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An approach integrating planning and image-based visual servo control for road
following andmoving obstacles avoidance
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ABSTRACT
This paper proposes an approach that integrates planning and image based visual servo control for road
followingandmovingobstacle avoidance.Onemainobjectiveof this article is to represent a robot’s general
plan or strategy in the form of a finite state machine or automaton. This automaton is designed previously
to execution of the plan and then it is used for any instance of the robot’s task. The visual servo control is
used to regulate the robot’s velocity according to the visual target (task specification) which depends on
the state in the automaton. All the algorithms and control laws have been implemented and simulation
results and experiments with a real scale-size car-like robot are presented and discussed.
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1. Introduction

This paper proposes an approach that integrates planning and
image based visual servo control for road following and mov-
ing obstacle avoidance. Motion planning (Latombe, 1991; Lau-
mond, 1998; LaValle, 2006) and visual servo control (Chaumette
& Hutchinson, 2006; Espiau, Chaumette, & Rives, 1992;
Fontanelli, Danesi, Belo, Salaris, & Bicchi, 2009; Hutchinson,
Hager, & Corke, 1996) are two approaches to commandmotion
systems originated from robotics research which are used very
often. Each one of them has advantages and drawbacks. Visual
servo control is based on feedback information obtained with
sensors specially cameras, which makes the method robust to
the presence of uncertainty and reactive. However, visual ser-
voing by its own is not well suited to deal with obstacles that
generate both motion and visibility constraints. In contrast,
motion planning methods are well suited to deal with obsta-
cles and allow to make deliberative plans. However, typically
those methods do not fully take advantage of feedback infor-
mation provided by sensors. Furthermore, these two paradigms
are rarely integrated together to solve more complex tasks. In
this work, we propose an approach integrating both of them and
exploiting and complementing their advantages. Onemain goal
of this work is to represent the general plan or strategy of the
robot to follow the road and pass or avoid collision with other
cars in the form of a finite state machine or automaton. This
automaton is designed previously to execution and then it is
used for any instance of overtaking or collision avoidance. The
visual servo control is used to regulate the angular robot veloc-
ities according to the visual target (task specification) which
depends on the state in the automaton.
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1.1 Relatedwork

This work is related to vehicle guidance in robotics, whose
goal is to achieve automatic car driving (Buehler, Lagnemma,
& Singh, 2008; Nunes, Laugier, & Trivedi, 2009; Thrun
et al., 2006). It is also related to the task of visual navigation
of mobile robots (Bonin-Font, Ortiz, & Oliver, 2008; Cheru-
bini & Chaumette, 2012; Courbon, Mezouar, & Martinet, 2009;
Ohya, Kosaka, & Kak, 1998; SwainOropeza, Devy, & Hutchin-
son, 2001) and specifically to controlling wheeled robots
with visual servoing (Abdelkader, Mezouar, Andreff, & Mar-
tinet, 2006; Becerra, López-Nicolás, & Sag”ués, 2011; Cheru-
bini, Chaumette, & Oriolo, 2011; López-Nicolás et al., 2011;
Masutani, Mikawa, Maru, & Miyazaki, 1994; SwainOropeza
et al., 2001). The task of avoiding collision with obsta-
cles (Cherubini & Chaumette, 2012; Cherubini, Spinder,
& Chaumette, 2014; Fraichard &Kuffner, 2012;Minguez, Lami-
raux, & Laumond, 2008) is also related with this work.

In Cherubini et al. (2011), the authors present two visual ser-
voing controllers (pose-based and image-based), which allows
mobile robots equipped with a fixed camera to reach and
follow a continuous path drawn on the ground, a conver-
gence analysis is presented for both controllers. In Cherubini
and Chaumette (2012), the authors propose and validate a
framework for avoiding obstacles during visual navigation with
a wheeled mobile robot. Visual navigation consists of following
a path, represented as an ordered set of key images. The robot
following that path avoids obstacles which are sensed by an on-
board lidar. The camera pan angle is actuated to maintain scene
visibility while the robot circumnavigates the obstacle. The risk
of collision and the eventual avoiding behaviour are determined
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using a tentacle-based approach. In Cherubini et al. (2014),
the work in Cherubini and Chaumette (2012) is extended to
avoid collision with moving obstacles. The proposed approach
takes explicitly into account obstacle velocities, estimated using
a Kalman-based observer. These velocities are used to predict
the obstacle positions. In this work, we also use a laser to
detect obstacles, however, in the present work the main goal
is integrating planning and image-based visual servo using an
automaton, which is not done in the works presented in Cheru-
bini and Chaumette (2012) and Cherubini et al. (2014). Other
key differences between the work presented here and the works
in Cherubini et al. (2011) and Cherubini and Chaumette (2012)
are described in detail below (see Section 1.2).

In this work, we take inspiration from the work presented
in Martinez et al. (2018). That work addresses the problem of
exploring an unknown, planar, polygonal and simply connected
environment. The authors propose an automaton that filters
spurious observations to activate feedback-based controllers.
The control scheme switches controllers according to observa-
tions obtained from the robot’s sensor. In this work, we also use
an automaton which represents the general plan to accomplish
the task; however, the task addressed in this work is different
from the task addressed in Martinez et al. (2018). While in
Martinez et al. (2018), the goal is to explore an unknown envi-
ronment, in this paper the tasks are following the road and avoid
collision with other moving and static obstacles and overtaking
slower cars in a road with two lanes. Furthermore, in Martinez
et al. (2018) two different controllers for regulating the linear
and angular velocities of the robot are used for each state in the
automaton, in contrast in this work the same controllers for reg-
ulating the linear and angular velocities are used in all the states
in the automaton and only the control set-points are changed.
Finally, in Martinez et al. (2018) visual servo control is not used
at all.

1.2 Main contributions

There are several approaches for controlling a car using visual
servo control, but to our knowledge, the previous works most
closely related to our approach are the ones presented in Cheru-
bini and Chaumette (2012); Cherubini et al. (2011). Never-
theless, it is important to stress that while it is true that the
visual servo control element in this work is based on the work
presented in Cherubini et al. (2011), in this work, we pro-
pose a new approach integrating planning and visual servo
control to achieve a twofold task: (1) following a road and
(2) avoid moving and static obstacles, which correspond for
instance to other cars that are eluded or overtaken. The main
differences of this work with the works presented in Cheru-
bini and Chaumette (2012); Cherubini et al. (2011) are the
following:

(1) To propose a finite state machine or automaton, which cor-
responds to the general plan or strategy to follow the road
andpass or avoid collisionwith other cars. This plan is done
previously to execution and hence it is used for any instance
of overtaking or collision avoidance.

