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Robot
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Abstract—In this paper, we consider the problem of capturing
an omnidirectional evader using a Differential Drive Robot
(DDR) in an obstacle-free environment. At the beginning of this
game the evader is at a distance L > l (the capture distance)
from the pursuer. The goal of the evader is to keep the pursuer
farther than this capture distance as long as possible. The goal
of the pursuer is to capture the evader as soon as possible.
In this work, we make the following contributions: We present
closed-form representations of the motion primitives and time-
optimal strategies for each player; these strategies are in Nash
Equilibrium, meaning that any unilateral deviation of each player
from these strategies does not provide to such player benefit
towards the goal of winning the game. We propose a partition
of the playing space into mutually disjoint regions where the
strategies of the players are well established. This partition is
represented as a graph which exhibits properties that guarantee
global optimality. We also analyze the decision problem of the
game and we present the conditions defining the winner.

Index Terms—Differential Games, Pursuit-Evasion, Capturing,
Nonholonomic Constraints

I. INTRODUCTION

THis paper addresses a pursuit-evasion game. A great deal

of previous research exists in the area of pursuit-evasion,

particularly in the area of dynamics and control in free space

(without obstacles) [1], [2]. The pursuit-evasion problem is

often framed as a problem in non-cooperative dynamic game

theory [2]. A pursuit-evasion game can be defined in several

ways. For example, one or more pursuers could be given the

task of finding an evader [3], [4], [5] in an environment with

obstacles. To solve this problem [3], [5], [6], [7], [8], [9], the

pursuer(s) must sweep the environment so that the evader is

not able to eventually sneak into an area that has already been

explored. A recent survey of this kind of problem is presented

in [10]. Other related problem, which has been extensively

studied, consists in maintaining visibility of a moving evader

in an environment with obstacles [11], [12], [13], [14]. In [15]

we have specifically considered the case in which both the

pursuer and the evader are omnidirectional; that work led to

a sufficient escape condition for the evader.

The problem that we address in this work is closely re-

lated to the classical differential game, called the homicidal

chauffeur problem [1], [16]. In that game a faster pursuer

(w.r.t. the evader) has as its objective to get closer than a
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given distance (the capture condition) from a slower but more

agile evader, in order to run him over. The pursuer is a

vehicle with a bounded minimal turning radius. The game

takes place in the Euclidean plane without obstacles, and the

evader aims to avoid the capture condition. In our problem, we

also consider a faster pursuer and a more agile evader moving

in an environment without obstacles. The game is defined in

the same way: the objective of the pursuer is to capture the

evader, while the evader aims to avoid the capture. However,

there is an important difference between the problem described

in this paper and the homicidal chauffeur one. In this work the

pursuer is a Differential Drive Robot (DDR), i.e. the pursuer

can rotate in place. Furthermore, the DDR can move backward

and forward while in the Homicidal Chauffeur problem the

pursuer can only move forward. In Subsection I-A we present

a more detailed comparison between the Homicidal Chauffeur

problem and the problem addressed in this paper.

In [17] we have presented a solution for the problem of

maintaining surveillance of an omnidirectional mobile evader

at constant distance with a Differential Drive Robot, assuming

that the state of the system (pose of the Differential Drive

Robot and position of the evader) is known by both players

and the instantaneous velocity vector of the evader is known

by the pursuer. Note that if the instantaneous velocity of the

evader is not known by the pursuer, it is not possible to

maintain a constant distance between both players. In that

work, we obtained optimal motion strategies, in the sense

that they require the minimal speed for both players for

winning, and the long term solution for the game. The main

distinguishing features of our current work compared with our

previous research in [17] are: the games are different, in this

paper, the pursuer wants to reduce the distance between both

players in minimum time while in [17] the pursuer wants to

maintain a constant distance using minimal velocity. In this

work, the criterion to be optimized is different; the proposed

motion strategies for both players are time-optimal while in

[17] they are not. In this case, the players only know their

positions, i.e. the instantaneous velocity vector of the evader is

not needed as in [17]. In [17], the solution was obtained using

geometrical methods while in this case the solution is based on

the theory of optimal control and differential games. An early

version [18] of part of this work has appeared in the IEEE Intl.

Conf. on Robotics and Automation 2012. In this document, we

have extended the previous work in the following ways: We

have included a comparison between the Homicidal Chauffeur

problem and the game solved in this work. We stress the fact
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Fig. 1. Car-like

that it is not possible to represent a DDR with the model for

a simple car used in the Homicidal Chauffeur problem, and

therefore, it is also not possible to obtain the solution for a

DDR pursuer from the solution for the Homicidal Chauffeur

problem. We propose a graph representation of the reduced

state space partition which exhibits properties that guarantee

global optimality. We explain the importance of this properties

in the solution of the game. We show a trajectory followed

by the system in the reduced space when the evader avoids

capture. The trajectories for both players in the realistic space

are also included. We have also included simulations where

the players follow greedy (gradient descent) strategies and we

compare the results against the optimal case.

A. Comparison between our contributions and the Homicidal

Chauffeur problem solution

This section has as its goal to present three main differences

between our contributions and the solution presented in [1] and

[16] for the Homicidal Chauffeur problem: (1) In contrast to

the solution proposed for the Homicidal Chauffeur problem,

for our problem, we propose a graph representation of the

reduced state space partition which exhibits properties that

guarantee global optimality (refer to Subsection VIII-B). (2)

We present a concrete example of a trajectory followed by the

evader when it wins, i.e., it avoids capture indefinitely (refer

to Section IX). (3) We show that the model for a simple car

cannot be used to represent a DDR. In particular, we show

that when the distance between the front and rear axles of the

car tends to zero and the car steering angle tends to π
2

, both

implying that the turning radius tends to zero, then the car-

like model approaches to an omnidirectional system and not

a DDR.

Consider the kinematic model for a simple car in [19] shown

in Fig. 1(a), (x, y, θ) is the configuration of the system, with

the origin at the center of rear axle, and the x-axis pointing

along the main axis of the car. Let v denote the translation

velocity of the car, and φ denote the steering angle. Recall, that

the distance between the front and rear axles is represented as

L. If the steering angle is fixed at φ, the car travels in a circular

motion, in which the radius of the circle is ρ = L/ tanφ.

Suppose that the translational velocity v and the steering angle

φ are directly specified. The transition equation for a simple
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Fig. 2. Differential Drive Robot

car is

ẋ = v cos θ, ẏ = v sin θ, θ̇ =
v

L
tanφ (1)

where v ∈ [−vmax, vmax] and φ ∈ [−π/2, π/2]. The last ex-

pression can be rewritten as θ̇ = (v/ρ)un, where un ∈ [−1, 1].
This small variation of the transition equation, considering also

that v ∈ [0, vmax], was used in [1], [16] to model the motion

of the car in the Homicidal Chauffeur Problem. Assuming

θ̇ = ω, in Fig. 1(b) we can observe the set of admissible

controls in the v − ω space. From θ̇ = (v/ρ)un, we have

that as ρ → 0 then θ̇ → ∞. Therefore, we have that as the

turning radius ρ approaches zero, the simple car approaches

an omnidirectional vehicle, which can instantaneously change

its motion direction. In contrast, the kinematic model for a

DDR [20] is given by (see Fig. 2(a)):

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω (2)

where v is the robot’s translational velocity and ω its angular

velocity . With a suitable choice of units, we have that

v =
ω1 + ω2

2
, ω =

ω2 − ω1

2b
(3)

where ω1 and ω2 are the wheel angular velocities. b is

the distance between the center of the robot and the wheel

location. For a DDR, assuming vmax > 0, we have that

|θ̇| = |ω| ≤
1

b
(vmax − |v|) (4)

The angular velocity is inversely proportional to the translation

velocity. Comparing the spaces of admissible controls for

both models (see Figs. 1(b) and 2(b)) we can see that there

are values for v and w that can be valid for one model

but not for the other. This leads to different time-optimal

motion primitives. It is also important to note a fundamental

assumption in the model for a simple car; its four wheels

share the same rotational direction and speed, which is not

the case for a DDR. Note that for the car-like robot it is

possible to set simultaneously v and w at their maximal values

(saturated values) while for the DDR is not possible to set at

the same time v and w at their maximal values. Taking into

consideration the arguments given above, we have that it is not

possible to model a DDR using the model for a simple car,

and therefore, it is also not possible to obtain the solution for

a DDR pursuer from the solution for the Homicidal Chauffeur

Problem.
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B. Related work within robotics

Recent years have seen a growing interest in related prob-

lems within the robot motion planning community. In [11],

game theory was proposed as a framework to formulate the

tracking problem, and an on-line algorithm was presented.

In [11], an algorithm was presented that operates by maxi-

mizing the probability of future visibility of the evader. The

approach presented in [23] computes a motion strategy by

maximizing the shortest distance to escape, i.e., the shortest

distance the evader needs to move in order to escape the

pursuer’s visibility region. In [12], a technique is proposed

to track an evader without the need of a global map. In [24],

the problems of maintaining visibility and capturing an evader

in an environment with obstacles are studied. In this case,

both players are omnidirectional systems, and the authors show

how to efficiently (low-degree polynomial time) compute an

optimal path for the pursuer that counteracts a given evader

motion. In [25], a robot has to track an unpredictable target

with bounded speed. The robot’s sensors are manipulated to

record general information about the target’s movements and

avoid the necessity of detailed information about the target’s

position being available if the robot’s sensors are accessed

by other agent that can damage the target. Almost all existing

work focuses on the 2-D version of the problem of maintaining

visibility of an evader, but there are few works that deal with

the 3-D version of it. In [26], the authors present an on-line

algorithm for 3-D target tracking among obstacles, using local

geometric information available to a robot’s visual sensors.

The robot motions are calculated minimizing a risk function.

