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A b s m f - I n  this paper we present an algorithm to 
build a sensor-based, dynamic data structure useful 
for robot navigation in an unknown, multiply-connected 
planar environment. This data strnchm offers a robust 
framework for robot navigation, avoiding the need of 
a complete geometric map or explicit localization, by 
building a minimal representation based entirely on 
critical events in online sensor measurements made by 
the robot There are two sensing requirements for the 
robot: it must detect when it is dose to the walls, to 
perform wall-following reliably, and it must be able to 
detect discontinuities in depth information. It is also 
assumed that the robot is able to drop, detect and mover 
a marker. The navigation paths generated are optimal up 
to the bomotopy class to which the paths belong, even 
thougb no distance information is measured. 

- 
I. INTRODUCTION 

The goal of this work is to develop robotic 
algorithms and systems with minimal sensing re- 
quirements, which are able to perform sophisticated 
visibility-based tasks. Our motivation is to overcome 
some of the problems that classical approaches obtain, 
such as mapping uncertainty, registration, localization 
errors, and unpredictable control errors. Such problems 
arise because previous algorithmic efforts have often 
assumed the availability of perfect geometric models. 

We believe that reliability can be increased by 
developing algorithms and mobile robots that mini- 
mize the information requirements. By constructing 
an algorithm and control law that use information 
directly from the robot sensors, it may he possible to 
solve the problem while eliminating the need to make 
potentially-flawed measurements. Focusing on the par- 
ticular task at hand, many of the classical requirements 
are eliminated. This approach can provide low-cost 
solutions to challenging problems, while achieving 
greater reliability in the face of uncertainties, 

The idea of using minimal representations was p o p  
ularized in the context of manipulation planning in 

[7], [8]. Within mobile robotics, on-line models have 
been used for navigation [ill, [12], [13], [151, target 
tracking [91, pursuit-evasion [17], and localization [31, 
PI ,  VOl, [IS], [191. 

The work presented here is the continuation of 
a previous effort, in which only simply-connected 
environments were considered [201. In the context 
of minimal representations, this work proposes new 
algorithms for environment exploration, navigation, 
and object location for environments with nonconvex 
obstacles. A dynamic tree data strncture is proposed 
to serve as a topological map of the environment, in 
which geomeuic information (such as lengths, angles, 
distances, or segments) is not necessarily represented. 

This tree is .called dynamic because it is updated 
with visibility critical events as the robot moves in 
the environment. A path in this tree gives a sequence 
of critical events that the robot must follow to reach 
different places. We will show that once this dynamic 
tree is constrncted, the path traversed by the robot 
between two locations is optimal up to a bomotopy 
class with respect to distance, and that it is possible to 
find fixed objects in the environment. 

11. PROBLEM DEFINITION 

The robot is required to explore an unknown en- 
vironment, learning the location of certain interesting 
objects. When the exploration phase is finished, the 
robot must move efficiently and reliably between any 
two locations using sensor feedback. Under these con- 
ditions, the robot will be able to perform useful tasks, 
such as going where a certain object is located, moving 
an object from one place to another, or gathering all 
of the objects to one place. 

The robot is modeled as a point moving in a con- 
nected open set R in the plane. Let 0 = 0, be the 
set of painvise disjoint nonconvex simply-connected 
obstacles, in which o, c R for i = [l, 2,.  , . ,n] is an 
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Fig. 1. The robt’s n e w  of the environment. The environment 
is show0 on the left, with the white region denoting the visibility 
of the mbt .  On the right it is shown the angular position of the 
discontinuities detected in Ule visibility mjon.  

open set. Let F = R \ 0 be the free space. Assume 
that the boundary of F is piecewise smooth. The robot 
is only able to move in F. Let G = {gl, g2,. . . , gm} 
be the collection of n interesting objects in the envi- 
ronment. It is assumed that each o E 0 and each g E G 
is uniquely identifiable. Elements in 0 are obstacles 
for movement and visibility, while elements in G are 
considered as points that the robot recognizes when it 
sees them. Also, during exploration, the robot uses a 
marker. The robot has no previous knowledge of R, 0 
or G. 

