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Abstract

The goal of this work is to develop techniques that
allow one or more robotic observers to operate with
full autonomy while accomplishing the task of model
building. The planning algorithm operates using cer-
tain simple but flexible models of the observer sensor
and actuator abilities. We provide techniques that
allow us to implement these sensor models on top of
the capabilities of the actual (and off-the-shelf) sen-
sors we have. It is worth keeping the following points
in mind regarding our goals: 1) even with completely
idealized sensing and mobility capabilities, the algo-
rithmic task of model building is quite challenging. 2)
computational techniques can be used to approximate
and implement these idealized sensors on top of ac-
tual sensors. 3) the quality and success of the gener-
ated plans depend significantly on the observer capa-
bilities; study of this dependency terms of high-level
parameters describing the sensors (e.g., max. dis-
tance sensed, viewing frustum) is part of this work.

1 Introduction

In this section we analyze the generation of motion
strategies for building a map of an indoor environ-
ment using a mobile robot with range and video sen-
sors. The main problem to solve is to choose where
the robot should move to get the next sensor read-
ing. One concern of this study is the need to satisfy
perception constraints while planning motions. We
focus on the fundamental motion planning problem
considering information provided by sensors. Some
of the questions that this work tries to answer are:
Which locations must be visited by a robot to effi-
ciently map a building?, how must a robot move to
explore an environment? To answer these questions
we propose randomized motion planning techniques
which take into account both geometric and image
analysis computation. We describe a planner that s-
elects the next position from a set generated with u-
niform probability. The selection of the next position
is based on the maximization of a utility function.
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The evaluation of this function uses the concept of
robot information space. Analyzing this information
space, the utility function selects the next position
using the following criteria: 1) Trajectories where
the robot may identify objects (landmarks) that can
be used to navigate are preferred; 2) The robots lo-
calization uncertainty should be minimized; 3) The
number of sensing operations should be minimized;
4) Energy consumption should be minimized by ex-
ploring a minimum distance trajectory; 5) The sen-
sor capabilities (maximin distance sensed, viewing
frustum) should be taken into account to compute
motion strategies; 6) Motions should be performed
in such a way that the robot perceives non-explored
regions.

The implemented planner combines geometric cal-
culations with an intensive use of information ob-
tained by perception algorithms, such as scene recog-
nition. The final result of the exploration is a
multi-representational map consisting of polygons
and landmarks, and including a road-map construct-
ed from the trajectory followed by the robot.

Motivation Representing and understanding the
environment from sensor readings is a fundamental
task for robot navigation and exploration of an un-
known environment. The approach proposed here
is useful for these tasks. Also, we claim that this
environment representation can be a crucial step to-
ward building robots that can automatically achieve
visual tasks, such as finding and tracking a target.
Unlike the simpler “Go from A to B” task, these
tasks require reasoning about both motion and vis-
ibility obstructions. The representation proposed is
a complete and reliable map for these tasks because
it gives a way to easily compute visibility and robot
localization, which are a basic input to compute, mo-
tion strategies based on sensor information such as:

• Finding an evasive target requires one or several
robots to sweep the environment so that the tar-
gets does not eventually sneak into an area that
has already been explored. The planner can use



the representation proposed here to compute a
robot motion such that, for any point p along
this path, the part of the environment that has
already been explored before reaching p is fully
separated from the unexplored one by the region
from the point p [8].

• In the target tracking task, the robot must vi-
sually track a target that may try to escape its
field of view, for instance, by hiding behind an
obstacle. An online planner can use the repre-
sentation proposed here to decide how the robot
should move [12, 17]. At each step, it com-
putes the visibility region of the robot at several
sample locations picked in a neighborhood of its
current location, identifies the one that is most
likely to contain the target, and commands the
robot to move there.