[14] addresses the problem of maintaining visibility of the

evader in an environment containing obstacles. In [14], the

authors prove the existence of strategies that are in Nash

equilibrium: the pursuer wants to maintain visibility of the

evader for the maximum possible amount of time, and, the

evader wants to escape the pursuer’s sight as soon as possible.

But notice that in that work the pursuer is an omnidirectional

robot while in the current paper the pursuer is an nonholo-

nomic system (DDR). In fact, our problem is also related to

the problem of finding optimal paths for nonholonomic robots

[20], [21], [22]. The work in [14] and our current work are

based on techniques from Optimal Control theory [27]. Only

few pursuit-evasion problems modeled using optimal control

tools can be solved analytically. For example, the Homicidal

Chauffeur problem [1], [16], the tracking problem in [14] and

some examples presented in [1]. In most of the cases, the use

of numerical methods is necessary, particularly, in problems

with state spaces of high dimensions (four or more). Several

techniques have been proposed for those cases, some of them

are based on the Level Set methods [28], and others in the

Cell Mapping method [29], [30]. Typically, although those

methods can obtain good results they have some limitations.

The computational time required to find an accurate solution

can be high, and the selection of the parameters, e.g., the

resolution of the state space discretization, can be difficult.

Other techniques typically used for solving the type of

problems addressed in the paper are: Numerical optimization

of the Hamiltonian. See for instance [15]. This technique has

as a drawback that in general, it does not guarantee global

optimality unless the search space is convex. Other option

is to use numerical dynamic programming (DP) [33], since

this technique is exhaustive it guarantees global optimality.

However the decision problem must be solved by other means

previously to the use of DP, since DP finds the optimal

trajectories backwards, starting from the terminal condition,

which in our problem corresponds to the usable part. This

technique has as an advantage that it can deal more easily

with obstacles in the environment. In this work, we found that

it is possible to obtain an analytical solution for the problem.

We focus our attention in finding closed-form representations

of the motion primitives and strategies for the players.

An interesting version of the problem of pursuit-evasion

involves multiple participants of each kind (several evaders and

pursuers) [31], [13], [32]. Pursuit-evasion has been found to

be of use in interesting applications. For example, in [33], the

authors noticed the similarity between pursuit-evasion games

and mobile-routing for networking. Applying this similarity,

they proposed motion planning algorithms for robotic routers

to maintain connectivity between a mobile user and a base

station. That work also includes a proof-of-concept implemen-

tation.

II. PROBLEM FORMULATION

A Differential Drive Robot (DDR), the pursuer, and an

omnidirectional evader move on a plane without obstacles.

The DDR tries to capture the evader. The game is over when

the distance between the DDR and the evader is smaller than a

critical value l. Both players have maximum bounded speeds

V max
p and V max

e , respectively. The DDR is faster than the

evader, V max
p > V max

e , but it can only change its direction of

motion at a rate that is inversely proportional to its translational

speed [20]. We consider here a purely kinematic problem,

and neglect any effects due to dynamic constraints (e.g.,

acceleration bounds). The DDR wants to minimize the capture

time tf while the evader wants to maximize it. The objective

is to find the optimal strategies that are in Nash Equilibrium

and may be used by both players to achieve their goals.

III. MODEL

A. Realistic space

The kinematics of the game can be described in a global

coordinate system (refer to Fig. 3(a)). (xp, yp, θp) represents

the pose of the DDR and (xe, ye) is the position of the

omnidirectional evader, both at time t. The state of the system

can be expressed as (xp, yp, θp, xe, ye) ∈ R
2 × S1 × R

2. The

evolution of the system is described by the following equations

of motion

ẋp =
(u1 + u2

2

)

cos θp, ẏp =
(u1 + u2

2

)

sin θp

θ̇p =
(u2 − u1

2b

)

, ẋe = v1 cosψe, ẏe = v1 sinψe

(5)

where u1, u2 ∈ [−V max
p /r, V max

p /r] are the controls of the

DDR, and they correspond to the angular velocities of its

wheels. r is the radius of the wheels, in this problem we

assume r = 1. Let u1 be the angular velocity of the left wheel
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and u2 of the right wheel. If both controls have the same

magnitude and are either positive or negative, respectively,

the robot moves forward or backward in a straight line,

and with a suitable choice of units [20], the translational

speed is equal to Vp = 1

2
(u1 + u2). If u1 and u2 have

the same magnitude but opposite signs the robot rotates in

place either clockwise or counter-clockwise [20]. The evader

controls its speed v1 ∈ [0, V max
e ] and its direction of motion

ψe ∈ [0, 2π). We present two useful definitions for the rest

of the paper, ρv = V max
e /V max

p is the ratio between the

maximum translational speed of both players, and ρd = b/l is

the ratio of the distance between the center of the robot and

the wheel location b and the capture distance l. We must have

that l ≥ b, otherwise the capture distance would be located

inside the robot.

B. Reduced space

Usually it is more convenient to analyze the problem and

perform all the computations in a space of reduced dimension.

In our case, the problem can be stated in a coordinate system

that is fixed to the body of the DDR (see Fig. 3(b)). The state

of the system now can be expressed as x(t) = (x, y) ∈ R
2.

All the orientations in this system are measured with respect

to the positive y-axis, in particular, the direction of motion of

the evader v2. Using the coordinate transformation given by

x = (xe − xp) sin θp − (ye − yp) cos θp

y = (xe − xp) cos θp + (ye − yp) sin θp

v2 = θp − ψe

(6)

ψ

y
P
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θ
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xP xE

E
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(b) Reduced space

Computing the time-derivative of x and y in Eq. (6) and

substituting the expressions for ẋp, ẏp, θ̇p, ẋe and ẏe in Eq.

(5), and the expressions for x and y in Eq. (6), the following

model of the kinematics in the DDR-fixed coordinate system

is obtained

ẋ =

(

u2 − u1

2b

)

y + v1 sin v2

ẏ = −

(

u2 − u1

2b

)

x−

(

u1 + u2

2

)

+ v1 cos v2

(7)

where u1, u2 ∈ [−V max
p , V max

p ] are again the controls of the

DDR, v1 ∈ [0, V max
e ] is the control associated to the speed

of the evader and v2 ∈ [0, 2π) is the control associated to

the direction of motion of the evader in the new coordinate

system. This set of equations can be expressed in the form

ẋ = f(x, u, v), where u = (u1, u2) ∈ Û = [−V max
p , V max

p ]×

[−V max
p , V max

p ] and v = (v1, v2) ∈ V̂ = [0, V max
e ]× [0, 2π).

IV. CONCEPTS FROM DIFFERENTIAL GAMES AND

OVERVIEW OF THE METHODOLOGY APPLIED IN OUR

PROBLEM

In this section, we provide an overview of the methodology

applied in our problem and describe some concepts from

differential games that will be used in its solution. We use

Isaacs’ methodology (IM) [1], [2] to find the solution of

our pursuit-evasion problem. The IM is based on an exten-

sion of the Hamilton-Jacobi-Bellman (HJB) equation [2] (see

Subsection A in Appendix A). This equation provides suffi-

cient conditions for the existence of saddle-point equilibrium

strategies [2]. Solving the HJB allows one to know the value

function V (x) over the entire space; however, obtaining a

closed-form solution directly from the HJB is not possible

in most cases. As an alternative, the IM uses an extension

of the Pontryagin’s Maximum Principle (PMP) [27] (refer to

Subsection B in Appendix A) which provides a constructive

manner for computing saddle-point equilibrium strategies. The

PMP only provides necessary conditions for these strategies;

Together with the PMP it is necessary to define a partition of

the state space into regions, such that in the interior of each

one of them the optimal controls for each player are uniquely

determined by the PMP (see Section VIII). Additionally, at

the boundaries between regions it may be necessary to choose

between two or more trajectories, so that in order to guarantee

global optimality, rules for performing these choices must be

specified. In IM these rules are based on the type of those

boundaries, which are called singular surfaces [1], [2]. In

robotics literature, the complete process for constructing a

globally optimal control law for steering the representative

point from any point of the space to a given target set is called

the synthesis problem [21]. Typically, to solve the synthesis

problem, first one finds the optimal motion primitives and then

a partition of the playing space is obtained to guarantee global

optimality [20], [21]. In Section IV-E, we present in more

detail the methodology used to solve our problem.

We now define the value of the game which is a central

concept in the solution of our problem.

A. Value of the game

In a noncooperative game, the numerical quantity which

the players strive to maximize and minimize respectively can

assume a variety of forms. A common representation of the

payoff is

J(x(ts), u, v) =

∫ tf

ts

L(x(t), u(t), v(t))dt+G(x(tf )) (8)

The time integral extends over the path traversed by x(t)
during the game; its lower limit (we call it ts) refers to the

starting state x(ts); its upper limit is the time tf to reach the

final state x(tf ). L(x(t), u(t), v(t)) is called the running cost

function and it is the cost incurred while the game is being

played. The term G(x(tf )) is called the terminal cost function

and it is the cost incurred for reaching a particular terminal

state.

In problems of minimum time, as in this work, one of the

players (in this problem, the pursuer) wants to minimize the
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time it takes to reach the final state x(tf ) from the initial

state x(ts), which is represented by the difference tf − ts. In

those problems, usually there is no special cost for reaching a

particular terminal state, so that G(x(tf )) = 0. From Eq. (8),

if L(x(t), u(t), v(t)) = 1 and G(x(tf )) = 0, we can see that

the time integral reduces to tf − ts. Therefore in our game,

the payoff is represented as

J(x(ts), u, v) =

∫ tf (x(ts),u,v)

ts

dt = tf (x(ts), u, v)− ts (9)

Note that tf (x(ts), u, v) depends on the sequence of controls

u and v applied to reach the point x(tf ) from the point x(ts).
For a given state of the system x(ts), V (x(ts)) represents

the outcome if the players implement their equilibrium strate-

gies starting at the point x(ts), and it is called the value of

the game at x(ts)

V (x(ts)) = min
u(t)∈Û,∀t

max
v(t)∈V̂ ,∀t

J(x(ts), u, v) (10)

where Û and V̂ are the set of valid values for the controls

for all time t. Note that in Eq. (10), the players have opposite

goals, one player maximizes the cost while the other player

minimizes it, both through the selection of their controls.

