimate the probability of collision inside

R, that is, region O intersected with R, by counting the

number of final states that are in collision divided by

the total number of final states defining R.

7.4 Collision Free Trajectories with RRTs

The Rapidly Exploring Random Tree method (RRT)

is a data structure and algorithm that is designed for

efficiently searching non convex high-dimensional con-

figuration or state spaces [16]. The RRT can be consid-

ered as a Monte Carlo way of biasing search into largest

Voronoi regions. RRTs and related methods have been

used in a variety of applications, for instance motion

planning for humanoid robots [14], or to plan naviga-

tion routes for a Mars rover that take into account dy-

namics [30]. In [22], a sensor-based RRT, called SRT, is

used for exploration of 2D environments. In [7], the au-

thors have extended the RRT and other sampling-based

motion planning algorithms to find optimal paths.

In this work, we adapt the RRT Ext-Ext [16] to plan

robotic trajectories between the current robot state and

the candidate view/states. The RRT Ext-Ext algorithm

grows two balanced trees, one from the current state

and one from the candidate state.

One advantage of using an RRT is that the result-

ing view/state will be at the same time collision free

and will satisfy the sensing constraints (e.g. the sen-

sor will be pointing to the object to be reconstructed,

new surface sensed from that state will be present and

the amount of overlapping surfaces that facilitates the

registration process will be enough). Furthermore, such

method directly gives us a set of controls to reach such

state. In contrast, if the goal is given as a sensor pose,

which will be reached by the robot using inverse kine-

matics, then depending on the robotic system geometry,

it might happen that such sensor pose is not reachable.

7.5 Stop Criteria

The stop criterion decides when next best view plan-

ning task and the object’s reconstruction are termi-

nated. Previous works have proposed several criteria

based on the partial model of the object [29,12]. How-

ever, to consider only the object is not enough, i.e., the

robot state can be in collision with the environment or

an obstacle may be blocking the way.

In this work, we have used two stopping criteria. In

Subsection 8.1.4 we have used the number of scans as

stopping criterion, in order to make a fair comparison

with the Information Gain method. In the rest of the

paper the reconstruction process is stopped if the sur-

face factor is lower than a threshold, or no path was

found for any of the candidate views/states. However,

these criteria might be improved, for instance using a

criterion similar to the one proposed in [3], in which a

bound over the number of samples is established based

on the probability that a sample does not provide new

coverage. Nevertheless, we believe that the problem ad-

dressed in this work is more complex than the one pre-

sented in [3]. In this work the samples that would estab-

lish the stopping criterion lie in the configuration space

rather than in the 3-D space. Note that in sampling-

based motion planning (only considering the problem

of finding collision free paths) if a solution exists then

the probability of finding it tends to one as the number

of samples tends to infinity. But, to our knowledge, if a

solution does not exist then an ideal stopping criterion

is unknown. In the problem addressed in this work, use-

ful sampling configurations must be collision free and

reachable by a trajectory under control errors and they

must also provide new covered objects surface. Conse-

quently, finding the ideal stopping criteria is not trivial

and it deserves a careful analysis. We left this for future

work.

7.6 Efficient Evaluation Strategy

In order to evaluate the candidate states efficiently, we

perform the evaluation through several filters according

to the utility function. If a candidate does not pass a

filter then it is deleted from the candidate view/state

set. The factors that consume less processing time are

evaluated first, such that a time consuming factor is

only evaluate when the configuration satisfies the others

requirements.

1. Generation of candidates.A set of samples is gen-

erated by sampling the state space with a uniform

distribution. If the director ray of the sensor in-

tersects the object bounding box then the sample
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is considered as a candidate. This step has con-

stant complexity. (In our experiments to generate

ten thousands candidates requires less than a sec-

ond.)

2. Positioning filter. This filter checks the position-

ing factor of the utility function, pos(x). Here, we

evaluate whether or not the candidate x is collision

free.

3. Visibility calculation. This process calculates the

visibility of a state. In other words, it determines

the amount of unknown and occupied voxels that

are visible. These quantities will be used by the fol-

lowing filters.

4. Registration filter. This filter verifies if the can-

didates satisfy the registration filter, reg(x), of the

utility function.

5. Surface evaluation. This process evaluates the sur-

face factor, sur(x), of the utility function.