2 Previous Work

Automatic model building is an important problem
in mobile robotics [3, 7, 20, 6]. Several types of mod-
els have been proposed, i.e., topological maps [4], oc-
cupancy grids [7] which uses a 2D array to represent
the environment. In this model, each cell is valued as
free space, occupied space or unknown space. Grid-
based building algorithms prove to be very simple
and quite useful methods for obstacle avoidance and
planning purposes [7]. However, when the size of the
environment is big, it becomes hard to handle this
type of models. 3-D models [21] or feature-based
maps [2] and polygonal representation [3] have al-
so been proposed. Feature-based models are another
way to represent the environment by using geometric
primitives. The most popular geometric primitive is
the segment, which can be extracted from ultrasonic
data [5], laser range-finder data [9], or vision data
[1, 15, 16].

Most of these researchs have focused on developing
techniques to extract relevant information from raw
data and to integrate the collected data into a sin-
gle model; a robot motion strategy is, however, not
developed. In this work, we deal mainly with this
problem. In [11] a map building motion planning s-
trategy is presented. This work has shown that it
is possible to find a function that reflects intuitively
how the robot must explore the space. In a sim-
ple scheme, the evaluation function must assign a
greater value to the position that best fits the com-
promise between possible elimination of unexplored
space and energy consumption. One way to measure
the size of the unexplored space is to measure the size
of the free edge near it. A free edge is defined as the
border between regions of explored and unexplored
space, and a full edge as the border between explored

areas and obstacles. Energy has been measured by
the distance that the robot must travel.

This strategy is based on the computation of the
next-best view and the use of randomized motion
planning. The concept of the next-best view is, how-
ever, almost purely based on geometric information,
such as the visibility region from a robot position
[18]. Uncertainty in robot localization and scene un-
derstanding are not taken into account. Our work
tries to fill these gaps.

3 Our approach

The problem to solve in robot motion planning for
map building is to determine a good motion strategy
that allows the exploration of the whole environment,
and to represent this new knowledge in such a way
that not only the actual robot may deal with, but
also the other mobile robots can work.

The definition of a good motion strategy depends on
the desirable characteristics, such as minimum time,
energy, uncertainty, representation complexity, etc.
How to fit these requirements depends on the explor-
er robot, like sensors type and range, mechanical re-
strictions, etc. Until now most of the model building
planners are based on pure geometric calculations.
These planners generate simple and manageable rep-
resentations, but contain limited environmental in-
formation.

Our work extends previous approaches by adding
perceptual characteristics and the robots position
uncertainty. The proposed criterion prefers those po-
sitions where the robot may recognize a landmark in
order to perform landmark based navigation [13]. A
landmark is defined as a recognizable object in the
space. A simple definition of place is created where
the robots location uncertainty is minimized. The
place corresponds to the influence area of a landmark
(or set of landmarks), i.e., the area from which the
robot may see these entities.

Regarding perceptual features, the evaluation func-
tion should prefer those positions from which a per-
fectly recognizable object is found [14]. In this ap-
proach, it is proposed that the robot has online access
to an object database, and the identification is made
by using some classification technique, for instance
Bayes rule. If the probability of an object belonging
to any class is low, then the object must be taken
only as a visibility obstacle.

The results of perception algorithms are known until
the robot is at the next position, given that percep-
tual information can be obtained only if the robot is
able to perceive the scene. For this reason, a two-step
evaluation function is proposed.



The first step will evaluate the possible size of un-
explored space, energy needed, distance to the near-
est free edge, distance to nearest known walls and
objects. All these parameters are inferred from the
current robot position (by computing the visibility
region [18]), which means that the robot does not
have to go to every new possible position. The length
of the free edges is used to estimate the size of the
unexplored space. A very simple model of the un-
certainty is used, where it grows proportional to the
square root of the distance to travel. In this uncer-
tainty model we also include a term where the rota-
tion cost is calculated. It is preferred that the robot
travels straight than rotating.

In the second step, the robot actually moves to the m
best evaluated positions and selects the best one tak-
ing into account perceptual information. In a very
simple way, it is as if the robot would take a glimpse
from the threshold of several doors, and explore the
room that it likes the best. The robot will stop ex-
ploring when there are no free edges to be visited
left.