V (x(t)) is defined over the entire state space. In this game,

Eq. (10) actually corresponds to the time it takes for the DDR

to capture the evader, when the players implement their equi-

librium strategies starting at x(ts). No matter what the evader

does, it cannot avoid the capture for longer than V (x(ts)). If

the evader does anything different than its equilibrium strategy,

the DDR can capture it in less than V (x(ts)). Reciprocally, if

the DDR does anything different than its equilibrium strategy,

the evader can remain avoiding it for a longer time.

B. Open and closed-loop strategies

We start by defining a strategy γ which is a rule that tells

each player the control it has to apply at each time instant.

If the strategy only depends on time γ(t) is called a open-

loop strategy, and if it depends on the state of the system

γ(x(t)) is called a closed-loop strategy [2]. In this work,

we find open-loop strategies using the Pontryagin’s Maximum

Principle (refer to Subsection B in Appendix A) and we define

a partition of the entire state space into regions (refer to

Section VIII).

C. Open and closed-loop equilibrium strategies

Let γp(x(t)) and γe(x(t)) denote the closed-loop strate-

gies of the DDR and the evader, respectively, therefore

u(t) = γp(x(t)) and v(t) = γe(x(t)). A strategy pair

(γ∗p(x(t)), γ
∗
e (x(t))) is in closed-loop (saddle-point) equilib-

rium if

J(x(ts), γ
∗
p (x(t)), γe(x(t))) ≤ J(x(ts), γ

∗
p(x(t)), γ

∗
e (x(t)))

≤ J(x(ts), γp(x(t)), γ
∗
e (x(t))),

∀γp(x(t)), γe(x(t))

(11)

where J is the payoff of the game in terms of the strategies.

An analogous relation exists for open-loop strategies.

D. Termination situations

Two important concepts for modeling our problem are the

terminal surface and the usable part which we define below.

Every state of the system in which the distance between both

players equals l represents an opportunity for the DDR to

capture the evader. This set of points is called terminal surface

[1] or target set [2], which can be characterized by a scalar

function ζ(x(t)) = 0. We will refer to this set simply as ζ.

In our game, termination occurs only when the distance

between the DDR and the evader is smaller than a critical

value l despite any opposition of the evader. The portion of

the terminal surface where the DDR can guarantee termination

regardless of the choice of controls of the evader is called the

usable part (UP) [1]. From [1], we have that the UP of our

problem is given by

UP =

{

x(t) ∈ ζ : min
u(t)∈Û

max
v(t)∈V̂

n · f(x(t), u(t), v(t)) < 0

}

(12)

where Û and V̂ are the sets of valid values for the controls,

and n is the normal vector to ζ from point x(t) on ζ and

extending into the playing space. n · f(x(t), u(t), v(t)) is a

projection of the motion directions of both players along the

best direction for penetrating ζ and tell us if the strategies

of both players will allow crossing the terminal surface or

not. Those points of ζ where the expression (12) holds with

the inequality reversed are called the non-usable part (NUP)

and the game will never terminate on the NUP. The set of

points that separates these parts is called the boundary of the

usable part (BUP). The BUP can be computed replacing the

inequality in (12) by an equality.

E. Overview of the methodology applied in our problem

We use the IM to obtain the solution to our problem, in this

methodology the PMP is used to obtain extremal trajectories

that correspond to the application of the optimal controls by

the players. However, there may be sets of points in the state

space (singular surfaces [1], [2], [34]) where two or more

backward-time trajectories converge. The players must decide

which trajectory to follow in order to obtain a globally optimal

solution. The IM provides a constructive way to find those

rules (identification of singular surfaces). In summary, in the

IM a complete solution to a pursuit–evasion game involves: 1)

Finding the singular surfaces for the particular problem, which

induce a partition of the entire state space into regions. 2)

Finding the optimal strategies inside each one of these regions

by backward-time integration of the corresponding differential

equations up to singularities, discarding non-optimal extremal

trajectories. 3) Providing rules for selecting the appropriate

strategy at those places where more than one choice is

possible. Thus, the application of IM for our problem consists

of the following steps:

1) Compute the usable part (Subsection V-A). This allows

one to find the initial conditions needed to solve the

differential equation derived from PMP: the so-called

adjoint equation.
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2) Construct the Hamiltonian of the system (Subsection

V-B) and obtain the expressions for the optimal controls

satisfying it (Subsection V-C).

3) Find ∇V (x) solving the adjoint equation backwards in

time (retro-time, see Eq. (24)) using the values of V (x)
and ∇V (x) on the UP as initial conditions (Subsections

V-D and V-E). V (x) is used to find the controls used

by the players.

4) Use the computed controls in the backward integration

of the motion equations to find the trajectory followed

by the players. (Subsections V-F and V-H).

5) Find the singular surfaces and restart the backward

integration of the adjoint and motion equations until the

entire space is covered. At those points where multiple

backward trajectories converge, choose the globally op-

timal trajectory based on the type of singular surface.

(Subsection V-G and Sections VII and VIII).

6) Find the region of the playing space where capture is

possible for the DDR (Section VI).

Steps 1 to 4 corresponds to use the Pontryagin’s principle.

In step 5, we find the trajectories of the players for the entire

space. In step 6, we solve the decision problem corresponding

to determining the winner of the game.

V. OPTIMAL MOTION STRATEGIES AND TRAJECTORIES

In this section, we will refer to trajectories in the reduced

and realistic spaces. In the realistic space, we will describe

trajectories for both the pursuer and the evader over a global

reference frame in a Cartesian plane. In the reduced space, we

will refer to trajectories of the system, i.e., relative motions

of the evader with respect to the pursuer in a local reference

frame defined by the pursuer.

A. Computing the usable part and its boundary

In this section, we compute the portion of the space where

the pursuer guarantees termination regardless of the choice of

controls by the evader. For this problem, the terminal surface

ζ is characterized by the distance l between both players. In

the reduced space, ζ is a circle of radius l centered at the

origin, hence we can parametrize it by the angle s (see Fig.

3), which is the angle between the evader’s position and the

pursuer’s heading at the end of the game (recall that all the

orientations in the reduced space are measured with respect to

the positive y-axis). At the end of the game

x = l sin s, y = l cos s (13)

Lemma 1: In this game, the usable part has two regions: 1)

The first region corresponds to capturing the evader when the

DDR is moving forward following a straight line in realistic

space. This region contains all the points on ζ such that cos s >
ρv and its boundary is given by those points where cos s =
ρv. 2) The second region corresponds to capturing the evader

when the DDR is moving backward following a straight line

in realistic space. This region contains all the points on ζ such

that cos s < −ρv and its boundary is given by those points

where cos s = −ρv.

Proof: The outward normal n to ζ is defined by

n = [sin s cos s] (14)

The usable part after substituting Eq. (7) and Eq. (14) into

inequality (12) is given by

UP ={s : min
u1,u2

max
v1,v2

{sin s
[(u2 − u1

2b

)

y + v1 sin v2
]

+ cos s
[

−
(

u2 − u1

2b

)

x−
(

u1 + u2

2

)

+ v1 cos v2
]

} < 0}

(15)

Substituting Eq. (13) into inequality (15) and after straightfor-

ward algebraic manipulation, we find that

UP =

{

s : min
u1,u2

max
v1,v2

[

v1 cos(v2 − s)−
(u1 + u2

2

)

cos s
]

< 0

}

(16)

As the evader is the maximizer player it wants the term

v1 cos(v2 − s) to be positive, and with the largest value

possible. Therefore, v1 = V max
e and v2 = s, i.e., the evader

is moving at maximum speed with an angle s with respect to

the pursuer’s heading. Substituting these values into Eq. (16)

we have

UP =

{

s : min
u1,u2

[

V
max
e −

(u1 + u2

2

)

cos s
]

< 0

}

(17)

In inequality (17) we have two cases, (1) cos s > 0 or (2)

cos s < 0. In order to make inequality (17) minimal, u1 and

u2 must be equal and saturated (that is, equal to |V max
p |).

Hence the pursuer moves in a straight line. If cos s > 0 then(
u1+u2

2

)
= V max

p > 0, the DDR is moving forward and if

cos s < 0 then
(
u1+u2

2

)
= −V max

p < 0, the DDR is moving

backward. Note that this pair of controls corresponds to the

best action that the DDR can apply against the evader in the

minmax context of the game, and therefore they give the set

of configurations where the DDR captures the evader against

any opposition of this player. Note that the same controls u1
and u2 are used in both the reduced and realistic spaces. From

inequality (17) and considering the two cases described above,

it is straightforward to find that the region where the DDR is

moving forward contains all the points such that cos s > ρv
and the region where the DDR is moving backward contains

all the points such that cos s < −ρv.

B. Hamiltonian

In order to compute the optimal trajectories for both players,

one needs to construct the Hamiltonian of the system. As it

was mentioned previously, for problems of minimum time [2],

as in this game, L(x(t), u(t), v(t)) = 1 and G(x(tf )) = 0.