(2) In Cherubini and Chaumette (2012), to determine a colli-
sion free trajectory in the presence of obstacles, the authors

propose to choose a trajectory among a set of options con-
sidering the safety of the chosen trajectory. In Cherubini
and Chaumette (2012), the angular velocity of the robot
is not controlled using visual servoing in the presence of
obstacles, the visual servo control only regulates the robot
velocity when there are no obstacles perceived by the sen-
sors. In contrast, in the approach proposed in this paper,
the robot’s angular velocity is always controlled with visual
servoing achieving high reactivity to avoid collision with
obstacles.

(3) In Cherubini et al. (2011) the authors only considered low
robot’s velocities, such that the termds/dt can be neglected.
This termmodels the change of position of the visual target
in the scene with respect to time, this change occurs since
the tracked point moves and it leaves the image and it is
replaced with other point. The motion of the tracked point
in the image does not totally originate by visual servo con-
trol. The linear velocity of the robot is controlled by other
means (Cherubini et al., 2011). In contrast, in this work we
take into account the termds/dt allowing the robot tomove
at higher velocities.

(4) In this work we adjust θ∗ corresponding to the orientation
of the line tangent to the curvemodelling the orientation of
the road, according to the coordinate x of the tracked point
in the image. This strategy allows the control to keep the
robot parallel to the road. In Cherubini et al. (2011), the
authors maintain θ∗ constant and equal to zero.

(5) In this work we use both the curvature of the road and the
distance to the obstacles to control the linear velocity of the
robot.

2. Problem statement

Given a car-like robot equipped with a camera, which can
be represented with a perspective projection model and with
an omnidirectional laser range finder with limited range. The
objective is to achieve two tasks: (1) follow the road and (2)
avoid collisionwith othermoving or static obstacles and passing
one single slower car in a two-way road. We assume that at the
beginning of the task, the robot lies on the right lane of the road
having the road within the camera field of view.

2.1 Robot, camera and image reference frames

To model the vehicle we use three reference frames: A cam-
era reference frame FC(C,Xc,Yc,Zc), whose origin C is the
optical camera centre, an image reference frame FI(O, x, y)
with origin O at the image centre and a robot reference frame
FR(R,X,Y ,Z), whose origin R is located over the rear wheels’
axis at the ground level, see Figure 1. Between the originC of the
camera reference frame and the robot reference frame there is
translation tz along the Z robot’s axis and a translation ty along
the Y robot’s axis.

3. Automaton

A finite-state machine (FSM) or automaton is defined as a
mathematical model of computation, it is conceived as an
abstract machine that can be in one of a finite number of states
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Figure 1. Reference frames. (a) Superior view. (b) Lateral view. (c) Image taken by
the camera.

Figure 2. Automaton.

(Hopcroft, Motwani, & Ullman, 2000). Figure 2 shows a graphi-
cal representation of an automaton corresponding to the general
plan or strategy to follow the road and pass or avoid collision
with other cars. The automaton has five states: Start, Following
left lane, Following right lane,Changing to left lane and Changing
to right lane. The transitions among the states are represented
with arrows, each arrow has a label corresponding to the obser-
vation (or condition) required to given a state change to other
state. A state corresponds to the general internal condition of the
robot, in each one of these states two variables are controlled: (1)
the position in the image of the centre of the lane that the robot
follows, which is regulated through the angular velocity of the
vehicle and (2) the linear velocity of the vehicle, which depends
on the presence or absence of obstacles and the curvature of the
road. In our current implementation, the state Start is trivial,
the automaton immediately transits to state Following right line,
since we assume that the car starts on the right lane. It would be
possible to extend this state to reach the road starting with the
car placed outside the track.

Sensormeasurements obtainedwith the camera and the laser
ranger finder are used in two different ways: (1) They are used

Figure 3. The regions RL and RR are bounded by the polygons drawn with dashed
lines. (a) Left region (RL). (b) Right region (RR).

as feedback information in controllers of the angular and linear
velocities. (2) They are used to answer binary questions, which
allow one to change or not from a state to another, we call those
elemental decisions ‘observations’.

3.1 Regions

A laser range finder is used to locate the obstacles on a local
reference frame attached to the robot. This sensor measures
obstacles points in polar coordinates (d,φ), where d is the dis-
tance from the robot to the obstacle and φ is the angle measured
in the counterclockwise sense with respect to the Z axis of the
robot (see Figure 1(a)) These measurements are used to estab-
lish regions around the robot which help to avoid obstacles and
to pass slow cars, the regions are defined below.

3.1.1 Left and right regions
From any laser point pk(dk,φk) with angle φk detected within
[φmin,φmax], the point is represented in cartesian coordinates
(Xk,Zk). If the coordinate Z of a point is larger than an inferior
threshold lizl and it is smaller than superior threshold lszl, and
the coordinate X of the point is larger than an inferior thresh-
old lixl and smaller than superior threshold lsxl then the point pk
belongs to left region RL, that is:

pk ∈ RL if φk ∈ [φmin,φmax] & Xk ∈ [lixl, lsxl] & Zk ∈ [lizl, lszl]

The right region RR is the symmetric case (see Figure 3) and it
is defined as follows:

pk ∈ RR if φk ∈ [φmin,φmax] &Xk∈ [lixr , lsxr] &Zk ∈ [lizr , lszr]

3.1.2 Frontal region (RF), collision region (RC) and
overtaking region (RO)
The obstacle point pk(d,φ) obtained with the laser is given in
Cartesian coordinates (Xk,Zk). If the coordinate Z of a point
is larger than an inferior threshold lizf and it is smaller than
superior threshold lszf , and the coordinate X of the point is
larger than an inferior threshold lixf and smaller than superior
threshold lsxf then the point pk belongs to the frontal region RF ,
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Figure 4. Regions RF , RC and RR are shown with the polygons drawn with dashed lines. (a) Frontal region (RF ). (b) Collision region (RC ). (c) Overtaking region (RO), left
region RL is also shown in the figure since it is used as a reference, the region RO starts where region RL finishes, they share a border.

that is:

pk ∈ RF if Xk ∈ [lixf , lsxf ] & Zk ∈ [lizf , lszf ]

In an analogous manner, regions RC and RO are defined as
follows.

pk ∈ RC if Xk ∈ [lixc, lsxc] & Zk ∈ [lizc, lszc]

pk ∈ RR if Xk ∈ [lixo, lsxo] & Zk ∈ [lizo, lszo]

The thresholds lszc and lszo of regionsRC andRO, respectively,
are larger than lszf of region RF . Regions RF and RO only have
relevance when the vehicle is in the right lane. In a similar way,
region RC is relevant only when the vehicle lies in the left lane
(seeFigure 4).