The perceptual information is composed by the iden-
tification probability of the objects perceived by the
robot and some particular features such as corners,
that allows the matching between the areas already
explored. The utility function is constructed in such
a way that it integrates all these features. The next
possible position that maximizes the utility function
is kept. The function will prefer positions combin-
ing proximity to the robot, proximity to a free edge,
small uncertainty value of robot position, high object
identification probability and ability to see features
like corners. Positions near walls and objects will be
discarded because many sensors become blind when
the objects are very near.

The function is composed by terms representing each
one of these measures mentioned above. It is pro-
posed that the utility function has a multiplicative
form. A position with a very low value on at least
one of these measures will be discarded even though
it may have a very good value on the others. For
instance, a position very close to a free edge (with
great chance of discovering new space) must be dis-
carded if the robot has no information to integrate
this new area to the explored space.

The utility function T is given by the following ex-
pression [19]:

T = (e(lv−s−sv))
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Figure 1: fmin function

s Distance from the robot to the next possible position
sv Distance from the next possible position

to the closest free edge
lv Length of the closest free edge
θ Needed orientation to reach the next

robot’s configuration
Γ Cumulative uncertainty
pj Object identification probability
n Number of landmarks inside a visibility region
Ne Number of corners and end-points inside

a visibility region
fmin Function of the minimum distance from

an object or full edge
dl Minimum distance from a full edge

For fmin we choose a function like the shown in fig-
ure 1. Before a distance threshold t the function
takes a low value, discriminating those positions near
the objects. After the threshold the function takes
the value of 1, to let the value of T reside on the
other parameters.

The pj is the identification probability for a land-
mark. A landmark is defined as a remarkable object.
The landmark should have some properties that dis-
tinguish them from other objects, i.e.:

• Discrimination. A landmark should be easy
to differentiate form other surrounding objects.

• Accuracy. A landmark must be useful to re-
duce the uncertainty of the robot position.

3.1 Landmark identification

Landmarks in indoor environments are often struc-
tures such as corners, doors, columns, posters, etc.
To compute the distance between a landmark and the
robot by using a single camera, we suppose that the
landmark size is known. Our landmarks are posters,
doors, and columns. To assume that for a given en-
vironment the size of these objects is known a priori
is not unrealistic. An object is labeled as a landmark
if and only if its object identification probability is



greater than a given threshold and has a remarkable
shape (different from surrounding objects). The ob-
ject shape can be obtained by using a segmentation
algorithm as the one presented in [15]. Object iden-
tification is obtained by comparing vector features
with a database composed of different classes, issued
from a learning process. The database is a function
of the type of environment. The object identification
probability is calculated using Bayes rule.

3.2 Line-fitting

Since we have a laser range finder as our sensor, it is
necessary to recover the lines that forms the actual
visibility region from the points that the laser gives.

We generate polylines with the laser data obtained
as an ordered list (by angle) of polar coordinates
(r, θ) where obstacles may be found. We suppose
that θ is an error free coordinate. The line fit-
ting is done in two steps. First we find clusters of
points where the distance between two consecutive
points is similar. Then we take advantage of the
error-free coordinate and apply the transformations
u = cos(θ)/ sin(θ), v = 1/r sin(θ) as in [11]. We find
fit lines by applying to each cluster a divide-and-
conquer technique combined with a minimal squares
method.

Although, the minimal squares technique has the ad-
vantage of removing noisy measurements, it is not
efficient in the number of lines it generates. For this
reason a divide-and-conquer algorithm is necessary.
We convert the generated vertices in the (u, v) space
to a Cartesian space. Then, we apply a classical
divide-and-conquer recursive technique to the ver-
tices of each cluster to find the lines that fit the set
of vertices, and by this, eliminating the unnecessary
ones. A cluster with a stand alone point or with
very few points should be considered as a small ob-
ject [11], a sensor error or the result of a small free
space between two occlusions. In any case, those
should not be taken into account when the divide-
and-conquer algorithm is applied.