∇V = [Vx Vy]
T where Vx and Vy represent the partial

derivatives ∂V
∂x

and ∂V
∂y

. Substituting the last expressions and

the equations of motion in (7) into Eq. (62), we obtain

H(x,∇V, u1, u2, v1, v2) = Vx

(u2 − u1

2b

)

y + Vxv1 sin v2

− Vy

(u2 − u1

2b

)

x− Vy

(u1 + u2

2

)

+ Vyv1 cos v2 + 1
(18)

Lemma 2: The Hamiltonian of the system is separable in

the controls of the pursuer and the evader, i.e., we can write

it in the form f1(x,∇V, u) + f2(x,∇V, v).
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Proof: In our case, Eq. (18) can be rewritten in the form

H(x,∇V, u1, u2, v1, v2) =
u1

2

(

−yVx

b
+
xVy

b
− Vy

)

+
u2

2

(

yVx

b
−
xVy

b
− Vy

)

+ v1(Vx sin v2 + Vy cos v2) + 1

(19)

C. Optimal controls

Lemma 3: The time-optimal controls for the DDR that sat-

isfy the Isaacs’ equation (Eq. 55 in Subsection A of Appendix

A) in the reduced space are given by

u
∗

1 = −sgn

(

−yVx

b
+
xVy

b
− Vy

)

V
max
p

u
∗

2 = −sgn

(

yVx

b
−
xVy

b
− Vy

)

V
max
p

(20)

We have that both controls are always saturated. If they have

the same sign the DDR will move in straight line at maximum

translational speed in the realistic space and if they have

opposite signs the DDR will rotate in place at maximum

rotational speed in the realistic space. The controls of the

evader in the reduced space are given by

v
∗

1 = V
max
e , sin v∗2 =

Vx

ρ
, cos v∗2 =

Vy

ρ
(21)

where ρ =
√
V 2
x + V 2

y . The evader will also move at maximal

speed.

Proof: By Lemma 2 we know that the Hamiltonian of our

game is separable in two parts, one in terms of the pursuer’s

controls and other in terms of the evader’s controls. Consider

the pursuer first. As the DDR is the minimizer player it wants

the Hamiltonian term

u1

2

(

−yVx

b
+
xVy

b
− Vy

)

+
u2

2

(

yVx

b
−
xVy

b
− Vy

)

(22)

to be minimal. Let A = −yVx

b
+

xVy

b
− Vy and B = yVx

b
−

xVy

b
− Vy . There are four cases:

In all cases u1 and u2 must be saturated to minimize Eq.

(22) and they correspond to the maximal rotational speed of

the wheels V max
p (with a suitable choice of units and assuming

an unit radius r of the pursuer’s wheels [20], the rotational

speeds are equivalent to the translational speeds).

1) If A < 0 and B < 0 then to minimize Eq. (22), u1 =
u2 = V max

p , and the pursuer moves forward in a straight

line.

2) If A > 0 and B > 0 then to minimize Eq. (22) u1 =
u2 = −V max

p , and the pursuer moves backward in a

straight line.

3) If A > 0 and B < 0 then to minimize Eq. (22) u1 =
−V max

p and u2 = V max
p , and the pursuer rotates in place

counterclockwise.

4) If A < 0 and B > 0 then to minimize Eq. (22) u1 =
V max
p and u2 = −V max

p , and the pursuer rotates in place

clockwise.

The DDR switches controls when A or B change signs.

When the DDR switches controls A or B are instantaneously

zero. One can show that if either A or B become zero, the

corresponding time derivatives Ȧ or Ḃ will be different from

zero, so that A or B are zero only at the switching instant.

Analogously, since the evader is the maximizer player it

wants the term v1(Vx sin v2 + Vy cos v2) to be maximal. The

quantity in round parenthesis is the dot product of the vectors

[Vx Vy] and [sin v2 cos v2], and it is maximal when [sin v2
cos v2] lies along [Vx Vy] (both vectors are parallel and have

the same direction). To maximize v1(Vx sin v2 + Vy cos v2),
v1 = V max

e and [Vx Vy ] ‖ [sin v2 cos v2], from which Eq. (21)

follows.

In Lemmas 6 and 9, we will present the actual evader

trajectories.

D. Adjoint equation

The adjoint equation (Eq. 60 in Subsection B of Appendix

A) is a differential equation for the gradient of the value

function V (x) along the optimal trajectories in terms of the

optimal controls. It is given by

d

dt
∇V [x(t)] = −

∂

∂x
H(x,∇V, u∗

1, u
∗

2, v
∗

1 , v
∗

2) (23)

where the components of ∇V (x) are called adjoint variables.

If tf is the termination time of the game, we define the retro-

time as

τ = tf − t (24)

The adjoint equation in retro-time form is

d

dτ
∇V [x(τ )] =

∂

∂x
H(x,∇V, u∗

1, u
∗

2, v
∗

1 , v
∗

2) (25)

Lemma 4: The expressions in retro-time of the adjoint

equation of our system are

d

dτ
Vx = −

(

u∗
2 − u∗

1

2b

)

Vy ,
d

dτ
Vy =

(

u∗
2 − u∗

1

2b

)

Vx (26)

Proof: Substituting Eq. (19) into Eq. (25) (u∗1, u∗2, v∗1
and v∗2 denote the optimal controls of both players) it is

straightforward to obtain the expressions above.

Remark 1: From Eq. (26), notice that the adjoint equation

can take four different expressions depending on the values

of u∗1 and u∗2. Therefore, it is necessary to know when and

for how long a particular expression is valid during the game,

which corresponds to find the switches for controls of the

DDR.

In what follows we will show that the players’ optimal

motion primitives in the realistic space correspond, for the

evader, to straight lines (see Lemmas 6 and 9), and for the

pursuer to rotations in place and straight lines, Lemma 7. We

will also provide the system trajectories in the reduced space

(see Theorems 1 and 2).

E. Integrating the adjoint equation starting at the usable part

We need to establish the initial conditions of the system, in

this case, the values of Vx and Vy on the UP of ζ. From Eq.

(13) we have that

dx

ds
= l cos s,

dy

ds
= −l sin s (27)
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Since V (x) = 0 on the UP of ζ it follows that

Vs =
dV

ds
=
∂V

∂x

dx

ds
+
∂V

∂y

dy

ds
= 0 (28)

Substituting Eq. (27) into Eq. (28)

Vx cos s = Vy sin s (29)

From Eq. (29) we have that on the UP

Vx = λ sin s, Vy = λ cos s (30)

where λ is a constant value.

Lemma 5: The solution of the adjoint equation (26) start-

ing at the usable part is

Vx = λ sin s, Vy = λ cos s (31)

Proof: From Lemma 1, we know that at the end of game

the pursuer follows a translation. Therefore Eq. (26) takes the

form
d

dτ
Vx = 0,

d

dτ
Vy = 0 (32)

One can directly verify that Eq. (31) satisfies Eq. (32). This

solution for the adjoint equation will be valid at the UP and as

long as the DDR controls do not change, which corresponds to

a DDR motion following a straight line in the realistic space. In

Lemma 7, we compute the retro-time instant when the DDR

switches controls. At this moment, a new integration of the

adjoint equation must be done.

Lemma 6: At the end of the game, if the pursuer follows

its optimal strategy (i.e. moves in a straight line in the realistic

space) the corresponding optimal strategy for the evader is also

a straight line in the realistic space, and therefore, the system

moves in a straight line in the reduced space.

Proof: From Eq. (31), we know that Vx and Vy have

constant values. Substituting those values into the evader’s

controls in Eq. (21), we find that v∗2 = s, the evader’s motion

direction in the reduced space, is also constant, thus the system

follows a straight line in the reduced space at the end of the

game.

From Lemma 1, we know that the DDR is moving in straight

line in the realistic space at the end of the game. Therefore

its motion direction θp is constant. From the third equation

in the coordinate transformation, Eq. (6), and as v2 and θp
are constant, it is straightforward to see that ψe, the evader’s

motion direction in the realistic space, will be constant.

Remark 2: From Lemma 3, the controls of the players are

independent, it would be misleading to conclude that Lemma

6 implies that the evader’s controls depend on the pursuer’s

controls. But in order to show a graphical representation of the

trajectories in the realistic space it is necessary to know the

controls of the DDR to compute the transformation between

the reduced and realistic spaces.

F. Integrating the motion equations starting at the usable part

Theorem 1: The retro-time trajectories of the system in the

reduced space leading directly to the end of the game are

x(τ ) = −τV max
e sin s+ l sin s

y(τ ) = τ (−V max
e cos s± V

max
p ) + l cos s

(33)

the sign + is taken if the pursuer moves forward in the realistic

space when it captures the evader and the sign − if it moves

backward.

Proof: From Eq. (7), the retro-time version of the equa-

tions of motion in the reduced space is

d

dτ
x = −

(

u2 − u1

2b

)

y − v1 sin v2

d

dτ
y =

(u2 − u1

2b

)

x+
(u1 + u2

2

)

− v1 cos v2

(34)

Substituting Eq. (31) into the controls expressions in Eq. (20)

and Eq. (21), and the resulting expressions into Eq. (34) we

obtain

d

dτ
x = −V max

e sin s,
d

dτ
y = −V max

e cos s+ V
max
p (35)

when the pursuer is translating forward, and

d

dτ
x = −V max

e sin s,
d

dτ
y = −V max

e cos s− V
max
p (36)

when the pursuer is translating backward. Integrating Eq. (35)

and Eq. (36) with the initial conditions x = l sin s and y =
l cos s leads to the expressions in Eq. (33) for the trajectories.

Remark 3: The trajectories in Eq. (33) are referred as the

primary solution [1].

G. Transition surface

The solutions in Eq. (31), and Eq. (33) are valid as long as

the DDR does not switch controls. The place where a control

variable abruptly changes in value, is known as a transition

surface. In our problem, after a retro-time interval the DDR

switches controls and it starts rotating in place in the realistic

space.

Lemma 7: The DDR switches controls and it starts a

rotation in place in the realistic space, at τs = | b cos s
V max
p sin s

|.

If s ∈ [0, π], u∗2 switches first, otherwise u∗1 does.

Proof: We can compute the time τs when the DDR

switches controls, substituting Eq. (31) and Eq. (33) into Eq.

(20), and verifying which one of the resulting expressions

is the first in changing signs. Doing that we find that for

s ∈ [0, π
2
] , u∗2 switches first and it does it at

τs =
b cos s

V max
p sin s

(37)

The other cases can be proved using an analogous reasoning.