The robot is able to detect discontinuities in depth 
information. Each discontinuity corresponds to a por- 
tion of F that is not visible to the robot. As an example 
refer to Figure 1. Figure 1.h gives the location of dis- 
continuities in depth infomation for the environment 
shown in Figure 1.a. 

Although the precise distances to the walls may be 
unknown, it is assumed that the robot has a kind of 
edge detector that can detect each of the discontinu- 
ities, and r e m  their direction relative to the robot’s 
heading. Each discontinuity will be referred to as a 
gap, as in [17]. For polygonal environments these 
gaps are referred to as spurious edges of the visibility 
polygon in [lo]. It is assumed that the robot can 
track the gaps at all times, and record any topological 
change, as we will discuss later. 

Given the gaps that the robot detects at a given time, 
it is possible to command the robot to move toward a 
given gap. This sensor-feedback movement is defined 
as chasing a gap. 

We make a general position assumption that no line 
is tangent to more than two points of the boundary 

of F 

111. THE DYNAMIC DATA STRUCTURE 

In this section we present the dynamic data structure, 
the tree Th, that will encode R, 0, and G. First we 
will define the visibility events, and bow they are en- 
coded into Th. Next, we will introduce the navigation 
algorithm, assuming that a partial construction of Th 
is available. Finally, we will propose an algorithm to 
construct Th for an unknown environment. 

A. Encoding visibility critical events 

There are four possible ways in which the gaps 
change: a new gap appears, an existing gap disappears, 
two or more gaps merge into one gap, and a single gap 
splits into two or more gaps. These changes are called 
gap critical evenrs. 

Appearance and disappearance events occur when 
the robot crosses generalized inflections of the hound- 
ary F. Merge and split events occur when the robot 
crosses the rays that extend generalized free bitangents 
of F (see Figure 2). An inflection is found by extending 
a ray outward from an inflection point of the boundary 
of F. A birangent is a closed line segment whose 
supporting line is tangent at two points of the boundary 
of F. It is calledfree if lies entirely in F [16]. We use 
the term generalized as in [14] to extend the definition 
of inflections and bitangents to polygonal boundaries. 

Because of the general position assumption, when a 
gap splits, it yields exactly two new gaps. Also, when 
gaps merge, exactly two gaps merge to yield a single 

The data stmcture Th is a dynamic tree. The root of 
Th moves along with the robot. Therefore, Th is a local 
topological map, not a global one as in [21, [41, [61. 
Each node in Th encodes topological information about 
the environment. A child node of the rmt represents 
a gap that is detected in the robot’s current position. 
Child nodes are maintained in circular order, as they 
are detected. As the robot moves in F, gap-critical 
events are triggered and encoded into Th as follows: 

1) A gap appears. A node corresponding to the 
gap is added as a child of the mot of Th, in a 
location that preserves the circular ordering of 
gaps. 

2) A gap disappears. The corresponding node is 
removed from Th. 

3) Two gaps merge. The two corresponding chil- 
dren of the root become the children of a new 
node, n, and n becomes a child of the root (see 
Figure 3). 

gap. 
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, Observation 1: For every obstacle o E 0, there will 
be a gap beginning at o for some position of the robot. . . \ . 
 also,^ if R is nonconvex, for some robot position there 
will be at least one gap beginning at R. . \ If an object g E d, is in the visibility region of 
the robot, and its angular position is close to a gap q, 
then we say that q encodes a path to g. Following a 
path that takes the robot to q will make g visible. This 
idea will become clear in Section III-B. We also have 
a guarantee in the number of gaps associated with an 
nhiecr 

Fig. 3. Merge cntical went. When the robot crosses one ray 
extending the bitangenc gaps a and b merge into gap n. In Th, 
nodes encoding a and b became children of the node encading n. 
The mot of Th is labeled with )., and the robot position is indicated 
with the black disk. 

4) A gap splits. The corresponding node, child 
of the rod, will be replaced with two children 
nodes. 