The lines generated are considered as full edges,
while the line that may be formed between two con-
secutive clusters is considered as a free edge.

3.3 Model-matching

The partial Hausdorff distance is used to find the
best alignment between the previously explored re-
gion and the new one. The Hausdorff distance is
computed on the original laser data of the polylines
previously computed.

Given two sets of points P and Q, the Hausdorff
distance is defined as (see [10]):

H(P,Q) = max(h(P,Q), h(Q,P ))

where
h(P,Q) = max

p∈P
min
q∈Q

‖p− q‖ (2)

and ‖.‖ is a norm for measuring the distance between
two points p and q. The function h(P,Q) (distance
from set P to Q) is a measure of the degree in which
each point in P is near to a point in Q. A small value
of h(P,Q) implies that every point in P is close to a
point in Q. The Hausdorff distance is the maximum
among h(P,Q) and h(Q,P ). Thus the Hausdorff dis-
tance measures the degree to which each point of P
is near a point in Q and vice versa.
By computing the Hausdorff distance in this way we
are obtaining the most mismatched point between
the two shapes compared, consequently, it is very
sensitive to the presence of any outlying points. For
this reason it is often appropriate to use a more gen-
eral measure, which replaces the maximization oper-
ation with the calculation of the mean of the values.
This measure (partial Hausdorff distance) is defined
as:

hk = Mp∈P min
q∈Q

‖p− q‖ (3)

Where Mp∈P f(p) denotes the statistical mean value
of f(p) over the set P .
One interesting property of the Hausdorff distance
and the “partial Hausdorff distance” is the inherent
asymmetry in the computation. The fact that ev-
ery point of P (or subset of P ) is near some point
of Q says nothing about whether every point of Q
(or subset of Q) is near some point of P . In other
words, hk1(P,Q) and hk2(Q,P ) can attain very dif-
ferent values. In fact each one of the two values give
different information.
The term hk1(P,Q) is the unidirectional partial dis-
tance from the previously explored region to the cur-
rent perception, and hk2(Q,P ) is the unidirectional
partial distance from the current perception to the
previously explored region. Where P = Mt is the
model and Q = It is the model or region of the
model given an t possible translation and rotation.
The maximum of these two values defines the partial
Hausdorff distance. The partial Hausdorff distance is
function of a transformation composed by translation
and rotation. The transformation that maximize the
metric will determine the best alignment.

Map Building algorithm The general Map
Building algorithm is as follows:



EXPLORATION(R, W)

1. Pn ← TAKE PERCEPTION(R, W)

2. M.add(Pn)

3. Uf ← ID UNXP AREAS(M)

4. if Uf 6= ∅ then

(a) [x, y, θ]←SELECT NEW POS(Uf , R,M)

(b) if NOVALID(x, y, θ) then

i. ReturnM, NOK

(c) R.move(x, y, θ)

(d) goto 1

5. else ReturnM, OK

SELECT NEW POS(Uf , R,M)

1. for each uf ∈ Uf do

(a) ln ←RDN SAMPLE(n, uf , R,M)

(b) Lq = Lq ∪ ln

2. qnbv ←MAXIMIZE(T , Lq)

3. Return qnbv

WhereR is the robot, W the workspace, M the map,
ln is the list of random positions per free edges and
T is the equation 1

4 Multi-Robot Map Building

We have developed, implemented and simulated a
planner for multi-robot map building. Our approach
consists in a centralized planner. The position and
current visibility from every robot is assumed to be
known by the planner. The main idea of this planner
is that the robots must share the work of building a
map.

Let us denote V (qk) as the visibility region of
the robot k from the location q, Cr−(V (qk)) as
the visibility polygon reduced by the robot radius.
Cr−(V (qk)) is a safe region for navigation. Efr(qk)
denotes a free edge belonging to the visibility re-
gion V (qk), V ∪ (qK) is the union of the visibili-
ty regions of all the K robots, Cr−(V ∪ (qK)) is
the union of all Cr−(V (qk)) for the K robots and
Sτ (V ∪ (qK)) is the state of the map at the time t. A
path τ : [qinitk

, qgoalk(Efr(tn))] will be admissible if
τ : [qinitk

, qgoalk(Efr(tn))] ∈ Cr−(V ∪ (qK)). Where
qgoalk denotes the location of the robot k from where
the free edge Efr(tn) is seen and tn denotes the po-
sition from where the robot n has computed this free
edge.