At τs, we need to start a new integration of the retro-

time version of the adjoint equation (26) and the equations

of motion (34). This integration takes as initial conditions the

values of Vx, Vy , x, and y at τs. We will denote those values

as Vxτs
, Vyτs

, xτs and yτs . The equations in Lemmas 8 and

9, and Theorem 2 were constructed after the DDR switches

controls and it starts rotating in place in the realistic space.

Lemma 8: The solution of the adjoint equation (26) start-

ing at τs is

Vx = λ sin

[

s−

(

u∗
2 − u∗

1

2b

)

(τ − τs)

]

Vy = λ cos

[

s−

(

u∗
2 − u∗

1

2b

)

(τ − τs)

] (38)
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for τ ≥ τs.

Proof: Computing the retro-time derivative of Eq. (26),

we obtain two ordinary linear differential equations of second

order with constant coefficients

d2

dτ 2
Vx = −

(

u∗
2 − u∗

1

2b

)2

Vx,
d2

dτ 2
Vy = −

(

u∗
2 − u∗

1

2b

)2

Vy

(39)

Solving these equations with the values of Vx and Vy at τs as

initial conditions we obtain the expressions in Eq. (38).

Lemma 9: For τ > τs, the optimal controls correspond to

the evader following a straight line in the realistic space and

the DDR rotating in place.

Proof: Substituting Eq. (38) into Eq. (21) we have that,

sin v∗2 = sin

[

s−

(

u∗
2 − u∗

1

2b

)

(τ − τs)

]

cos v∗2 = cos

[

s−

(

u∗
2 − u∗

1

2b

)

(τ − τs)

] (40)

therefore

v
∗

2 = s−

(

u∗
2 − u∗

1

2b

)

(τ − τs) (41)

As the DDR is rotating in place, its motion direction is given

by

θ
′

p = θ
s
p −

(

u∗
2 − u∗

1

2b

)

(τ − τs) (42)

where θsp is the initial motion direction of the DDR in the

realistic space. Substituting Eq. (41) and Eq. (42) into the

third expression in Eq. (6), we obtain that ψe = θsp − s, the

evader’s motion direction in realistic space. Note that it is a

constant value, thus the evader is following a straight line in

realistic space.

Note again that from Lemma 3, the controls of the players

are independent. But in order to show a graphical represen-

tation of the trajectories in the realistic space it is needed to

know the controls of the DDR.

H. Integrating the motion equations starting at the TS

Theorem 2: The retro-time trajectories of the system start-

ing at τs are

x(τ) =− yτs sin

[(

u∗
2 − u∗

1

2b

)

(τ − τs)

]

+ xτs cos

[(

u∗
2 − u∗

1

2b

)

(τ − τs)

]

− (τ − τs)V
max
e sin

[

s−

(

u∗
2 − u∗

1

2b

)

(τ − τs)

]

y(τ) =xτs sin

[(

u∗
2 − u∗

1

2b

)

(τ − τs)

]

+ yτs cos

[(

u∗
2 − u∗

1

2b

)

(τ − τs)

]

− (τ − τs)V
max
e cos

[

s−

(

u∗
2 − u∗

1

2b

)

(τ − τs)

]

(43)

Proof: Substituting Eq. (38) into Eq. (21), and the result-

ing expressions into Eq. (34) we obtain

d

dτ
x = −

(

u∗
2 − u∗

1

2b

)

y − V max
e sin

[

s−

(

u∗
2 − u∗

1

2b

)

(τ − τs)

]

d

dτ
y =

(

u∗
2 − u∗

1

2b

)

x− V max
e cos

[

s−

(

u∗
2 − u∗

1

2b

)

(τ − τs)

] (44)

Computing the retro-time derivative of Eq. (44) and solving

the resulting expressions with the initial conditions xτs and

yτs using an analogous reasoning to the one applied in the

proof of Lemma 8, we obtain the solution in Eq. (43).

Surface

I

IIIII
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BUP
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BUP

Terminal

Fig. 3. Representation of the terminal surface, usable part and its boundary
in the reduced space.

VI. DECISION PROBLEM

A game of kind is a game in which we are interested in

what conditions lead to a winning for each one of the players.

In our case, this corresponds to find the conditions that make

capture possible for the DDR or escape for the evader.

A. The barrier

There is a surface called the barrier [1], which separates

the set of starting positions in those that result in capture

and those that result in escape for the evader. From starting

points on the barrier, optimal behavior leads to a contact of the

terminal surface without crossing it. The outcome of following

the barrier is called neutral, and it can be understood as

intermediate between capture and escape. The techniques we

have used in the calculation of the optimal strategies and their

corresponding trajectories, are also applied in the construction

of the barrier, which can be interpreted as a neutral trajectory

of the system. The answer to the capture-escape question relies

on whether or not the barrier divides the playing space into

two parts.

B. Construction of the barrier

Let x be a point initially on ζ, the terminal surface. As

we previously mentioned, the portion of the terminal surface

where the DDR can guarantee termination regardless of the

choice of controls of the evader is called the usable part (UP),

and its boundary (BUP) is characterized by

BUP =

{

x(t) ∈ ζ : min
u(t)∈Û

max
v(t)∈V̂

n · f(x(t), u(t), v(t)) = 0

}

(45)

where n is the normal vector to ζ from point x(t) on ζ and

extending into the playing space.

For such points, when each player applies its optimal

strategies x moves tangentially to ζ. As the BUP separates

the points on ζ where immediate capture occurs from those

where it does not, it is used as initial condition for the barrier.

The barrier is constructed integrating the adjoint equation (26)

and the equations of motion (34), starting at the BUP. The

resulting surface may or may not divide the playing space

into two parts, one of them contiguous to the UP.
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Suppose the barrier separates the playing space into two

parts. If x is in the outer side, the one that is not contiguous

to the UP, then the DDR cannot force the capture because

the UP is not accessible. If the barrier fails to separate the

playing space, then capture can always be attained by the

DDR. However, from starting points in each side of the barrier

(in local sense) the DDR must adopt different strategies.

C. Symmetry of the problem

Figure 3 shows a representation of the terminal surface,

the usable part (UP) and its boundary (BUP) in the reduced

space. The system exhibits some symmetries with respect to

the x and y-axis in this representation. An analysis for the

trajectories in the first quadrant will be provided. This analysis

can be extended to the remaining quadrants using an analogous

reasoning.

D. Solving the decision problem

We present two useful properties appearing in some trajec-

tories reaching the UP.

Lemma 10: The retro-time trajectories starting at the UP

in the first quadrant (see Fig. 3) reach the y-axis before the

system switches controls if l/V max
e ≤ τs.

Proof: When the retro-time trajectories reach the y-axis

we have that x = 0. From Eq. (33)

−τV max
e sin s+ l sin s = 0 (46)

By straightforward algebraic manipulation, we find that τ =
l/V max

e . This is the retro-time it takes to reach the y-axis if

the system is following Eq. (33), and it will be denoted as

τc = l/V max
e . We know that the DDR switches controls at

τ = τs. After that, the system starts following Eq. (43). If

τc ≤ τs the system will reach the y-axis before switching

controls.

Lemma 11: The trajectories in Eq. (33) that reach the y-

axis in the first quadrant, reach it at y = l/ρv.

Proof: From Lemma 10, we have that τc = l/V max
e is

the retro-time it takes to reach the y-axis when the system is

following Eq. (33). Substituting τc into Eq. (33) we have that

y =
l

V max
e

(−V max
e cos s+ V

max
p ) + l cos s (47)

After straightforward algebraic manipulation, we find that y =
l/ρv. This value will be denoted as yc.

Lemma 12: The barrier consists of a straight line segment,

and it intersects the y-axis in the first quadrant if ρv ≥
| tanS|/ρd where S = cos−1(ρv) is the angle at the BUP

(see Fig. 3).

Proof: In our game, the barrier is constructed by substi-

tuting the value S that satisfies cosS = ρv into Eq. (33). The

expression in Eq. (33) is valid as long as the DDR does not

switch controls. After a retro-time interval τs the DDR should

switch controls and start rotating in place in the realistic space.

Then the system should follow the trajectory described by Eq.

(43) in the reduced space. Figure 4 shows both trajectories.

The trajectory given by Eq. (43) intersects the initial segment

of the barrier and it comes back to the UP in the reduced space.

According to [1], the barrier is not crossed by any trajectory

followed by the system during optimal play, in particular,

it cannot cross itself. Therefore the portion of the trajectory

given by Eq. (43), (the arc in Fig. 4) must be discarded. The

barrier reaches the terminal surface with S = cos−1(ρv), and

it consists only of a straight line in the reduced space given

by Eq. (33) that ends when τ = τs. From Lemma 10, it is

straightforward to verify that the barrier will reach the y-axis

if τc ≤ τs. Substituting the values of τc and τs in the last

inequality, we find that it can be expressed as
V max

e

V max
p

≥ l| tanS|
b

,

which can be rewritten as ρv ≥ | tanS|/ρd.

Remark 4: Note that if the system follows the trajectory

composed by the arc from point 1 to point 2 (see Fig. 4), and

the straight line from point 2 to point 3, the DDR loses the

game. The distance between both players equals l over the

target set, however, the pursuer will not be able to get closer

from the evader than this value and capture cannot be attained

(since in the reduced space, the system is pointing tangentially

to the terminal surface and it cannot be crossed). In contrast,

if the system follows the straight line motion from point 1
to point 4, the system reaches the usable part and it can be

crossed. The distance between the players can be reduced by

the pursuer and it wins. Hence, the arc given by Eq. (43) must

be discarded. Indeed, it can be proved that traveling the arc

from point 1 to point 2, and the straight line trajectory from

point 2 to point 3 takes more time than traveling the straight

line from point 1 to point 4.

UP

3

2

4

1

Barrier

Discarded arc

Fig. 4. The barrier

Theorem 3: If ρv < | tanS|/ρd the DDR can capture the

evader from any initial configuration in the playing space.