6. Ranking. The candidates are ranked depending on

the evaluation provided by the surface factor.

7. Selection of candidates. In this step, the number

of candidates is reduced to a small set, typically 25

samples. We made this restriction given that the

following step is computationally expensive.

8. Motion Planning In this step, for each of the re-

maining candidates a trajectory from the current

robot state is planned. We use a Rapidly-Exploring

Random Tree (RRT) Ext-Ext [16] for each of the

candidates.

9. Expected utility calculation So far we have sev-

eral candidates that are collision free, guarantee an

overlap, see unknown surface and have a collision

free trajectory from the current robot state. Based

on these factors a deterministic utility can be com-

puted. In order to compute an expected utility, for

each state candidate several trajectories consider-

ing control errors are generated. This is done using

stochastic simulations, so that each state candidate

has several uncertain trajectories in order to calcu-

late the expected utility.

8 Experiments

In this section, we present a comprehensive set of ex-

periments. Three groups of experiments are presented:

simulation with perfect positioning (Section 8.1), simu-

lations with uncertainty in positioning (Section 8.2) and

real robot experiments (Section 8.4). The first group of

experiments evaluates the processing time, the recon-

struction of complex objects and includes a comparison

with the information gain approach. The second group,

simulations with uncertainty, shows the advantage of

the expected utility approach in terms of a reduction of

the collision rate. The third group of experiments show

the behavior of the method in a real environment with

obstacles.

The variables that we measure in the experiments

are: i) the percentage of coverage, it is computed as

the ratio of correspondent points over the total number

of points in the ground truth model; a correspondent

point is a ground truth point closer than a threshold

(3 mm) to a built model point, and ii) the collision

rate, calculated as the number of times that the robot

collides divided by the total number of times that the

robot executed a planned trajectory.

8.1 Simulations without motion uncertainty

The following experiments evaluate the performance of

the proposed NBVS planning method assuming per-

fect positioning. The first experiment measures the pro-

cessing time required to calculate the visibility of a

view. The second experiment measures the reconstruc-

tion coverage for different objects. The third experi-

ment compares the proposed utility function against

the Information Gain approach.

8.1.1 Scene configuration

The object to be modeled is set over a table in the re-

construction scene. The sensor is mounted on a mobile

manipulator robot with eight degrees of freedom. See

Fig. 3. Three different objects were reconstructed: the

Stanford bunny, a teapot and a dragon. Range sens-

ing was simulated using the Blensor Simulator (A Free

Open Source Simulation Package for Light Detection,

Ranging and Kinect sensors). Robot motion was simu-

lated with our own simulator. The scenes can be down-

loaded from: https://jivasquez.wordpress.com The sim-

ulated sensor is a time of flight camera of 176 × 144

points. The parameters used in the simulation experi-

ments are depicted in Table 1.

Parameter Value
Number of state samples
per iteration

10 000

Octree resolution 2 cm
Maximal number of
nodes in the RRTs

10 000

Overlap threshold (h) 50 %
Distance weights (wi) [10.0, 10.0, 0.5, 0.05, 0.05,

0.05, 0.05, 0.05]
Machine Intel core i5 microproces-

sor with 2Gb of RAM
Stop criteria 12 scans

Table 1 Parameters for the simulation experiments.
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(a) Bunny (b) Teapot (c) Dragon

(d) Reconstruction Scene.

Fig. 6 Synthetic objects and reconstruction scene.

8.1.2 Processing time of the Visibility Calculation

One of the most expensive aspects of the NBVS plan-

ning is to calculate the visibility of a view. The proposed

Hierarchical Ray Tracing (HRT) reduces the visibility

computation time, depending on the resolution param-

eter (section 5.4). We have tested different resolution

parameters for the reconstruction of the Bunny object.
The results are summarized in Table 2. The first column

shows the resolution parameter a used for the recon-

struction. Remember that a equal to zero is equivalent

to a uniform ray tracing. The second column shows the

average time required to evaluate a single view that

points to the object. The third column shows the voxel

size at the roughest resolution, in which HRT starts.

The fourth column shows the coverage percentage after

12 scans of the Bunny. A reduction of 60% of the pro-

cessing time is gained with a = 1. For higher resolution

parameters there is a further reduction in processing

time, until a = 4. Larger resolution parameters do not

imply a time reduction, given that the overhead of the

ray tracing structure increases the processing time.