3.2 Observations

In this work, the conditions triggering changes between states in
the automation are called observations. We call them observa-
tions since these conditions are stabilised directly from sensors’
measurements. The observations correspond to the answer:
yes or not of binary questions, most of the observations are
deduced from the laser range finder measurements, since they
are related to the location of the obstacles with respect to the
robot.

The nine observations establishing the transitions between
states in the automaton are the following:

• RLO: Right lane occupied. If the laser sensor detects an
obstacle within region RF then this observation is true, oth-
erwise it is false.

• LLO: Left lane occupied. If the laser sensor detects an obsta-
cle within regions RL or RO then this observation is true,
otherwise it is false.

• RLF: Right lane free. If the laser sensor does not detect an
obstacle within regions RR then this observation is true,
otherwise it is false.

• CW: Collision warning. If the laser sensor detects an obstacle
within regions RC then this observation is true, otherwise it
is false.

Figure 5. Variables needed to decide whether or not it is safe to overtake a car.

• CO: Car overtaken. If the robot is following the left lane
and the car in the right lane is totally overtaken then this
observation is true.

• xcr > x∗: xcr is the coordinate x in the image of the centre of
the road. If xcr is larger than the desired coordinate x∗ then
this observation is true. This observation indicates that the
left lane has been reached.

• xcr < x∗: This case is symmetric to the previous one. The
desired coordinate x∗ can be different depending on the state
in the automaton (see Section 5).

• |κ| < κs: κ is the curvature of the road, which is obtained
using an image processing algorithm (see Section 4.1). If the
curvature of the road is smaller than a given threshold κs then
this observation is true. This is a necessary condition for the
robot to overtake a car.

• SO: Safe overtaking. If the laser sensor does not detect an
obstacle within regions RL and RO then this observation is
true, otherwise a procedure to decide whether or not there is
enough time to overtake a car is executed. This procedure
takes into account the relative1 velocities of the robot and
the other cars (the car to be overtaken and the car moving in
opposite direction in the left lane), the distance between the
robot and the car to be overtaken, the distance between the
robot and the car moving in the opposite direction in the left
lane and the maximum robot acceleration. If the procedure
determines that there is enough time then the observation is
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true otherwise it is false. This procedure is described in detail
in the next section.

3.3 Deciding a safe car overtaking

The variables used in the procedure to decide whether it is safe
to overtake a car are depicted in Figure 5. In that figure the
robot is denoted with an R, the car to be overtake is called C1,
and the car moving in the opposite direction in the left lane is
denoted C2, v1 and v2 are the velocities in a global reference
frame of car C1 and car C2 respectively. Those velocities can be
estimated from measurement distances obtained with the laser
before making this decision. The distance from the robot to the
car C1 is called d1 and the distance from the robot to the car C2
is called d2.

The distance that the robot travels during the overtaking is
called do, this distance is composed of four terms: (1) distance
d1, (2) the distance that car C1 will travel during the time that
takes the overtaking called to, this distance is equal to v1to, (3)
the distance that Rmust leave behind to the carC1 to come back
safely to the right lane, this distance is considered equal to the
inferior limit over the Z axis of the right regionRR called lizr (see
Section 3.1) and (4) the distance that the robot will travel over
the Z axis while it comes back to the right lane, this distance
is called dex, we assume that the robot will travel this distance
while moving to maximum velocity vmax.

On the other hand, the distance that carC2 will travel is called
do2, this distance do2 is equal to the difference d2 − do.

To determine whether or not it is safe to overtake car C1 two
times are considered, time to that is the time that the robot needs
to travel distance do using its maximum acceleration and time
to2 that is the time in which car C2 travels distance do2, it is
assumed that car C2 will travel distance do2 at constant velocity
v2, which is the velocity estimated immediately before to make
the decision. If to < to2 then there is enough time to overtake
car C1 without colliding with car C2 and hence observation SO
is declared true.

SO =
{
TRUE if to < to2
FALSE if to ≥ to2

(1)

To calculate time to we use the following equation:

v =
∫

a(t) · dt + vi = amaxt + vi (2)

we consider the robot acceleration a(t) as the constant amax
and vi is the velocity of the robot at the moment of making the
decision.

The distance that the robot travels is given by

d =
∫

v(t) · dt =
∫

(amaxt + vi) · dt

= amax

∫
t · dt + vi

∫
dt = amax

2
t2 + vit

(3)

Assuming that the robot will travel distance do in time to, we
have:

amax
2

t2o + vito − do = 0 (4)

Replacing do = d1 + v1to + lizr + dex in Equation (4) one gets:

amax
2

t2o + vito − (d1 + v1to + lizr + dex)

= amax
2

t2o + (vi − v1)to − d1 − lizr − dex
(5)

Using the general formula to solve second degree algebraic
equations, one gets:

to = −(vi − v1) ±
√

(vi − v1)2 − 2(amax)(−d1 − lizr − dex)
amax

(6)
Finding time to2 is direct, as mentioned above do2 = d2 − dr

and being v2 the velocity of car C2 at the moment of making the
decision, one gets:

to2 = do2
v2

(7)

Refer to Figure 2, in the automaton, the state Changing to left
lane is connected to the state Following to left lane and also to the
state Following right lane. This means that at every control cycle
the observation SO is evaluated if SO= false and LLO= true,
then the action can be aborted without completing it. We allow
this behaviour since due to noise measurements (distances or
velocities) the calculation of the times to and to2 can vary, hence
it makes sense to measure the same distances and velocities
at every control cycle in order to get a safer overtaking. Fur-
thermore, when the automaton is already in state Following left
lane it is allowed to transit to state Changing to right lane pro-
vided that the right lane is free, that is, observation RLF= true,
regardless the overtaken is complete, that is CO= true or not.