Otherwise the barrier separates the playing space into two

regions, one of them contiguous to the UP. The DDR can only

force the capture in the region contiguous to UP, in which case,

the DDR follows a straight line in the realistic space when it

captures the evader.

Proof: It follows from the definition of the barrier and

Lemma 12. Note that the segment of the barrier corresponding

to a rotation in place of the DDR in the realistic space has

been discarded and all the trajectories between the barrier and

the UP are straight lines reaching the y-axis (refer to Lemma

11 and see Fig. 6).

Remark 5: For the rest of this work, we assume that the

barrier does not intersect the y-axis and therefore capture in all

the playing space can be attained by the DDR. In Section IX,

we make an exception including simulations where the barrier

separates the playing space into two regions and showing the

strategy followed by the evader to avoid capture.
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VII. SINGULAR SURFACES

The singular surfaces and their construction in the context

of our game will be described in the next paragraphs giving a

solution of the game for the complete playing space.

A. Definition of a singular surface

Following the definition given in [2], a singular surface is

a manifold on which: 1) The equilibrium strategies are not

uniquely determined by the necessary conditions of Theorem

5, or 2) the value function is not continuously differentiable,

or 3) The value function is discontinuous.

Below, we describe the singular surfaces that we have found

in this game.

1) Transition surface (TS): The place where a control

variable abruptly changes in value, is known as a transition

surface. The procedure for locating a transition surface is fairly

straightforward, since it follows from the adjoint and motion

equations (see Lemma 15 for their construction in this game).

2) Universal surface (US): A surface to which opti-

mal trajectories enter from both sides –called the tributary

trajectories– and then stay, is called a universal surface. In

differential games, one can think of such a surface as a

union of especially advantageous paths. Optimal play will

demand that the state of the system be brought to the universal

surface and thereafter remain on it (see Lemma 16 for their

construction in this game).

3) Dispersal surface (DS): A dispersal surface is defined

in [1], [2] as the locus of initial conditions along which the

optimal strategy of one player or the optimal strategies of

both players are not unique. They are often found as the

retro-time intersection of two distinct families of optimal

paths, for each of which the Isaacs equation is satisfied. At

the intersection, the optimal time-to-go is the same for either

pair of strategies. In our game, they appear due to symmetries

in the reduced space, see subsection VIII-B and Fig. 6.

In this game we have found only these three types of

singular surfaces. However there are other known types in the

literature [2].

B. Identification and construction of the singular surfaces

In this section, we describe the construction of the singular

surfaces appearing in this game.

Lemma 13: The retro-time trajectories reaching the y-axis

in the first quadrant have an orientation s ∈ [0, tan−1(ρvρd)]
at the UP (see Fig. 3).

Proof: From Lemma 10, the retro-time trajectories that

reach the y-axis are those where τc ≤ τs. The last one that

can reach it will have τc = τs. Substituting the corresponding

values
l

V max
e

=
b cos s

V max
p sin s

(48)

From the last expression we find that

tan s = ρvρd (49)

The trajectory given by s = 0 coincides with the y-axis.

Therefore, the trajectories reaching the y-axis will have an

angle s ∈ [0, tan−1(ρvρd)] at the UP.

Lemma 14: The straight lines trajectories that have an

orientation s ∈ (tan−1(ρvρd), cos
−1(ρv)] in the UP of the

first quadrant terminate when the DDR switches controls.

Proof: From Lemma 13 we know that the last trajectory

reaching the y-axis has an orientation sc = tan−1(ρvρd).
If s > sc the DDR switches controls before reaching the

y-axis and the system starts following the trajectories given

by Eq. (43). The value s = cos−1(ρv) corresponds to the

barrier and it consists of a straight line in the reduced

space. Thus the straight line trajectories reaching the UP at

s ∈ (tan−1(ρvρd), cos
−1(ρv)] terminate when a switch of the

DDR controls occurs.

1) Transition surface (TS):

Lemma 15: The points x in the reduced space where τ =
τs constitute a TS in the first quadrant. Here, the expression

yVx − xVy − bVy = 0 is satisfied. This surface is bounded by

the barrier and the y-axis.

Proof: From Lemma 14, we know that the trajectories

ending at s ∈ (tan−1(ρvρd), cos
−1(ρv)) have a switch when

τ = τs. The points x where this happen constitute the tran-

sition surface (TS). For the first quadrant, in those points u2
changes sign. Note that s = tan−1(ρvρd) generates a straight

line trajectory of the system in the reduced space reaching the

y-axis just before switching controls. If s = cos−1(ρv), the

trajectory corresponds to the barrier, which is a straight line in

the reduced space ending also just before switching controls.

Thus the y-axis and the barrier bound the TS.

Remark 6: The TS indicates the points in the reduced

space where the DDR switches controls, and it is not a

trajectory followed by the system.

2) Universal surface (US):

Lemma 16: The positive y-axis contains a US where the

pursuer follows the evader with its heading directly aligned to

it.

Proof: In a universal surface (US), optimal play demands

that the system be brought to the surface and remain on it.

Hence a necessary condition for a US, is that in this surface

there are no switches and the controls of the players remain

constant. We find that in this game, this occurs when the

system is moving along the positive y-axis in the reduced

space.

From Lemma 13, one time-optimal trajectory for the system

starting at the UP and reaching the point yc corresponds to a

straight line with s = 0, i.e., the evader’s relative position

aligned with the pursuer’s heading. From Lemma 5 we know

that along this trajectory starting at UP and reaching yc, the

following equations hold

Vx = λ sin s, Vy = λ cos s (50)

where λ is a constant value. At yc and as s = 0,

Vx = 0, Vy = λ (51)

Substituting those values into the pursuer’s controls Eq.

(20), we find that the expressions inside the sign functions

−y
Vx

b
+ x

Vy

b
− Vy = −λ (52)

and

y
Vx

b
− x

Vy

b
− Vy = −λ (53)
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are constant. Therefore, the DDR does not need to switch

controls. Substituting Eq. (51) into the evader’s controls Eq.

(21), we find that the motion direction of the evader is given

by
sin v∗2 = 0, cos v∗2 = 1 (54)

which corresponds to a constant motion direction. Hence, the

system is moving in straight line over the y-axis in the reduced

space.

In the realistic space, both players are moving following

a straight line while the system is moving over the positive

y-axis in the reduced space.

Remark 7: The tributary trajectories entering the US are

generated by a different combination of the player’s optimal

controls to the ones used over the surface [1].

Lemma 17: The tributary trajectories entering the US as-

sociated to the first quadrant correspond to a rotation in place

of the DDR and straight line for the evader in the realistic

space.

Proof: Over the US associated to the first quadrant in

the reduced space, we have that the DDR always captures

the evader moving forward, therefore the tributary trajectories

will correspond to a rotation in place of the DDR, in the

realistic space. For the first quadrant, we have that u∗1 = V max
p

and u∗2 = −V max
p (the DDR rotates clockwise to align its

heading with the evader’s motion direction in the realistic

space). Taking these controls, the trajectories in the reduced

space can be computed using an analogous reasoning to the

one applied in Theorem 2. In fact, they satisfy Eq. (43) taking

u∗1 = V max
p , u∗2 = −V max

p and τs = d/V max
e , where d ≥ yc

is the distance to the UP along the y-axis.

VIII. PARTITION OF THE SPACE

In this section, we present a partition of the first quadrant

into three regions. An analogous reasoning can be used for

the other three quadrants yielding a partition of the entire

reduced space. All the points in each region can be reached

by a particular combination of the motion strategies of the

players. This partition will contain some singular surfaces.

The complete set of trajectories for each region is sufficient to

cover the space.

A. Construction of the partition

We construct each one of the regions in quadrant I and

we verify that the space is covered by them. The complete

construction is shown in Fig. 6.

1) Region I: We denote as region I the set of points that

can reach the UP with a single straight line trajectory in the

reduced space, which corresponds to a straight line motion of

both, the DDR and the evader, in the realistic space. From

Lemmas 12, 13, 14 and 15, we have that the straight line

trajectories ending at the UP in the first quadrant are bounded

by the y-axis, the barrier (labeled as BS) and the TS. The

trajectories in region I can be classified into two types: the ones

reaching the y-axis at yc and the ones reaching the transition

surface TS. Both types of trajectories in this region are given

by Eq. (33). Examples of trajectories in this region (solid lines)

are shown in Fig. 6.

2) Region II: We denote as region II the set of points that

reach the TS by following a trajectory given by Eq. (43) in

the reduced space, which corresponds to a rotation in place

for DDR and straight line trajectory for the evader, both in

the realistic space. From Lemmas 14, 15, 16 and 17, the

trajectories in region II are bounded by the BS, the TS, the x-

axis and the trajectory reaching the starting point of the US.

Each point inside region II moves according to Eq. (43), it

reach the TS at some particular point and to reach the UP it

must follow the trajectory in region I reaching the same point

in the TS. Some trajectories (dashed lines) in region II are

shown in Fig. 6.

3) Region III: We denote as region III the set of points

that reach the US following one of its tributary trajectories

given by Eq. (43) in the reduced space corresponding to a

rotation in place for the DDR and a straight line trajectory

for the evader, both in the realistic space. From Lemmas 15,

16 and 17, the trajectories in region III are bounded by the

US over the y-axis, the point over the TS touching the y-axis

and the trajectory given by Eq. (43) reaching that point. Some

trajectories in region III (bold dashed lines) are shown in Fig.

6.

Region III in the reduced space corresponds to configura-

tions in the realistic space where the DDR rotates in place

until it aligns its heading with the segment joining the DDR’s

position and the evader’s position. Then the DDR moves

following a straight line towards the evader until the capture

condition is achieved. In this case, the evader has the option

to change its motion direction at the point over the y-axis

in the reduced space where the time-optimal trajectories in

region I intersect and it can follow one of them. At this point,

the time-optimal trajectories in region I are equivalent and

they require the same amount of time to capture the evader.