In conclusion, HRT allows us to evaluate a large set

of views in a short time, making it possible that even a

naive set of random views could be useful to determine

the NBVS. A drawback of this method is that there is

no finer ray tracing for obstacles outside the bounding

(a) First scan. (b) Robot planned path.

(c) Planned NBVS. (d) Second scan.

Fig. 7 Stages of the Bunny reconstruction. Unknown voxels
are shown in yellow, occupied voxels are displayed in blue
(best seen in color).

Fig. 8 Final representations (point clouds) from the recon-
structed 3D synthetic objects.

box. Therefore, the best performance of the HRT is

obtained when the object has a clear space around it.

Table 2 View evaluation times using hierarchical ray trac-
ing.

Res. param. Time (s) Voxel size % Coverage
0 0.185 0.02 m 97.66
1 0.063 0.04 m 96.35
2 0.035 0.16 m 96.26
3 0.024 0.32 m 96.25

8.1.3 Reconstruction of complex objects

In this experiment, the method is tested with differ-

ent complex objects (the Bunny, the Dragon and the

Teapot). We present quantitative results to evaluate

the performance of the proposed approach. We use a

resolution parameter a = 2.

Fig. 7 depicts several stages in the reconstruction of

the Bunny. Fig. 8 shows the final representation of the

reconstructed objects. Table 3 presents average results

for the reconstruction of the objects in terms of the
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number of scans needed to reconstruct the 3D model,

the visibility computation time (Vis.), the motion plan-

ning processing time (M.P.) and the percentage of cov-

ered surface.

The results show that the method is able to plan

each view/state in order to reconstruct different com-

plex objects with a large coverage in an acceptable pro-

cessing time.

Table 3 Reconstruction results for each object.

Object Scans Vis. M.P. Coverage.
Teapot 12 48.92 s 79.05 s 93.90 %
Bunny 12 33.81 s 114.07 s 95.51 %
Dragon 12 32.45 s 95.60 s 87.26 %

8.1.4 Proposed utility vs information gain

We estimate the goodness of a view measuring four

factors: i)positioning, ii) overlap, iii) unknown surface

(amount of unknown voxels) and iv) path distance. The

factor of unknown surface is important given that it es-

timates how much surface could be discovered in the

next scan. Another way to estimate how much surface

could be discovered is computing the Information Gain

(IG) of a scan [12]. In this experiment we compare the

use of the surface factor in the proposed utility func-

tion versus the use of IG. The comparison was done

by reconstructing the Bunny object 5 times using the

surface factor in our proposed utility (that we will call

deterministic utility, DU), and 5 times using informa-

tion gain instead of the surface factor (we will call IG

to this function). In order to make a fair comparison

against the information gain method, the number of

scans is used as stopping criterion in the experiments,

both methods are stopped after 12 scans.

Figs. 9 and 10 show the average surface coverage and

average unknown volume, respectively. In this experi-

ment IG at initial iterations gets a higher coverage than

DU, however at the final iterations both approaches

converge to the same coverage.

In the IG approach all voxels inside the view frus-

tum and belonging to the volume Wunk are considered

to select a new sensing location, while in our approach

only the voxels lying on the surface of Wunk and inside

the frustum are considered. In our experiments we have

observed that at the beginning of the reconstruction,

larger percentage of the objects volume will appear,

compared with the percentage of the object surface.

The IG approach counts both the voxels truly belonging

to the object plus the volume of the free space behind

the object. This explains why the IG approach reports a

larger percentage of coverage at the beginning of the re-

construction process. However, after several scans both

utilities converge to the same coverage.

Processing time for evaluating both functions is quite

similar. In our implementation, to evaluate DU for all

candidates takes an average time of 428 s., in contrast,

IG factor takes 484 s., that is 13% more than DU. It

is worth to say that the evaluation processing time of

DU can be significant reduced using the hierarchical ray

tracing [34], as demonstrated in section 8.1.2.

As it was already mentioned, in IG approach all

voxels inside the view frustum are used to compute the

information gain, while using the HRT only voxels clas-

sified as occupied inside the view frustum and belonging

to the surface of the object are considered to compute

the progress in the reconstruction process. An advan-

tage of this is that voxels classified as free do not need

to be further refined. Thus, the benefit of applying the

HRT is that the detection of voxels belonging to the

object surface will be done at a finer resolution but in a

shorter time since free voxels do not need to be refined.