Assume that the gaps are detected in counterclock- 
wise order. A label of left or right can be assigned 
to each gap. Each label corresponds a transition in 
a discontinuity from “far to near” or ‘bear to far”, 
respectively, and indicates the side to which the region 
of F is hidden behind the gap. These transitions, 
together with the assumption that every obstacle o E 0 
is uniquely identifiable, make it possible to associate 

‘gaps with obstacles. The “beginning” of the gap is the 
nearest obstacle (or R) in the trinsition, and the “end” 
is the fartbest one (see Figure 4). When an obstacle o 
is visible, it is (partially) blocking the visibility of the 
robot of other obstacles or a portion of R. From the 
robot’s perspective, o will be the beginning of some 
gaps. Thus, every obstacle is associated with at least 
one gap: 

--,---- 
Observation 2: If the robot has seen the whole free 

space F. for each object g E G, if there are no nodes 
in Th associated with a gap that encodes a path to g. 
then g is visible from the current position of the robot. 

This observation is true because at the instant when 
an object is not longer visible, a gap 7 refers to the 
invisible region containing the object. The object is 
associated with q. 

Note that only the angular order, not the precise an- 
gular position of the gaps, is recorded in the encoding 
of Th. 

A similar data sbllcture was presented in [l], in 
which a shonest path tree is updated when a point 
crosses constraint lines. However, in that work it is 
assumed that a simple polygon is given apriori, which 
represents a perfect map. 

B. The navigation algorithm 
The central idea of the navigation algorithm is 

to chase the gap associated with a given goal. For 
example, chasing a gap that begins in an obstacle will 
take the robot to the boundary of that obstacle, or will 
make a certain object visible at some point. As the 
robot moves, the node 
may not be a child of the root. Because of merging 
events, it may be in a lower depth in the tree. The robot 
must chase the child of the root that is an ancestor of 
8. When the corresponding child of the root splits, 8 

encoding this information ~ 
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NAVIGATION(Th, S) 

while H # 0 do 
h +- POP ( H )  
nntil disappears(h) or splits(h) or ingoal(s) do 

H +- mSE'?(Th,  8) 

CHASE(h) 
fig. 5. Navigation algorithm. A sequence of gaps that encode a 
path to the goal s is generated from Th. The mbot follows this 
squcnee until reaching the goal. 

will be one level closer to the m t .  This procedure is 
repeated until p is a child of the root, in which case 
following will reach the goal. 

Assume that a partial consuuction of Th is available, 
and that a goal s is associated with some node of Th. 
The goal s may be a gap, an object in G or an obstacle 
in 0. The navigation algorithm to reach s is shown in 
Figure 5. A sequence of gaps, H, encoding a path to 
s is extracted from Th. One by one the robot chases 
the gaps in H ,  until the goal is reached. I f s  is a gap, 
the goal is reached when s splits or disappears (s will 
be the last gap in H). If s is an obstacle, the task ends 
when the robot touches s, and i f s  is an object, the task 
is completed when s is visible. The predicate in4oal 
handles these last two cases. 

C. The aploration algorithm 

For the exploration, the nodes of Th are classified 

. Primitive. Primitive ncdes encode gaps that ap 
pear as the robot moves. A primitive node refers 
to some part of F which the robot has already 
seen (this part of F was visible before the corre- 
sponding gap appeared). 
Branch. Branch nodes are the parents of nodes 
corresponding to gaps which merge. 
Non-primitive. These correspond to nodes as- 
sociated with gaps that the robot has not yet 
explored, or to gaps that did not disappear but are 
associated with some feature of the environment. 
Blwk. A block node encodes a gap that does not 
increase the robot's knowledge of the envuon- 
ment. The notion of the block nodes and why they 
are needed will be described later in this section. 

When the robot is placed in a new environment, all 
of the leaves of Th are marked non-primitive. This is 
because the robot has not yet seen what is behind the 
corresponding gaps. If 0 = 0, when the robot chases a 
gap, the gap is guaranteed to split or to disappear. An 
appropriate exploration strategy commands the robot 
to chase every non-primitive gap, until all the leaves 

into four types: 

Fig. 6. Not all gaps disappear when chased. If the obstacles 
in which the gap begins and ends .are different, the gap doss not 
disappear (a). The gaps disappears if the gap begins and ends in the 
same obstacle (b). 

of the tree are primitive. Such a strategy is presented 
in [ZO]. 