Region II in the reduced space corresponds to configurations

in the realistic space where the DDR initially also rotates in

place but it is not necessary to align completely the DDR’s

heading with the segment joining the positions of both players

in order to capture the evader. In this case, the time-optimal

trajectories for both players are unique. We have a bijection

between trajectories in region II and region I.

B. Graph representation and playing space partition

Figure 5(a) shows a graph representation of the partition

in the first quadrant. The nodes of the graph represent the

regions described above, and the edges indicate the transitions

between them. For all points in one region of the partition,

a particular selection of the controls for both players is used,

i.e., the regions are equivalence classes under a relation given

by the controls. Note that the transition between regions is

uniquely defined, i.e., from the current node in the graph, the

system can only reach one node and therefore only a particular

selection of the controls for both players can be made. Figure

5(a) shows that from any node in the graph, the system will

be able to reach the terminal surface following the transitions

given by the edges. Also, this figure shows that the sequence

followed by the system and the value function are uniquely

determined.
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(a) Graph representation of

the partition in the first quad-
rant. (excluding the DS, see
text)
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(b) An example where

the transitions to reach
the goal are not uniquely
determined.

Fig. 5. Graph representations

It is well-known in optimal control theory that if the system

has two possible locally optimal controls in a particular state,

one cannot locally make a selection that guarantees global

optimality of the solution. For example, Figure 5(b), shows

a case, where the transitions between states are not uniquely

determined and they have different costs. In this example, from

state 1 the system can move to state 2 or 3 with the same cost.

From these two states, however, the system moves to state 4

with different costs. It is important to note that from state 1, it

is not possible to locally choose the set of transitions that will

lead to the minimum cost to reach the state 4, and therefore

the PMP, which is a local condition, in general cannot be used

by itself to find the globally optimal solution.

In this work, these conditions are met in almost all points of

the reduced space, as shown in Fig. 5(a). The only exception

is the set of points that belongs to the dispersal surface

(DS). In this surface, represented as bold lines in Fig. 6,

the rotation-in-place trajectories in retro-time coming from the

upper and bottom parts of the UP intersect. Over the DS both

players have two choices for their controls. It is important to

note that at the DS, the choice of the control of one player

must correspond to the choice of the control of the other

player. If one of the players selects the wrong control, the

other player will benefit from that decision. In this problem,

the DS corresponds to configurations where the pursuer’s

heading (orientation of the wheels) is perpendicular to the

pursuer’s location, and the DDR has the option to rotate either

clockwise or counterclowise to catch the evader. If the DDR

fails to initially choose the correct sense of rotation against the

evader’s decision then feedback will be necessary to correct

the decision and capture the evader in suboptimal time. To

avoid the selection problem, the instantaneous velocity vector

of both players should be known, but in general (and in

particular for this problem) it is assumed that this information

is not available. Therefore, a solution will be to employ an

instantaneous mixed strategy (IMS) [1], which means the

randomizing of a player’s decision in accordance with some

probabilistic law until the system is no longer on the DS. The

trajectories generated by the correct pair of controls will lead

to the same optimal time-to-go. In this problem, the difference

will be that at the end the capture will be attained moving

forward or backward in straight line in the realistic space. It

should be remarked that this particular situation only occurs

when the wheels of the DDR are exactly perpendicular to the

line that joins the DDR and the evader, a situation that in

practice occurs with probability 0.

Another particular behavior occurs at point yc (see Fig.

6), where the US meets region I, and the straight line sys-

tem trajectories reaching the UP with an orientation s ∈
[0, tan−1(ρvρd)] reaching the y-axis. At this unique point,

the system has the option to follow any of the straight line

trajectories reaching the y-axis, which will lead to the same

optimal capture time but the system will have a different

position at the UP. In the realistic space, at the point yc
the evader has the option to select among different motion

direction, but all of them correspond to the same optimal

capture time.
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Fig. 6. Partition of the entire reduced space and the corresponding
trajectories.

IX. SIMULATIONS

In this section, we present some simulation results of our

pursuit-evasion game. We use m/sec as units for velocities,

meters for distance and seconds for time. First we show the

case described in Lemma 12, where the barriers intersect and

define regions in the reduced space where the evader can

indefinitely escape or is captured in finite time (refer to Fig. 7).

The capture condition is only possible for the configurations

inside the closed region defined by the barriers (shown in

magenta) and the usable part (bold arc in black). Those

configurations are the only ones that can reach the terminal

surface. The system trajectories inside the closed region end

in the y-axis and consist of straight lines in the reduced space

(refer to Fig. 6), which corresponds to a straight line motion of

the DDR and the evader in the realistic space. The parameters

of this simulation were V max
p = 1, V max

e = 0.787, b = 1 and

l = 1. In Fig. 7, we also present a trajectory followed by the

system in the reduced space when the evader avoids capture.

In this case, we assumed that the evader’s position is directly
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aligned with the pursuer’s heading, i.e., the evader is in front of

the pursuer. The initial configuration of the system is outside

the closed region. The system first moves over the y-axis

following the trajectory (T1). When the system hits the barrier

it starts following this trajectory (T2) reaching tangentially the

terminal surface. The distance between both players equals l
over the target set, however, the pursuer will not be able to

get closer from the evader than this value and capture cannot

be attained (since in the reduced space, the system is pointing

tangentially to the terminal surface). Over the target set, the

system will start moving toward the y-axis following the arc

trajectory (T3) where the pursuer is aligning is heading with

the evader’s position. Note that the complete trajectory of

the system is cyclic and the process can be repeated again

implying that evader can always avoid capture.

Fig. 7. A trajectory followed by the system in the reduced space when the
evader avoids capture.

Figure 8 shows the trajectories followed by both players in

the realistic space for the case described above. The pursuer’s

initial position is denoted by PI and the evader’s initial

position by EI . The arrows show the motion direction of

the players. The pursuer starts moving directly towards the

evader which moves away following a straight line. After

a time interval, which corresponds to reaching the barrier

in the reduced space, the evader at ES switches its motion

direction but the pursuer at PS continues moving in the

same direction. The circle represents the time instant when

the distance between both players, at PF and EF , equals l.
Note that at this point no matter what the pursuer does (e.g.,

continue moving in straight line, rotating in place, etc.) the

distance between both players increases. If the pursuer starts

rotating in place at PF , which is the optimal strategy, the

whole process is repeated implying that the evader can always

avoid capture.

In the next simulation, we will show an example where the

pursuer wins by capturing the evader. The parameters were

V max
p = 1, V max

e = 0.5, b = 1 and l = 1. The sample

step is 0.001s for the reduced space but the trajectories in

the realistic space show the positions and motion directions

of the players at every 200 iterations. We show the case when

two system trajectories start at the same point over the x-axis

(DS), at this point the evader has a relative orientation of π
2

with respect to the pursuer’s heading (refer to Fig. 6). The

DDR has two possible optimal controls to capture the evader:

Fig. 8. The trajectories followed by both players in the realistic space
when the evader avoids capture. We show the corresponding trajectories in the
realistic space when the system is following the trajectories T1, T2 and T3 in
the reduced space representation. The arrows show the motion direction of the
players. The blue triangles (pursuer) and red plus signs (evader) correspond
to T1. The blue diamonds (pursuer) and red crosses (evader) correspond to
T2. Finally, the blue squares (pursuer) and red asterisks (evader) correspond
to T3.

rotate clockwise or counterclockwise, both leading to the same

optimal time-to-go. If the DDR rotates clockwise the trajectory

ends in the upper UP and if it rotates counterclockwise the

trajectory ends in the bottom UP. For this case, the trajectories

pass over regions II and I in order to reach the UP.

Figure 9 shows in the realistic space the trajectories of the

evader and the pursuer. These trajectories correspond in the

reduced space to the trajectory ending at the upper UP (shown

in Fig. 6). In Fig. 9, PI and EI are the initial positions of the

pursuer and the evader, and PF and EF the positions where

capture is attained.

Fig. 9. The DDR captures the evader with a forward motion in the realistic
space.

Finally, we use a local strategy (gradient-following) in

which the pursuer tries to locally minimize the distance

between both players, and the evader tries to maximize it. The

strategy for the DDR is to find the controls that minimize the

distance between both players at each time instant. The DDR

assumes that after both players applied their controls, it can

consider a fixed position for the evader; the DDR searches the

controls that minimize the distance between the new position

of the DDR (from the application of the control) and the fixed
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position for the evader. The strategy for the evader is moving

away from the DDR at maximal speed, in the same direction of

the segment joining the position of the DDR and the evader, at

each time instant. This strategy locally maximizes the distance

between both players.

In Fig. 10, we can see the trajectories of both players when

they apply the local strategies. The same maximal players’

speeds and initial configuration, as in Fig. 9, were used.
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Fig. 10. Gradient following pursuit/evasion.

In this case, we can observe that when the DDR uses the

local strategy it cannot capture the evader, as it is done when

the DDR applies its optimal strategy. Note that, in this case

both players have followed sub-optimal strategies.

We have included videos, available at the Multimedia Ma-

terial of the paper, showing the simulation results presented

in this section and additional ones.

X. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the problem of capturing

an omnidirectional evader using a DDR in an obstacle free

environment or, more precisely, the problem of getting closer

from the evader than the capture distance l. Differently to

the classical Homicidal Chauffeur problem [1], [16], in which

the pursuer is a car-like vehicle, in this work, the pursuer

is a Differential Drive Robot (DDR), i.e. the pursuer can

rotate in place. The change in the mechanical model of the

pursuer has as a distinctive consequence that both the pursuer

motion primitives and the motion strategies of the players also

change w.r.t. the Homicidal Chauffeur solution. In this work,

we made the following contributions: We presented closed-

form representations of the motion primitives and time-optimal

strategies for each player. In the realistic space, the motion

primitives for the pursuer are straight lines and rotations in

place and for the evader are straight lines. The strategies for

the players that we have found are in Nash Equilibrium. We

proposed a partition of the playing space into mutually disjoint

regions where the strategies of the players are well established.