It might be possible to adapt the IG approach to use

the HRT method, but this will require further research.
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Fig. 9 Comparison of the average surface coverage using in-
formation gain (IG) and the proposed utility (DU). Vertical
lines show the standard deviation. Both methods converge to
the same coverage.

8.2 Simulations under motion uncertainty

This experiment analyzes the expected utility method.

Two experiments are presented. The first experiment

analyzes the effect of the number of samples (k) over

the collision rate. The second experiment compares the
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Fig. 10 Comparison of the unknown volume in the octree
using information gain (IG) and the proposed utility (DU).
Both methods leave the same unknown volume in the octree.

expected utility versus the deterministic utility under

different conditions of motion uncertainty.

8.2.1 Configuration

Imperfect controls are modeled using two parameters,

σv and σw, which correspond, respectively, to a stan-

dard deviation of an error on the linear and angular

velocities. Larger values correspond to more imprecise

motions. The values of σv and σw were computed by

statistical modeling using a real robot. 70 repetitions

were done to compute the error in terms of angular ve-

locity ω and 70 others to obtain the error in terms of

linear velocity. The error on the angular velocity was
computed based on the difference between a perfect ro-

tation in place vs the measured executed one. Similarly,

the error on the linear velocity was computed based on

the difference between a perfect straight line transla-

tion vs the measured executed one. Table 4 shows the

standard deviation of both the linear and angular veloc-

ities. We assume perfect positioning of the arm there-

fore standard deviations of the arm joints are zero.

Parameter Value
σv 1.65 mm/seg
σw 0.28 rad/seg

Table 4 Parameters of the motion model

The compared approaches are detailed below:

– Deterministic utility without motion uncertainty (DU).

This is the ideal case, and it corresponds to the best

possible performance.

– Deterministic utility with motion uncertainty (DU-

MU). We expect to significantly improve this case

using expected utility. The model of the imperfect

controls is described in Section 6. The parameters

σv and σw correspond to the ones shown in Table 4.

– Expected utility with motion uncertainty (EU-MU).

Here, the same error model is used but the next best

view/state is determined using expected utility.

8.2.2 Number of samples k

This experiment shows the effect of the number of sam-

ples k over the collision rate. Fig. 11 shows that for EU-

MU the collision rate approximates zero as k increases.

The graph suggests that the collision rate exponentially

converges to zero as k increases, a expected behavior

that matches with the analysis presented in section 7.3.

The graph is only for the Bunny object but the same

behavior was observed for the other two objects. An

observed phenomenon of this experiment is that even

for a single sample the proposed expected utility has a

lower collision rate. This phenomenon is due to the fact

that motion planner returns a set of controls that take

the robot very close to a goal state, but does not reach

it. For example, a bidirectional RRT has a gap where

the trees are connected. To simulate the robot move-

ment produces a better approximation than assuming

that the robot reaches the goal state.
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Fig. 11 The figure shows the behavior of the collision rate
as the number of samples, k, increases in the reconstruction
of the Bunny object. As the number of samples increases the
collision rate decreases. When k is larger than 400 the collision
rate is zero. DU and DU-MU collision rates are displayed to
compare the performance of EU-MU; they are constant given
that the number of samples does not interfere with them.
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8.2.3 Comparison versus a deterministic utility

In this experiment, we compare the proposed expected

utility versus the deterministic utility. In a simulated

environment, we reconstruct ten times the three differ-

ent objects under different conditions of motion uncer-

tainty. We set k = 500.

Table 5 compares the reconstruction coverage and

collision rate for each object. In general, the results

show that expected utility successfully decreases the

collision rate and increases the reconstruction coverage.

The coverage of expected utility keeps closer to the top-

line coverage. Fig. 12 shows the mean coverage for the

Bunny and Teapot objects.

Object Approach Mean Max. Collision
Coverage Coverage Rate

Bunny DU 95.0 95.0 0 %
DU-MU 48.2 87.4 37 %
EU-MU 78.9 95.0 0 %

Teapot DU 93.6 94.5 0 %
DU-MU 41.3 68.2 60 %
EU-MU 86.1 92.9 0 %

Dragon DU 87.5 87.8 0 %
DU-MU 36.1 55.6 45 %
EU-MU 81.0 87.5 0 %

Table 5 Coverage results for each approach. EU-MU in-
creases the reconstruction coverage and decreases the collision
rate.