4. General control scheme

In the section, we shall describe the proposed control scheme,
we start describing the image features used.

Ls =

⎡

⎢⎢⎢⎢⎣

− 1
ZC

0
x
ZC

C2θ

ty
SθCθ

ty
− (xCθ + ySθ)Cθ

ty
xy −(1 + x2) y

−(xCθ + ySθ)Cθ −(xCθ + ySθ)Sθ −1

⎤

⎦ (8)

4.1 Image features

To detect the road, we use the algorithm proposed in Udac-
ity online (2018). In that algorithm, first the image is rectified
applying a projective perspective transformation (Open, 2018)
to get the lines delimiting the road parallel. Second a binari-
sation procedure is used to obtain the points belonging to the
borders of the road. These points (at least 3) are used to obtain
a quadratic equation modelling the road borders and it is also
used to track the borders in the next images of the sequence.
To obtain the curve modelling the centre of a lane both the
right and left borders of the lane are used and averaged. Thus,
depending on the state in the automaton (see Section 5), a curve
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Figure 6. One wishes to define the curve K between ymin and ymax .

K is used to model the centre of a lane, or the centre of the road
when the robot changes lanes to overtake a car. This curve K is
defined using the following parametric equation:

K(t) =
[
xK(t)
yK(t)

]
=

[
at2 + bt + c

t

]
(9)

xK(t) and yK(t) are the coordinates on an image reference frame
FI and t ∈ [ymin, ymax] is the parameter of the curve, which
varies from ymin to ymax, that is the minimum and maximum
y value where one expects to find the road, see Figure 6.

From the curve K one gets the following vector of features:

f =

⎡

⎢⎢⎣

x
y
θ

κ

⎤

⎥⎥⎦ (10)

x and y are the coordinates of the point p(x, y), on an image
reference frame FI , point p(x, y) is located at the place where
the curve K intersects the inferior border of the image, θ is the
orientation of the line tangent to the curve K at point p(x, y),
with respect to the vertical axis measured in counterclockwise
sense, see Figure 7. The orientation θ is obtained from the next
equation:

θ = arctan
(
ẋK
ẏK

)
(11)

ẋK and ẏK are the derivatives of xK and yK with respect to the
parameter t. κ is the curvature of K at the point where the
curve K intersects the row of the image at distance yκ from
the inferior border of the image. We measure the curvature of
the road some distance in front of the car in order to have a
short-term prediction about the curvature of the road, yκ is
determined empirically, see Figure 8. The curvature κ of the
road is calculated with the following equation:

κ =
|d2Kdt2 |
|dKdt |2

(12)

The curvature κ is used to control the linear velocity of the
robot, it does not affect the angular velocity of the car-like robot.

Figure 7. The curve K (starting at point p(x,y)) models the centre of the lane. The
features x,y and θ are obtained from this representation.

Figure 8. The curvature of the road κ is calculated at a point where the curve K
intersects the row of the image at distance yκ from the inferior border of the image.

4.2 A border of a lane leaves the camera field of view

In our experiments with a real robot (see Section 6.2), we have
observed that an extra complication might appear. This com-
plication consists in that one of the borders of a lane leaves the
camera field of view.

To estimate the curve modelling a lane’s border lying with-
out the camera field of view, one starts from the other border,
which is visible. Based on the curve K of the visible border, at
least 3 points are selected over the curve K. A perspective pro-
jection is applied to these three points to find their locations in
a superior perspective view, see Figure 9. With these 3 points
one gets a curve Kt lying over the transformed image (superior
perspective view). Then one computes the vectors normal to the
curveKt over each point p and points q are placed over the direc-
tion of the normal vectors to a distance equivalent to the lane’s
width in pixels. Using the set of points p a new curve is computed
(curve formed by points from q1 to qn, in Figure 9). Finally, an
inverse perspective projection is applied to the rectified image
to find the curve K in the original image that is not visible by
the camera.

4.3 Control of linear velocity

The linear velocity of the robot is defined as follows:

v∗ = vt−1 + a · $t (13)
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Figure 9. Amethod to find an approximation to the border of a lane lyingwithout
the camera field of view.

vt−1 is the linear velocity computed in the previous iteration in
the loop and $t is the time interval between iterations.

The acceleration of the robot is defined as follows:

a = v̇ =

⎧
⎪⎨

⎪⎩

amax if − λa(v − vref ) > amax

−λa(v − vref ) if − dmax<−λa(v − vref ) < amax

−dmax if − λa(v − vref ) < −dmax
(14)

λa is a control gain, v is the current velocity of the robot, vref
is the reference velocity at which one wants that the robot
moves, it is different in each state of the automaton and they
depend only on the curvature of the road and the distance to
the obstacles, they are not regulated using visual servo control,
see Section 5. Finally, amax and dmax are themaximum accelera-
tion and deceleration of the car-like robot, which depend on the
characteristics of the robot’s engine.

4.4 Controlling the angular velocity with visual servoing

We start defining s that is the specifications’ vector of the task,
which corresponds to follow the road, s contains the image
features x and θ defined in Section 4.1.

s =
[
x
θ

]
(15)

This control approach uses the orientation θ of the line tangent
to the curve K modelling the road, this provides to the system
a predictability element, that is, it allows to know not only the
position of the robot on the road but also it allows to know the
location where the car-like robot will be in the near future.

The evolution of specifications of the task is given by the fol-
lowing equation (Chaumette & Hutchinson, 2006; Cherubini
et al., 2011):

ṡ = LsCTRu (16)

Ls is the interaction matrix defined by Equation (8), Cθ and Sθ
mean cos θ and sin θ , respectively, and ZC is the depth of the
observed point in the world on the camera reference frame. It
is well known that image-based visual servo control works cor-
rectly even if ZC is not known precisely (Chaumette &Hutchin-
son, 2006). The first row of Ls relates the position of a point in
the world on the camera reference frame with its corresponding
position over the x axis in the image. The second row relates to
the orientation of the line tangent to the curve K in the world

with respect to theZ axis on the camera reference framewith the
orientation of the same line tangent to the curve K projected on
the image, with respect to the y axis of image reference frame
FI(O, x, y). The inclination of the camera with respect to the
X axis, called in Cherubini et al. (2011) ρ, is zero in our robot,
hence it is not considered.