In our multi-robot map building strategy every
robot k has as a priority to visit a free edge
Efr(qk) ∈ Cr−(V (qk)) all the paths τ ∈ Cr−(V (qk))
are admissible . If a given robot k does not have any
free edge to visit left in V (qk), this robot is allowed
to explore a free edge Efr(tn) ∈ V ∪ (qK) if there

is an admissible path τ : [qinitk
, qgoalk(Efr(tn))].

Associate each robot with its visibility region
reduces the complexity of the problem. To build
the map is necessary to send the robots to explore
unknown space. When a robot k does not have
any free edge to visit left belonging to its visibility
region a combinatorial algorithm determines which
free edge Efr(tn) ∈ V ∪ (qK) must visit the robot
by evaluating equation 1. In order to estimate the
size of the unexplored space we are using the size of
the free edges. Therefore, to explore the unknown s-
pace is equivalent to send a robot to visit a free edge.

We are not dealing with simultaneous robots mo-
tion, only a robot is moving at a given time the oth-
er robots remain motionless. A state Sτ (V ∪ (qK))
changes to Sτ+1(V ∪ (qK)) when the robot k has
reached the location qgoalk .

5 Robot Architecture and Experiments

We are using a Pioneer mobile robot (See figure
2) with an on-board PC 400 MHz processor. It is
equipped with a Sony EVI-30 CCD moving camer-
a for landmark identification. The robot is also e-
quipped with a Sick laser range sensor. This sensor
uses a time-of-flight technique to measure distances.

Figure 2: Indoor mobile
robot and sensors

The software consists of several modules exe-
cuting specialized functions and communicating
using TCP/IP socket communications under a
client/server protocol. The main modules in our
robot architecture are: Frame server, sick laser serv-
er, line fitting module, model matching module,
landmark identification server, motion planner, mo-
tion controller, and system coordinator.

We are currently developing and integrating the
robot architecture necessary to perform our approach
in a real robot. Up to now we have totally developed
the frame server, motion planner, line fitting, sick



laser server, model matching, motion controller and
system coordinator modules. We are working on the
landmark identification module.

A computer simulation of this planner has been done.
The software is written in C++ and uses geometric
functions available in the LEDA 4.2 library. The
simulation shows that this approach produces good
results for the model building task.

In our simulation landmarks are represented with
dark discs, the robot with a light square and the
road-map with lines. The robot is placed anywhere
inside the map, and begins exploring. As the robot
moves across the map it takes every visibility area
from the positions selected by the utility function to
construct the model incrementally. The road map is
constructed at the same time. The final map is con-
stituted by polygons (which represent walls or ob-
stacles), landmarks, and a road-map, constituted by
a graph. When the robot ends exploring an area it
is capable to go back since it remembers past unex-
plored areas. This backtracking is based on naviga-
tion across the graph.

Figure 3: Figure 4:

Figures 3 and 4 show how the metric works: in figure
3 the robot has to take a decision between going to
a large free edge, which means seeing as much of
the as-yet-unseen environment as possible or going
to a landmark to re-localize itself. In our simulation,
the robot chose to improve its localization by going
to the landmark (figure 4) and then go back and
explore the unknown environment. In these figures
the current visibility region is showed by a dotted
line semi-circle.