8.2.4 Cluttered Environment

In this experiment we test the method in an environ-

ment with many obstacles. This scenario is challenging

for a robot that has imperfect controls, given that it

has to avoid collision with the obstacles while it recon-

structs the object. We compare the proposed expected

utility versus a method that uses a deterministic util-

ity. In both cases the robot has the same noise over the

controls (see section 8.2). Fig. 13 shows the environ-

ment where the robot moves and a path generated by

the planner.

Table 6 shows results of the reconstruction of an ob-

ject in an environment with several obstacles, compar-

ing the deterministic utility vs the proposed expected

utility. The results are the average of five repetitions

of the experiment. The processing time is the average

time for the whole next best view/state determination.

The simulations were executed using a Core i3 machine

with 2GB of RAM. The parameters of the experiment

are the same to the parameters of the real robot exper-

iments (see Table 7).
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Fig. 12 The coverage of the expected utility approach keeps
very close to the case where there is no motion uncertainty.
At the end, EU-MU is less than 5% below than DU. DU-
MU was not displayed given that not a single reconstruction
reached 12 scans.

Performance met-
rics

Deterministic
Utility

Expected
Utility

Number of sensing
scans

2.0 12.6

Coverage 38.4 % 73.64 %
Remaining un-
known volume

0.085 m3 0.023 m 3

Traveled distance
per scan

6.15 4.67

Collision rate 50 % 0 %
Processing time of
the planning process

250 s 467 s

Table 6 Results of the reconstruction of of the Bunny object
in an environment with several obstacles.
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Fig. 13 Object reconstruction in an environment with sev-
eral obstacles. In this experiment the robot has to avoid col-
lisions with the obstacles while it reconstructs the target ob-
ject. The left figure shows the environment where the robot
moves. The obstacles are a table with the object to be recon-
structed and nine chairs placed around the table. The right
figure shows a path generated by the planner to reach the
next best view/state.

The expected utility method is able to deal with a

cluttered environment. The collision rate is zero and the

surface coverage is 73%. In contrast, the collision rate

for the deterministic utility is very high (50%). This

high collision rate is due to the fact that the method

is trying to maximize the amount of coveraged surface,

but often the views that cover more surface are far from

the current configuration and they are more suscepti-

ble to collide during the robot’s motion. The processing

time increases because it is more difficult to find a col-

lision free path with many obstacles.

These simulation experiments show that the expected

utility significantly reduces the collision rate and in-

creased the object’s coverage.

8.3 Analysis of simulations results

Based on the simulations results, we conclude that:

(1) the proposed method can reconstruct complex ob-

jects with a high coverage in a reasonable time. (2)

The proposed method achieves the same coverage com-

pared to information gain but requires less processing

time thanks to the hierarchical ray tracing. However,

it might be possible to adapt the IG approach to use

the HRT method, this issue is left for future work. (3)

The proposed approach deals effectively with the un-

certainty in the controls of a mobile manipulator robot

with 8 DOF based on the concept of expected utility.

The expected utility significantly reduces the collision

rate and increased the object’s coverage.

8.4 Real Robot Experiments

In this section, we present three experiments with a

real robot. The first one has the objective to compare

the deterministic utility vs expected utility. The sec-

ond experiment has the objective of showing that the

proposed method is able to correctly work in an en-

vironment with obstacles. The third experiment shows

that the method is able to reconstruct complex objects.

All our experiments were done using the following

hardware. The mobile base is a PatrolBot robot, the

arm is Katana 180 6M robot, which is mounted on the

mobile base. A Kinect sensor is placed in the arm end

effector. Planning, octree update and registration are

done in a laptop equipped with a Intel core i5 micro-

processor with 2Gb of RAM. Table 7 presents the pa-

rameters used in the experiments. The octree resolution

(3 cm) is determined by the Kinect resolution. We have

selected such size of 3 cm for the voxels at the finest

resolution for allowing the voxels to be larger than the

error of the Kinect sensor. In this way, different sensor

readings of the same point will statistically correspond

to the same voxel. We have considered 3 cm as an up-

per bound of the error considering that the distance

between the sensor and the object to be reconstructed

would be less than 2 meters.