CTR is the homogenous transformation matrix between the
robot reference frame FR(R,X,Y ,Z) and the camera reference
frame FC(C,Xc,Yc,Zc)

CTR =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 −tz
0 0
1 0
0 0
0 −1
0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
(17)

The vector of control inputs u of the car-like robot has two
elements, the linear v and angular ω velocity.

u =
[
v

ω

]
(18)

Multiplying the interaction matrix Ls by the first column of the
transformationmatrix CTR, one gets a Jacobianmatrix called Jv,
which is related to the linear velocity v of the robot.

Jv =

⎡

⎢⎣

x
ZC

− (xCθ+ySθ)Cθ
ty

⎤

⎥⎦ (19)

Analogously, multiplying the interaction matrix Ls by the sec-
ond column of the transformation matrix CTR, one gets a Jaco-
bian matrix called Jω, which is related to the angular velocity ω

of the robot.

Jω =

⎡

⎢⎣

tz
ZC + 1 + x2

− tzC2θ
ty + (xCθ + ySθ)Sθ

⎤

⎥⎦ (20)

However, Equation (16) is only applicable when the target
observed point in the world does not move or it moves

Figure 10. Typically the IBVS tracks points fixed in the world, if that was the case,
then a movement of the robot forward in the straight line will produce that the
point pmoves over the vector ṗ.
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slowly, such that the motion can be neglected as in Cheru-
bini et al. (2011). But in this work the target point in the
world changes all the time. If the same point is observed then
it will leave the camera field of view. Thus, to consider the
motion of the observed target point a factor must be added to
Equation (16), yielding the next equation

ṡ = LsCTRu + ds
dt

(21)

The factor d/sdt corresponds to the motion of the observed
target point generated by factors not controlled by the visual
servoing such as the linear robot velocity v. The linear veloc-
ity v generates undesired motions that must be compensated by
the angular velocity w.

To better understand the reason why it is important to con-
sider the factor ds/dt, see Figure 10, if the robot moves forward
in a straight line, the angular velocity is zero, then the points in
the image will move in the direction of the centre of the image
but in appositive sense, leaving the image. Thus, the point p in
the image will move over the vector ṗ. One can see that such
a vector has a component over the x axis of the image, which
corresponds to jxvv∗, jxvbeing the first element of the Jacobian
matrix Jv, that is x/ZC. To compare this motion and keep the
point p in the same x coordinate, the vehicle must turn to the
left in spite of the car-like robot being already aligned with the
road.

Nevertheless in this work, the point p continuously changes
from an image to another, to cancel the motion of point p the
term ds/dtmust be the negative of the motion of p generated by
the linear velocity v∗, since that velocity is not controlled with
visual servoing. Thus, the term ds/dt is given by the following
equation:

ds
dt

= −Jvv∗ (22)

The vector of error e is defined as

e = s − s∗ (23)

The reference desired features s∗ will be defined in the next
section, they are not always constant. The evolution of the error
over time is obtained deriving the previous equation and it is
given by

ė = LsCTRu + ds
dt

− ṡ∗ (24)

Using the Jacobian matrices (19) and (20) and substituting (22),
Equation (24) can be written as

ė =
[
ẋ
θ̇

]
= Jvv + Jωω − Jvv − ṡ∗ (25)

Which is equivalent to:

ė =
[
ẋ
θ̇

]
= Jωω − ṡ∗ (26)

Let ( be a diagonal matrix of gains:

( =
[
λx 0
0 λθ

]
(27)

Figure 11. Graphic of function x∗ , initial xi measured at time ti and final desired
value xf which is reached in predetermined time tt .

One wants that the error obeys the following dynamic:

ė = −(e (28)

Finally, the control law is given by the following equation:

ω = −J+ω ((e − ṡ∗) (29)

The symbol + as superindex denotes the Moore-Penrose Pseu-
doinverse of the matrix Jω.

4.5 Changing the task specifications s∗

Since from a state to another the position of the observed point
p might change abruptly, then the error in the features in the
image might also change from a small to a large value. This
will generate undesired jumps in the controls, specifically in
the angular velocity, which is controlled with visual servoing. In
order to avoid this discontinuities in the errors, we will enforce
that the desired x∗ changes smoothly from an initial xi to final xf
value in a predetermined time according to the next equation.

x∗ =

⎧
⎪⎪⎨

⎪⎪⎩

xi + (xf + xi)
{
1 − 1

2

[
1 + tanh

(
1

t−ti + 1
t−ti−tt

)]}

if t ≤ ti + tt
xf if t > ti + tt

(30)
t is the elapsed time, ti is the initial time when the system enters
a new state in the automaton, and tt is the time that it takes to
change from an initial xi to final xf value. Figure 11 shows the
behaviour of the function.

The desired orientation of the line tangent to the curve K is
the one pointing to the image centre, which shows that the robot
is aligned with the road, in contrast with the work presented in
Cherubini et al. (2011), where it is kept constant and equal to
zero.

Thus, θ∗ is given by the next equation:

θ∗ = arctan
x
y

(31)

In Equation (29) defining the control law for the angular veloc-
ity ω, it considers the term ṡ∗ and not s∗, ṡ∗ corresponds to the
derivatives of the task specifications.



INTERNATIONAL JOURNAL OF CONTROL 9

ẋ∗ is given by the following equation:

ẋ∗ =

⎧
⎪⎨

⎪⎩

1
2 (xf + xi)

[
1

(t−ti)2
+ 1

(t−ti−tt )2

cosh2
(

1
t−ti

+ 1
t−ti−tt

)

]

if t ≤ ti + tt

0 if t > ti + tt

(32)

The desired derivative of θ∗ is given by the following equation:

θ̇∗ = ẋy
x2 + y2

(33)

The derivative of x is approximated with finite differences ẋ =
(xk − xk−1)/(tk − tk−1). Thus, the derivative of vector of task
specifications ṡ∗ is given by

ṡ∗ =
[
ẋ∗

θ̇∗

]
(34)

5. Control set-points and target velocities according
to the state in the automaton

5.1 Following right lane

In this state xf = 0, since we want that the centre of the right
lane be located at the centre of the image.