The boundaries of these regions are called singular surfaces

[1], [16], [2], and they indicate a change in one the player’s

strategies. The partition is represented as a graph which

exhibits properties that guarantee global optimality. We also

analyzed the decision problem of the game and presented the

conditions defining the winner of the game. As future work

we will include acceleration bounds in the solution of this

problem.

APPENDIX

This section describes the necessary and sufficient condi-

tions for existence of saddle-point equilibrium strategies in

pursuit-evasion games [2]. The sufficient condition is provided

by an extension of the Hamilton-Jacobi-Bellman (HJB) equa-

tion [2] to a non-cooperative game with two players. This

extension is called the Isaacs equation (Eq. (55)) [1], which

can be rewritten in terms of the Hamiltonian (Eq. (63)). An

analogous extension of the Pontryagin’s maximum principle

(PMP) [27] to a two-players non-cooperative game provides a

necessary condition [2]. This extension of the PMP provides

a constructive manner of computing saddle-point strategies.

A. Isaacs equation

Eq. (55) is known as the Isaacs equation [2]:

−
∂V (t,x(t))

∂t
= min

u(t)∈Û

max
v(t)∈V̂

[
∂V (t,x(t))

∂x
· f(t,x(t), u(t), v(t))

+ L(t,x(t), u(t), v(t))]
(55)

where Û and V̂ are the sets of valid values for the controls. In

this game V (x(t)), f(x(t), u(t), v(t)) and L(x(t), u(t), v(t))
do not explicitly depend on time, therefore Eq. (55) takes the

form

min
u(t)∈Û

max
v(t)∈V̂

[
∂V (x(t))

∂x
· f(x(t), u(t), v(t)) + 1] = 0 (56)

Solving the HJB is a functional optimization problem.

This equation provides a sufficient condition for saddle-point

strategies, which is stated in the following theorem from [2]:

Theorem 4: If 1) a continuously differentiable function

V (x(t)) exists that satisfies the Isaacs equation (56), 2)

V (x(t)) = 0 on the boundary of the terminal surface ζ, 3)

either u∗(t) = γ∗p(x(t)) or v∗(t) = γ∗e (x(t)), as derived from

Eq. (56), generates trajectories that terminate in finite time

(whatever γe, respectively γp, is), then V (x(t)) is the value of

the game and (γ∗p(x(t)), γ
∗
e (x(t))) constitutes a saddle point.

The reader can consult a sketch of the proof for this theorem

in [2] (p. 427). The assumption of interchangeability of the

min and max operations in the Isaacs equation is referred

as the Isaacs condition. The Isaacs condition holds if both

L(x(t), u(t), v(t)) and f(x(t), u(t), v(t)) are separable in u(t)
and v(t), i.e., they can be written as

L(x(t), u(t), v(t)) = L1(x(t), u(t)) + L2(x(t), v(t))

f(x(t), u(t), v(t)) = f1(x(t), u(t)) + f2(x(t), v(t))
(57)

B. Pontryagin’s principle

V (x(t)) is not known at the beginning of the game therefore

Eq. (56) cannot directly be used in the derivation of saddle-

point strategies. A possibility is to use Theorem 5, given below,

which provides a set of necessary conditions for an open-loop

representation of the solution.
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Theorem 5 (PMP): Suppose that the pair {γ∗p , γ
∗
e} pro-

vides a saddle-point solution in closed-loop strategies, with

x
∗(t) denoting the corresponding state trajectory. Furthermore,

let its open-loop representation {u∗(t) = γp(x
∗(t)), v∗(t) =

γe(x
∗(t))} also provide a saddle-point solution (in open-loop

polices). Then there exists a costate function p(·) : [0, tf ] →
Rn such that the following relations are satisfied:

ẋ
∗(t) = f(x∗(t), u∗(t), v∗(t)), x∗(0) = x(ts) (58)

H(p(t),x∗(t), u∗(t), v(t)) ≤ H(p(t),x∗(t), u∗(t), v∗(t))

≤ H(p(t),x∗(t), u(t), v∗(t))
(59)

ṗ
T (t) = −

∂

∂x
H(p(t),x∗(t), u∗(t), v∗(t)) (60)

p
T (tf ) =

∂

∂x
G(x∗(tf )) along ζ(x∗(t)) = 0 (61)

where

H(p(t),x(t), u(t), v(t)) = p
T (t) · f(x(t), u(t), v(t)) + 1 (62)

and T denotes the transpose operator.

Again, a sketch of the proof for this theorem is in [2] (pp.

428-429). Equation (60) is known as the adjoint equation, and

Eq. (62) as the Hamiltonian function. Using Eq. (62) with

p(t) = ∇V (x(t)) for the case of vector-valued functions, and

assuming that the Hamiltonian is separable in u(t) and v(t)
(refer to Lemma 2), we can rewrite Eq. (56) as

min
u(t)∈Û

max
v(t)∈V̂

H(x(t),∇V (x(t)), u(t), v(t)) = 0

u
∗(t) = argmin

u(t)∈Û

H(x(t),∇V (x(t)), u(t), v(t))

v
∗(t) = argmax

v(t)∈V̂

H(x(t),∇V (x(t)), u(t), v(t))

(63)

where u∗(t) and v∗(t) are the optimal controls. The vector

∇V (x(t)) can be interpreted as the Lagrange multipliers used

in constrained optimization or optimal control theory.

The maximum principle, in particular Eqs. (59) and (60),

can be considered as a specialization of the HJB equation

which corresponds to the application of the optimal actions

u∗(t) and v∗(t). This causes the minmax to disappear, but

along with it the global properties of the HJB equation also

vanish. The PMP expresses conditions along the optimal

trajectory, as opposed to the value of the game V (x(t)) over

the whole state space. Therefore, it can at best assure local

optimality in the space of possible trajectories [19]. In the

PMP methodology, the optimal controls for the players are

functions of p(t) = ∇V (x(t)), it is important to note that

at moment u∗(t) and v∗(t) are chosen the relation with the

state x(t) is lost. That is the reason we denote p(t) and not

p(x(t)). Later, the optimal motion trajectories of the players

are constructed using u∗(t) and v∗(t). Therefore, the resulting

optimal trajectories are not directly related with the state.

However, it is possible to find this relation using the synthesis

as it was described on the paper.
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[12] H.H. González, C.-Y. Lee and J.-C. Latombe, Real-Time Combinatorial
Tracking of a Target Moving Unpredictably Among Obstacles, In Proc

IEEE Int. Conf. Robot. Autom., 2002.

[13] B. Jung and G. Sukhatme, Tracking targets using multiple robots: the
effect of environment occlusion. In Auton Robot, vol. 12 pp. 191-205,
2002.

[14] S. Bhattacharya and S. Hutchinson, On the existence of nash equilibrium
for a two player pursuit-evasion game with visibility constraints. Int. J

Robot Res, 29(7): 831-839, Jun. 2010.

[15] R. Murrieta-Cid, T. Muppirala, A. Sarmiento, S. Bhattacharya and
S. Hutchinson. Surveillance Strategies for a Pursuer with Finite Sensor
Range. Int J Robot Res, Vol 26, No 3 pp. 233-253, March 2007.

[16] Merz A.W. The homicidal chauffeur – a differential game. PhD. Thesis,
Stanford University, 1971.

[17] R. Murrieta-Cid, U. Ruiz, J.L. Marroquin, J.P. Laumond and S. Hutchin-
son, Tracking an Omnidirectional Evader with a Differential Drive
Robot, Special Issue on Search and Pursuit/Evasion, Auton Robot, 31(4):
345-366, 2011.

[18] U. Ruiz and R. Murrieta-Cid, A Homicidal Differential Drive Robot, In
Proc. IEEE Int. Conf. Robot. Autom, 2012.

[19] S.M. LaValle, Planning Algorithms, Cambridge University Press, 2006

[20] D.J. Balkcom and M.T. Mason, Time Optimal Trajectories for Bounded
Velocity Differential Drive Vehicles, Int J Robot Res Vol 21, No 3, pp
219-232, 2002.

[21] P. Soueres and J.P. Laumond, Shortest paths synthesis for a car-like
robot. IEEE Trans. Autom. Control, Vol. 41, No. 5, pp. 672-688, 1996.

[22] H. Wang, Y. Chen and P. Soueres. A geometric algorithm to compute
time-optimal trajectories for a bidirectional steered robot. IEEE Trans-
actions on Robotics, Vol. 25, No. 2, 399-413, 2009.

[23] R. Murrieta-Cid, B. Tovar and S. Hutchinson, A Sampling-Based Motion
Planning Approach to Maintain Visibility of Unpredictable Targets,
Auton Robot, Vol. 19. No 3 pages 285-300, December 2005.

[24] A. Efrat, H. H. Gonzalez, S. G. Kobourov and L. Palaniappan, Optimal
Motion Strategies to Track and Capture a Predictable Target, In Proc.

IEEE Int. Conf. Robot. Autom., 2003.

[25] J. M. O’Kane, On the value of ignorance: Balancing tracking and privacy
using a two-bit sensor. In Proc. Int. WAFR, 2008

[26] Tirthankar Bandyopadhyay, Marcelo H. Ang Jr. and David Hsu, Motion
planning for 3-D target tracking among obstacles, Int. Symp. on Robotics

Research, 2007

[27] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F.
Mishchenko. The Mathematical Theory of Optimal Processes. JohnWi-
ley, 1962.

[28] I. M. Mitchell, A. M. Bayen and C.J. Tomlin, A Time-Dependent
Hamilton-Jacobi Formulation of Reachable Sets for Continuous Dynam-
ics Games. IEEE Trans. Autom. Control, Vol. 50, No. 7, pp. 947-957,
2005.



17
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