The remaining parameters were set taking into ac-

count our analysis and the simulation results, however

they were calibrated according to the scene in order to

get successful reconstructions. The process to find the

parameters was to iteratively increase the value calcu-

lated in simulation, until the robot was able to success-

fully reconstruct the objects.

Parameter Value
State samples per itera-
tion

100 000

Maximal number of
nodes in the RRTs

10 000

Expected utility samples
(k)

500

Minimal overlap thresh-
old (h)

65 %

Distance weights (wi) [10.0, 10.0, 0.5, 0.05, 0.05,
0.05, 0.05, 0.05]

Octree resolution 3 cm
Stop criteria 30 unknown voxels

Table 7 Parameters for the real robot experiments.

8.4.1 Experiment # 1: Chair: Utility vs Expected

Utility

This experiment performs the reconstruction of an of-

fice chair using the mobile manipulator robot. Fig. 3 (in

Section 3) shows the experimental setup. As mentioned

above, the objective of this experiment is to compare

the deterministic utility function presented in Subsec-

tion 7.1 vs. the expected utility described in Subsection
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7.2. In this experiment, the object is reconstructed three

times. In each reconstruction, each time that the robot

collides the experiment is terminated.

The results from Experiment # 1 are summarized in

Table 8. The performance metrics used in the compar-

ison are the statistical mean of the following elements:

number of sensing scans, unknown remaining volume

of the object at the end of the reconstruction process,

traveled distance in the configuration space computed

using Eq. 8, number of nodes in the robot’s path, colli-

sion rate, processing time per iteration of the planning

process, and processing time per iteration of the regis-

tration process and octree update.

Performance metric Deterministic
Utility

Expected
Utility

Number of sensing
scans

4 14

Unknown volume 0.07 m3 0.018 m 3

Traveled distance 28.7 72.52
Number of nodes in
the robot’s path

70.5 56.8

Collision rate 15.38 % 2.04 %
Processing time of
the planning process

24.73 s 175.74 s

Processing time of
the registration pro-
cess and octree up-
date

5.77 s 4.82 s

Table 8 Results of Experiment # 1 comparing the deter-
ministic utility vs. the expected utility

The performance metrics shown in Table 8 allows

one to observe that the main advantage of the expected

utility over the deterministic one is that the collision

rate is significantly reduced. In this experiment the col-

lision rate with deterministic utility was 15.38% while

the collision rate was only 2.04% with expected util-

ity. Other advantage of expected utility is that the per-

centage of remaining unknown volume is also smaller. A

disadvantage of the expected utility is that the process-

ing time per iteration of the planning process is larger

compared with deterministic utility. This is because it is

based on simulations of the robot trajectories and sens-

ing states. In this experiment the processing time was

almost seven times larger. However, the processing time

remains in the order of few minutes. Furthermore, the

processing time can be improved with better hardware

and implementing some computations in parallel. Note

that the expected utility can be computed in parallel,

using a different processor for generating each simulated

robot trajectory yielding a final state sample.

The smaller distance traveled and the smaller num-

ber of sensing scans related to deterministic utility is

explained because each time that robot collides the ex-

periment is finished. Hence, with deterministic utility

the robot rarely reaches the threshold in terms of un-

known voxels to stop the reconstruction process.

Fig. 14 shows the robot taking a scan of the object

during the experiment. Fig. 15 depicts the object and

the point cloud model. Fig. 16 presents the voxels-based

object model after finishing the reconstruction process.

Fig. 17 shows two examples of planned paths and the

ones computed with an odometer, and fig. 18 shows an

example of the registration process.

Fig. 14 Example of a view/state.

(a) Lateral view (b) Lateral view

(c) Frontal view (d) Frontal view

Fig. 15 Real object and point cloud model.

8.4.2 Experiment # 2: Object Reconstruction in an

Environment with Obstacles

The objective of this experiment is to show that the

method is capable of reconstructing an object in an
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(a) Lateral view (b) Other view

Fig. 16 Final voxel representation.
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Fig. 17 Examples of robot’s paths (best seen in color). The
figures compare the planned path (black dotted line) ver-
sus the executed path (red continuous line) registered by the
odometer. The blue dots represent the samples used to com-
pute the expected utility. The big cross indicates the corrected
robot position computed based on the registration of scans.

environment with obstacles. The suitcase to be recon-

structed is in the center of the scene. The robot and

the obstacles are around the suitcase. See Fig. 19. The

output model of the reconstruction is shown in Fig. 20.