The linear velocity of the robot given by Equation (13)
depends on a reference velocity vref , which varies according to
the state, in this state the linear velocity is denoted vrefR and it is
defined by the following equation:

vrefR = [vmin + σ (vnom − vmin)]τR (35)

vmin is the velocity of the robot such that it can travel the curve
with the highest curvature, vnom is the nominal linear velocity
at which one wants that the robot travels in a straight line with-
out having obstacles close, σ is a function that adapts the linear
velocity according to the road curvature κ and τR is a function
that adapts the linear velocity according to the distance from
the robot to the next car in the right lane, called distance dnc.
Function σ (κ) is given by the following equation:

σ (κ) =
{
1 − ( κ

κmax
)2 if |κ| < κmax

0 if |κ| ≥ κmax
(36)

κmax is the maximum curvature that the robot can travel (see
Figure 12), the function τR is defined by the following equation:

τR(dnc) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
if dnc < dmin

1 − 1
2 [1 + tanh ( 1

dnc−dmin
+ 1

dnc−lszf )]

if dmin < dnc < lszf
1

if dnc ≥ lszf

(37)

dmin is the minimum allowed distance between the robot and
the next car in the right lane, when the robot is to dmin from
the next car in the right lane its linear velocity is zero, lszf is the
superior threshold over the Z axis of region RF (see Figure 4a)).
Figure 13 shows the graphic of function 13.

Figure 12. Graphic of function σ , its maximum value corresponds to κ = 0 and it
decreases exponentially until it reaches zero when κ = −κmax or κ = κmax .

Figure 13. Graphic of function τR , it has its maximum value of 1 when dnc ≥ lszf
and it has its minimum value when dnc < dmin .

5.2 Changing to left lane

When the robot is in the right lane and the observation to
change to the left lane appears the robot still is in the right lane
and it is difficult to detect the centre of the left lane, then the
robot detects instead the centre of the road, thus in this state the
point p corresponds to the centre of the road. The final desired
value xf is a coordinate x> 0 such that the left border of the road
is within the field of view of the camera and it intersects the infe-
rior border of the image. The reference velocity vref is the same
that in the previous state (Following right lane).

5.3 Following left lane

At the moment the automation transits to this state, the robot
is able to sense both borders left and right ones of the left lane,
hence, the point p is the centre of the left lane and xf = 0, since
the goal is to keep the centre of the left lane at the centre of
the image. The reference velocity (vrefL) is given by the next
equation:

vrefL = [vmin + σ (vmax − vmin)] (38)

vmax is n times the nominal velocity vnom with n> 1, such that
vmax > vnom. Function σ is the same that in the state Following
right lane.

As we said before, if the automaton is in this state the proce-
dure described in Section 3.3 has decided that the overtaking is
safe. But if a car moving in the opposite direction is getting too
close to the robot (observation CW= true) and there is enough
free space in the right lane (observation RLF= true) then the
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Figure 14. When the robot changes of lane, the centre of the road is point p and not the centre of a lane.

robot is allowed to come back to the right lane without over-
taking the car in the right lane (observation CO= false), see the
observations required to transit to state Changing to right lane
(see Figure 2).

5.4 Changing to right lane

Similar to the state Changing to left lane the observed and
tracked point p is the centre of the road, specifically in this state,
the point p is at the place where the right border of the left lane
intersects the inferior border of the image, see Figure 14b). The
desired xf for point p is a coordinate x< 0 such that it guaran-
tees that the right lane of the road is within the field of view of
the camera.

The reference velocity vref is the same that the one used in
state Following right lane (see Section 5.1).

6. Simulations and experiments in a real robot

6.1 Simulation results

All our simulation experiments were run on a 2.3GHz In- tel
Core i3-6100U dual-core processor PC, equipped with 8 GB of
RAM, running Windows 10, and were programmed in C# and
C++ using the multipurpose game engine Unity.

First, we present simulation experiments without other cars,
only the car-like robot is in the track. For each experiment, 3 tri-
als were done with the same parameters. The track has a length
of 710meters, see Figure 15, the car-like robot is 3.4meters long,
1.8 meters width and 1.3 meters high. The common parameters
for this first set of experiments are the following: dmax = 30,
tz = 2.3, ty = 1.8, L= 3, ZC = 6.5121, λa = 4, and κmax = 3.
dmax

is the maximum car deceleration given in m/sec2, tz and ty
are offsets (see Section 2.1), L is the distance between the front
and rear wheels axis, ZC is the assumed distance between the
camera and the road-which does not need to be accurate in
image based visual servo control-, all these parameters are given
in meters. λa is a control gain related to the car acceleration and
κmax is the maximun road curvature, these last two parameters
are adimensional.

In Table 1, we vary the following parameters: λx and λθ

are control gains, related respectively to the x coordinate of
tracked point p and the angle of the line tangent to the road

Figure 15. Track used in simulation experiments and position of the vehicles
before a risky overtaking.

Table 1. Results in simulations without other cars.

E# λx λθ vmin vnom amax SA tav

1 9 2 10 32 8 3 33.1
2 9 3 10 32 8 0 −
3 9 4 12 32 8 2 30.95
4 9 4 11 32 8 3 31.86
5 9 4 11 32 10 1 31.2
6 9 4 11 32 9 1 31.1
7 10 4 11 31 8 2 33.3
8 10 4 10 30 8 3 33.2
9 10 4 10 30 10 3 32.1
10 10 4 10 31 10 3 31.5
11 10 4 10 32 9 1 31.76

at point p, vmin is the minimum car velocity, vnom is the nom-
inal car velocity, amax is the maximum car acceleration. In all
the simulations the maximum car-like robot velocity that the
vehicle can reach is the double of the nominal velocity and in
all the experiments with the real robot the maximum car-like
robot velocity is 1.5 times the nominal velocity. The main results
are the two following: SA is the number of successful attempts,
that is the number of times that the robot completes a lap in
the circuit, and tav is the average time to travel a single lap
in the track.

We conclude that the ability of the car-like robot to complete
a lap depends mainly in the control gains λx and λθ . The time
to complete a lap provided a well tuned gains depends on the
nominal velocity vnom and the maximun acceleration amax. The
larger these quantities the shorter the time.