In the general case, when 0 # 0, one complication 
is presented because there are gaps that never disap 
pear. As shown in Figure 6.a. chasing a gap until it 
disappears may result in the robot going m u n d  an ob- 
stacle forever. Compare this situation with Figure 6.b. 
in which a gap disappears. 

Another strategy must be defined to ConstNCt Th, 
which guarantees that the robot will see the whole 
environment. In our solution, the robot follows the 
boundary of R and of every obstacle o E 0. From 
Observation I ,  there will be gaps beginning at each 
obstacle. Using the information in Th, the robot can 
determine how to reach some of the obstacles in 
the environment. as described in Section III-B. The 
robot chooses arbitrarily to follow the boundary of an 
obstacle that has not been transversed before. When 
this boundary has been completely traversed, a new 
obstacle is selected. Incrementally, the robot will de- 
termine how to reach every obstacle. 

To follow the border of an obstacle, or the border of 
R, the robot drops a marker when it first touches the 
obstacle, or when it first touches the border of R. The 
robot executes wall-following motions until it detects 
the marker. At this time the robot has completely 
followed the border, and it picks up the marker. Note 
that it would be very difficult, if not impossible, for 
the robot to detect when it had finished following a 
border, using only gap-sensing capabilities. 

The exploration strategy is summarized in Figure 7. 
The tree is initialized with the non-primitive nodes 
corresponding to the gaps detected initially. During 
execution, a list Q is computed, consisting of all of 
the boundaries the robot knows how to reach, but has 
not explored. The exploration ends when Q is empty. 

4 

3494 



There is an interesting complication when building 
Th. Since the free space may be multiple connected, 
the homotopy class of paths between two locations 
may not be unique. As shown in [20], in the absence 
of the obstacles the paths generated by Th are optimal. 
With obstacles this is no longer true. From the robot's 
perspective, all paths through Th are equivalent, since 
the robot lacks distance information. Therefore, paths 
through Th that use the minimum sequence of gaps are 
selected. Suppose that the sequence of nodes vi, ..., v, 
is selected to reach goal s. The association of a with 
any node U E Th is removed if U # U,,,. If an object 
is visible, then the association of the object with all 
the nodes is removed. If a leaf of Th is not associated 
with a goal, it is marked as block. If a branch node 
is not associated with a goal, and all its children are 
marked as block, the branch node is marked as block, 
and all the children are eliminated. Two block nodes 
cannot merge (only one is kept). A block node splitting 
yields two block nodes. A block node returns to a non- 
primitive status if is associated with a new goal. We 
now show that this algorithm is complete: 

Proposiiion 3: The tree Th will provide a path from 
the current position of the robot to each obstacle o E 0 
and to each object g E G. 

Pmofi By Observations 1 and 2 it is known that if 
an object or obstacle is visible in the environment, it 
will be associated with a gap and the corresponding 
node in Th. When the robot moves and the object 
or obstacle is no longer visible, the path information 
is preserved by nodes merging in Th. Even when 
some nodes are eliminated or marked as block, path 
information is preserved. Elimination of nodes occurs 
unless Th encodes more than one path to the same 
goal. The data structure Th will provide a path from 
the cnnent position of the robot to all the objects and 
obstacles in the environment. 

D. Some comments on performance 
Since the robot has no distance information, good 

performance in the distance traveled may not be ex- 
pected. As discussed in Section IU-C, all paths with a 
common goal are equivalent. As a consequence the 
path length may compare poorly with the distance 
traversed having a complete geometric map. 

Refer to Figure 8. After going around the triangular 
obstacle once in the exploration phase, the robot travels 
to the circular obstacle. If the robot follows the gap on 
the right, and if b >> a, the robot will follow almost the 
entire mangle boundary again. A decision based only 
in our gap-chasing model cannot do better. In [ I l l ,  a 
similar problem is considered. It is solved by changing 

. 