Figure 5 shows an experiment on the real robot. The
robot has chosen to go to the free edge in the front
left because it represents the next best view accord-
ing to the equation 1. We remark that the robot
has not chosen to turn around to see the free edge
behind it, because this configuration has a low value
according to the equation 1. Actually, this config-
uration is bad because it is not possible to perform
model matching and therefore deal with robot local-
ization. Figure 6 shows the environment map at time
t and the robot location at time t and t+ 1. Figure
7 shows the environment map and robot location at

time t+ 2. In both cases, the visibility robot region
is shown in yellow, the free edges in red and the full
edges in blue. Figure 8 shows the laser data at time
t+ 2 and figure 9 shows the robot going to the next
best view.

Figure 5: Exper-
iment on a real
robot

Figure 6: En-
vironment map at
time t

Figure 7: En-
vironment map at
time t+ 2

Figure 8: Laser
data

Figure 9: Robot going
to the next best view

Figures 16 and 17 show multi-robot map building.
The colors in the map are used to associate a part
of the map to the robot that has explored it. It can
be seen that the map is uniformly distributed among
the robots in the environment. The landmarks are
shown in the figure as a blue disk (a column) or blue
segments on the walls which represent posters. In fig-
ure 16 the environment is explored using non-limited
range sensor and a 360 deg. visibility capability. It
can be seen that with such conditions, the number of
created milestones for sensing operations is smaller
and the robot trajectory much simpler and shorter
than in figure 17 where a limited range sensor and a
visibility of 180 deg. was chosen.

Currently our global architecture is not complete yet.
For the experiments performed on the robot, we are



Figure 10:

Figure 11:

Figure 12: Figure 13:

Figure 14: Figure 15:

using only data obtained from the laser. The camera
is not used.

Figure 10 shows a picture of a more complex map
building experiment. Figure 11 shows the map built
at time t, the robots visibility region is shown in yel-
low, the free edges in red, and the full edges in blue.
In this figure it is also shown the robots location a
time t (blue disk) and the next position where the
robot has to move at time t+1 (red disk). This loca-
tion has been computed using equation 1, but taking
into account only the parameters related to the laser
data.

Figure 12 shows the laser data at time t and t + 1
without registration. Laser data obtained at time t
are in blue and those obtained at time t + 1 in red.
Figure 13 shows the map matching obtained by using
equation 2. The transformation (rotation and trans-
lation) related to the matching is used to improve

Figure 16: multi-robot map building: case
of omnidirectional and infinite range

Figure 17: multi-robot map building: case
of 180 deg. field of view and limited range

robot localization. Figure 14 shows the polygonal
model of the environment and the last two robot lo-
cations. The road-map used by the robot is shown
in the figure by using brown dotted lines. When
the robot gets back to a previous location using the
graph a localization procedure is executed at each
graph node by using the model matching result. Fig-
ure 15 shows the laser final map.

6 Conclusions and Future research

A planner that selects the next position of the robot
based on maximizing the utility function is proposed.
The evaluation of this function uses the concept of
robot information space which combines geometric
information with an intensive usage of the results ob-
tained from perceptual algorithms. The crux of our
method is a randomized motion planner algorithm
that, given a partial map of the environment, selects
where to move the robot next. We balance the de-
sire to see as much of the as-yet-unseen environment
as possible, while at the same time having enough
overlap and landmark information with the scanned
part of the building to guarantee good registration
and robot localization.

The final result of the exploration is a multi-
representational map constituted by polygons, land-
marks and a road-map.



Our approach is better than previous methods be-
cause the robot plans the motions in such a way
that its uncertainty localization is minimized by us-
ing data registration and landmarks information. At
the same time, the motion strategy take into account
that the robot must move to discover unexplored en-
vironment regions by minimizing energy consump-
tion. The robot motion strategy proposed generates
a fast and reliable map building.

As future research, we will complete our global ar-
chitecture and perform multi-robot map building ex-
perimentation. The representation of the environ-
ment proposed here is useful to several robotics task
specially visibility-based ones such as target track-
ing and target finding. We believe that the mod-
el proposed can be used to select “good” locations
where to perform 3D sensing operations. A 3D mod-
el of the environment is a inter-medium goal to other
tasks (object manipulation, assembling, etc). This
3D modeling is one our possible future researches.
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