The second set of simulation experiments was done with
two cars besides the robot, to study car overtaking. The two
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Figure 16. Graphics of the error in the image features and control variablesω and v in one simulation during a car overtaking.

other cars are not controlled, they follow a predefined path in
the track. In this second set of experiments 5 trials were done
for each experiment with the same parameters. The common
parameters are the following: ZC = 6.5121, dmax = 30, λa = 4,
κmax = 3, tz = 2.3, ty = 1.8, L= 3, vmax = 2 × vnom, κs = 1.5,
dmin = 4, lszf = 20.

Recall that κs is a threshold of the road curvature and lszf is
the distance from the origin of the reference frame related to the
robot and the superior limit of the region RF , see Figure 4; dmin
is the minimum allowed distance between the robot and the car
in the same lane in front of the robot, if the distance between
the robot an the car is smaller than dmin then the robot stops.
We set λx = 10 and λθ = 4, which were the gains that gave the
best performance in the previous set of experiments.

Table 2 shows the parameters that we vary, it also shows the 3
main results in this set of experiments. They are: SA the number
of successful attempts, tav the average time to travel a single lap
in the circuit, and RO that indicates the number of times that
a risky overtaking is done. A risky overtaking corresponds to
an overtaking in which the robot does not wait for the car in
the left lane to pass to overtake the car in the same lane that
the car-like robot. The initial positions of the robot and the two
cars, when a risky overtaking is done, are shown in Figure 15.
Based on these experiments we conclude that a successful risky
overtaking depends mainly on the maximun robot acceleration
amax, the larger it is the better.

Table 2. Results in simulations with other cars

E# vmin vnom amax SA RO tav

1 11 28 8 5 5 33.54
2 11 28 6 4 1 39.22
3 11 30 6 4 0 39.77
4 11 30 8 4 4 32.55
5 11 30 10 5 5 31.52
6 11 32 6 4 0 39.6
7 11 32 7 5 5 32.72
8 11 28 7 5 5 34.56
9 10 26 7 5 5 36.36
10 10 32 10 5 5 31.76

Figure 16(a) shows the evolution of the error in the image
features, and Figure 16(b) shows the control variables ω and
v, for a simulation with other cars during a car overtaking.
The vertical blue lines in the figures indicate the changes of
states: Following left lane (FLL), Following right lane (FRL),
Changing to right lane (CTRL), Changing to left lane (CTLL)
and the error in x is shown with a curve in medium gray and
error in theta (th) is shown with a curve in light gray. Some-
times the error in the θ variable changes abruptly, this is due
to that the measured θ can change from the one related to
the centre of the lane to the one related to the centre of the
road. A possibility to make this change smoother is to track
the measured θ as we do with the desired x (see Section 4.5).
However, that strategy might require too much time to change
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Figure 17. The car-like robot and the sensors.

Figure 18. Experiment with a car-like robot avoiding a static obstacle.

the car direction reducing the reactivity to avoid collision with
an obstacle.

6.2 Experiments with a real robot

In all the experiments, we have used a car-like robot (size-scale
vehicle 1:10) calledAutoNOMOSmini, see Figure 17, which has
been developed at Freie Universität Berlin AutoModelCarWiki
Online (2017). The on-board computer is a card Odroid XU4
with 64GB of RAM, running Linux and Robotic Operating Sys-
tem (ROS). The vehicle is equipped with a laser range finder
RPLidar 360, which is used to detect obstacles around the robot
and aKinect type video camera, which is used to detect the lanes
in the road. We do not use depth information from the camera,
only 2D images.

Each experiment with the real car-like robot was done only
once. Figure 18 shows the track used in the experiments, the
length of the track in the centre of the exterior lane is approx-
imately 7.65 meters and the width of each lane is 0.4 meters.
The common parameters in the experiments are the following:
ZC = 6.5121, λa = 4, κmax = 2, tz = 0.2, ty = 0.18, L = 0.25,
vmax = 1.5 × vnom, κs = 1.5. Table 3 shows the parameters that
were varied. Themain result is the time t (measured in seconds)
to complete a single lap in the circuit. A fail to complete a single
lap in the track is indicated with a “-” in the column indicat-
ing the time. The nominal robot velocity varies from 3.2 to 3.6

Table 3. Results in real experiments without obstacles.

E# λx λθ vmin vnom amax dmax t

1 10 4 1.7 3.2 0.6 2.5 30
2 10 4 1.7 3.2 0.8 2.5 30
3 10 4 1.9 3.4 0.8 2.5 28
4 10 4 1.9 3.6 0.6 2 −
5 10 4 1.9 3.5 0.6 2 −
6 12 4 1.9 3.5 0.6 2 −
7 12 4 1.5 3.5 0.6 2 30
8 12 4 1.5 3.3 0.6 2 30

Table 4. Experiments with one obstacle.

E# λx λθ vmin vnom amax dmax t

1 9 4 1 2 0.6 2.5 42
2 10 5 1.2 2.4 0.6 2.5 37
3 11 5 1.2 2.4 0.4 3 42
4 10 5 1.2 2.6 0.4 3.5 36
5 10 5 1.2 2.8 0.5 3.5 33
6 10 5 1.2 3.2 0.5 3.5 30
7 10 5 1.4 3.2 0.5 3.5 31
8 10 5 1.5 3.2 0.5 5 30
9 10 5 1.5 3.4 0.5 6 28
10 10 5 1.5 3.5 0.5 6 29

meters per second, which corresponds to a range between 11.52
and 12.96 kilometers per hour. Note that considering that the
scale of the vehicle is 1:10 (the radius of vehicle wheels is 10
times smaller than in a real size one), this would correspond
to a velocity range between 115 and 129 kilometers per hour in
real size vehicle.

In experiments with a real robot, we conclude that provided
well tuned control gains, the ability of the car-like robot to com-
plete a lap depends mainly on the minimum allowed velocity
vmin.

Figure 18 shows an experimentwith the car-like robot, where
the robot avoids collision with a static object lying on the track’s
right lane. The car changes lane to avoid the obstacle and then
it gets back to the right lane (see the video showing this experi-
ment in the multi-media material of the paper.2 In these exper-
iments we have noticed that some times the robot stops when it
encounters an obstacle before changing line. That is due to size
region RF , see Figure 4, a small size region was used. A longer
region will detect obstacles outside the road producing the car
to change lane when it is not required.