EXPLORATION0 
Tg + INITIALIZETREE 
Q t REMAI"GENDR(T,) 
while Q # 0 do 

o - POP ( Q )  
NAVIGATION(T,, 0) 
DROP-MARKER 
FOLLOWSOUNDARY(o) 
RECOVERMARKER 
Q + REMAI"GBNDR(T,) 

Rg. 1. Explarauon algorithm. Tl~e robot follows the boundary of 
each element of the envimnment. When the last obstacle taundary 
has heen navmed the mho1 ha$ seen the whole envimnmenl and 

.J 

Fig. 8. A worst ease navigation example. If b W a, and if the 
mbot chwses to follow the gap on the right, practically the whole 
mangle boundary will be followed lo reach the circle. 

the direction of the navigation if the robot moves in the 
opposite direction to the goal. Without a measurement 
of direction, this is not possible under our gap model. 

Although global optimality cannot be guaranteed, 
the path that the robot follows is optimal in the ho- 
motopy class to which the path belongs. By following 
gaps, the robot follows the tangent limes between the 
obstacles, which in tum are the edges of the tangent 
visibility graph. 

It is worth noting that the number of gaps in a path 
sequence is an indicator only of how "cluttered" a 
region is, but generally is not related with the distance ~~ 

to travel. Consider the example of Figure 9. The robot 
will choose to follow the gap on the right to reach a 
goal, instead of the path beginning on the gap of the 
left. The path on the left is longer in the number of 
gaps to chase, hut is shorter in distance. 

Iv. SIMULATIONS WITH RESULTS 

We have implemented the algorithms shown in 
computer simulation. Figure 10 shows the changes in 
Th before and after going around an obstacle. It is 
interesting to see that the root's children are the same, 
but at the end one of them has encoded paths to reach 
other places in the environment. 

For the figures shown, the m t  of Th is represented 
with the bigger black circle. The different shapes inside 
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fig. 9. Paths with shortest gaps sequence are preferred. The robot 
will follow the path on the right. because it offers less gaps 10 chase, 
although is not the shortest path. With only gaps infomation, the 
mbot cannot do tener. 

the nodes represent the objects associated with that 
node. The shapes inside the root node are the objects 
visible from the current robot’s position. The color of 
the circle in the top of the nodes indicates the obstacle 
in which the associated gap begins. Primitive nodes 
are drawn as squares. The “b” label indicates that the 
node is a block node. Finally, the labels “r” and “1” 
indicate that the associated gap bides the environment 
to the right or to the left, respectively. 

In the example shown in Figure 11, after the explo- 
ration, the robot moves all objects to a single place, 
previously determined. The trees shown correspond to 
Th after the exploration phase and during the delivery 
task. 

The model we assume has been successfully demon- 
strated in a real robot. The robot setup used is shown 
in Figure 12. The reader is referred to [201 for a 
description of the implementation and some of the 
issues faced. 

V. CONCLUSIONS 

We have presented a dynamic data structure useful 
for robot navigation in a multiply-connected environ- 
ment. Algorithms for construction and exploitation of 
this data smcture have been described. These algo- 
rithms are based on the robot’s capability of detecting 
visibility critical events, more precisely, in changes of 
depth information. The navigation paths generated by 
the data structure are optimal, up to a bomotopy class. 

Given that the robot does not use geometric infor- 
mation, it is interesting how the data structure is able 
to capture paths between locations in the environment. 
We believe that the assumption in which every obstacle 
is uniquely identifiable is strong, and is not easily 
implementable in real robots. Adding another sensing 
capability, or detecting patterns of nodes in the data 
structure, may lead to a relaxation of this assumption, 
and we consider them as improvements in future work. 
The use of a marker may also be relaxed if the robot 
is provided with basic image processing capabilities. 

&+ 
8 

Fig. 10. The mbot sunounds the darker obstacle in (a). In (b) it 
is shown the initial state of Th. and in (e) the paths information 
gained after surrounding the obstacle completely. The robt  is the 
black p i n t  and the small polygons are the interesting objects 
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