Fig. 21 depicts the sequence of planned view/states to

reconstruct the object. In this experiment the method

Fig. 18 Example of the point cloud registration. The figure
in the left shows the data before registration and the figure
in the right the data after registration.

(a) Reconstruction scene. (b) Scene representation.

Fig. 19 Reconstruction scene with obstacles.

was capable to plan each view/state avoiding collisions

with the environment and the object.

(a) Front view (b) Rear view

Fig. 20 Accumulated point cloud of the object.

8.4.3 Experiment # 3: Reconstruction of a more

complex object

This experiment shows the reconstruction of a more

complex object (a NAO robot). The object was placed

over a box and both were reconstructed. Fig. 22 shows

the object and the reconstructed point cloud. Seven-

teen scans were required to reach the stop criteria. Fig.

23 shows each view/state where a scan was taken. The

mean time for calculating each view/state was 118.6

seconds (using the expected utility approach). The col-

lision rate was zero. This experiment demonstrates that

our method can reconstruct a complex object, avoid col-

lisions, and obtain a reasonable 3-D model.
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Fig. 21 Sequence of robot view/states from where a scan
was done. The sequence shows that robot evades the object
and completes the reconstruction.

Fig. 22 Reconstruction of a NAO robot. Left figure shows
the real object. Right figure shows the reconstructed point
cloud.

8.5 Analysis of experimental results

The experiments empirically validate the method, eval-

uate its performance along various metrics, and demon-

strate its ability to perform well in different settings. In

particular, we have shown that expected utility signif-

icantly reduces the collision rate (in our experiments

the collision rate was reduced to 2.04 %). The exper-

iments also show that the method works correctly in

an environment with obstacles. We have also demon-

strated that the method is able to reconstruct complex

3-D objects in a realistic environment with a mobile

manipulator robot.

9 Conclusions and Future Work

We have presented a method for next best view/state

planning for 3D object reconstruction. This is one of the

first methods that determines the view directly in the

state space, following a methodology in which a set of

candidate view/states is directly generated in the state

Fig. 23 Sequence of Robot view/states during the recon-
struction of the NAO robot. In this sequence, the robot moves
itself to the left (upper side of the figure) for scans 3-7. Then,
the robot continues the reconstruction of the object to the
right (lower side of the figure).

space, and later only a subset of these views is kept by

filtering the original set. The method proposes a utility

function that integrates several relevant aspects of the

problem and an efficient strategy to evaluate the candi-

date views. This method avoids the problems of inverse

kinematics and unreachable poses. Our approach is able

to deal with motion and observation uncertainty. An-

other contribution of the approach is the evaluation of

a candidate state in terms of its expected utility, un-

like previous approaches where perfect positioning is

assumed and only a deterministic utility is considered.

Our approach plans safe robot states, in terms of colli-

sion between the robot and the environment. An anal-

ysis of the expected utility algorithm was provided and

the behavior matches with the experimental results in

the real robot.

We compare the proposed approach with related

works both qualitatively and quantitatively. Qualita-

tively, this approach measures the goodness of the path

in terms of unknown surface, overlap and the cost of

each degree of freedom, performing an efficient evalua-

tion of the candidate views. Quantitatively, this method

achieves the same coverage but with smaller processing

time compared with previous works. We have imple-

mented the whole method both in simulation and in a

real mobile manipulator of 8 DOF with an eye-in-hand

sensor. The results show that the approach effectively

increases the object coverage and also decreases the rate

of robot’s collisions. To our knowledge, this is one of the

first works in which a method to reconstruct a 3D ob-

ject is implemented in a real mobile manipulator robot.
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As future work, we would like to use the probabili-

ties in the octree representation of the space to estimate

the goodness of the next sensing scan. We think that a

promising modeling technique for planning the task of

object reconstruction is a partially observable Markov

decision process (POMDP) that allows one to take into

account, both, the uncertainty of reaching the state and

the uncertainty in the observations.

We would also like to remove the assumption that

the size and approximate location of the object to be

reconstructed is known. A possible way of reaching this

objective is roughly segmenting the object from the

background using RGB and range data. However, such

approach might generate non trivial issues and would

have to be tested experimentally.
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