We present now a last set of experiments where the robot
avoids a static obstacle. The common parameters in this set
of experiments were the same that in the previous set. Table 3
shows the parameters that were varied. Again, the main result is
the time t to complete a single lap in the circuit.

In experiments with a real robot in the presence of obstacles,
we conclude that provided well tuned controls gains, the time
to complete a lap depends mainly on nominal velocity vnom, the
larger it is, the shorter the time needed to complete a lap.

Figure 19(a) shows the error in the image features and
Figure 19(b) shows the control variables ω and v, for a exper-
iment with a static obstacle during the collision avoidance. The
vertical dotted lines in the figures indicate the changes of states:
Following left lane (FLL), Following right lane (FRL), Chang-
ing to right lane (CTRL) and Changing to left lane (CTLL).
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Figure 19. Graphics of the error in the image features and control variablesω and v in an experiment with the real robot and one static obstacle.

We can observe that these graphics are less smooth in compar-
ison with the previous ones resulting from the simulations, we
think that it is due to the image processingmethod whichmight
detect wrong feature points which induces noise in the variable
errors.

Unfortunately, we do not have a second car to test experi-
mentally the car overtaking. However, a careful analysis with
several simulations was done to assess the proposed method for
car overtaking. In the multi-media material, we have included a
video, in which two simulations and one experiment in the real
robot are presented. The paper multimedia material (a video) is
in the following link:
Link to the video: https://figshare.com/s/9deb155fabec4c6ee647

The presentwork delivers experimental results that addressed
the scenario in which the car-like robot moves in a closed cir-
cuit, and in which the tasks given to the robot are following the
road, avoid collision with othermoving and static obstacles, and
overtaking slower cars in a road with two lanes. In this context,
we present a experimental system composed by a car-like robot
equipped with a camera used to detect the lanes’ borders, and
an omnidirectional laser range finder used to detectmoving and
static obstacles. The proposed approach integrates an automa-
ton and image-based visual servo control for accomplishing the

tasks given to the car-like robot. Two main improvements with
respect to previous works are the following:

(1) To the best of our knowledge the previous work most
closely related to this work are the ones presented inCheru-
bini et al. (2011) and Cherubini and Chaumette (2012).
The proposed approach is able to decide whether or not is
safe to overtake a car in the right lane estimating the time
needed to do it, considering the location or absence of a car
moving in opposite direction in the left lane, this capabil-
ity is demonstrated in several simulations which consider
realistic values of maximal accelerations and velocity of
the cars. The works presented in Cherubini et al. (2011)
and Cherubini and Chaumette (2012) do not present this
capability.

(2) Another important novelty proposed in this work with
respect to methods using image-based visual servo is that
the orientation θ∗ of the line tangent to the curve mod-
elling the orientation of the road is adjusted, according to
the coordinate x of the tracked point in the image. This
strategy allows the control to keep the robot parallel to the
road. To the best of our knowledge this strategy is not pre-
sented in previous works in which the car is controlled
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using image-based visual servo. This capability is verified
in experiments with a physical robot with good results.

7. Conclusions and future work

In this paper, we have proposed an approach integrating plan-
ning and visual servo control to achieve a twofold task: (1)
following a road and (2) avoid moving and static obstacles,
which correspond for instance to other cars that are eluded or
overtaken. We have proposed a finite state machine or automa-
ton, which corresponds to the general plan or strategy to follow
the road and pass or avoid collision with other cars. This plan
is done previously to execution and then it is used for any
instance of overtaking or collision avoidance. In this approach,
the robot’s angular velocity is always controlled with visual
servoing achieving high reactivity to avoid collision with obsta-
cles. We have taken into account the term ds/dt modelling
the change of position with respect to time of the visual tar-
get in the scene allowing the robot to move at higher velocities.
The variable θ∗ corresponding to the orientation of the line
tangent to the curve modelling the orientation of the road is
adjusted according to the coordinate x of the tracked point in
the image. This strategy allows the control to keep the robot
parallel to the road. All the algorithms and control laws have
been implemented and simulation results and experiments with
a real car-like robot are presented and discussed. Our experi-
ments have empirically shown that the proposed method works
correctly in simulations and experiments.

There are several directions for future work, for instance: (1)
Overtake more than one single car in the right lane, this would
allow to consider more complex situations in which there are
several cars moving in the same direction as the car-like robot.
In that case, it may be necessary for the car-like robot to deter-
mine the time needed to overtake two or more cars in the right
lane at once without coming back to the right lane. (2) Detect
and discard static obstacles lying outside the road. In our exper-
iments we have noticed that sometimes the robot stops when
it encounters an obstacle before changing line. That is due to
a small size of region RF . A longer region will detect obstacles
outside the road producing the car to change lane when it is not
required. For that reason, it would be useful to detect whether or
not an obstacle lies on the road. (3) Currently we are only con-
sidering that the car-like robot moves in a closed circuit as a car
race track. It would more challenging to consider a road with
bifurcations that can be used to model for instance a highway.
(4) We think that an important problem is to obtain an auto-
matic driving being comfortable for a human user. We plan to
combine virtual reality, machine learning techniques and statis-
tical analysis to find the parameters that produce a comfortable
ride for a human user. Usingmachine learningmethods we plan
to find the parameters (acceleration, distance to the other cars,
etc.) producing different driving styles (e.g. aggressive, conser-
vative, etc.). Using a virtual reality headset we would like to
expose human users to the different driving styles. We plan to
make polls and statistical analysis to determine how comfort-
able the experience is for the user, for instance according to
the user age or gender. We believe that such research would
be very useful to provide an adequate driving style according
to the user preferences. (5) Develop methods for ensuring the

safety of autonomous vehicles as in the followingworks: (Decas-
tro et al., 2018; Fisac et al., 2018; Schwarting, Alonso-Mora,
Paull, Karaman, & Rus, 2017). This is paramount for successful
deployment of autonomous vehicles.

Notes

1. The velocities of the other cars in a global reference frame can be
obtained from the relative velocities, knowing the velocity of the car-
like robot itself.

2. The paper multimedia material (a video) is in the following link:Link
to the video: https://figshare.com/s/9deb155fabec4c6ee647
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