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Abstract—

This paper deals with the problem of computing the

motions of a robot observer in order to maintain visibil-

ity of a moving target. The target moves unpredictably,

and the distribution of obstacles in the workspace is

known in advance. Our algorithm computes a motion

strategy based on partitioning the configuration space

and the workspace in non-critical regions separated by

critical curves. In this work is determined the existence

of a solution for a given polygon and delay.

I. Introduction

We consider the problem of tracking a target moving
among obstacles. Specifically, a robot equipped with
a visual sensor must keep visibility of a moving evader
(the target). The observer and the target are in the
same workspace which contains static obstacles. The
obstacles generate motion constraints as well as visi-
bility constraints. A key distinction with previously
considered tracking problems, like missile control or
pure visual tracking, is the presence of obstacles com-
bined with the sensor ability to move. This paper focus
on computing the motions of a robot observer in order
to maintain visibility of a moving target. Low level
motion control and visual data processing issues are
not addressed in this paper.

The target-tracking problem has been traditionally
addressed with a combination of vision and control
techniques [3]. Purely control approaches, however, do
not take into account the complexity of the environ-
ment. The basic question which has to be answered
is where should the robot observer move in order to
maintain visibility of a target moving in a cluttered
workspace. Both visibility and motion obstructions
have to be considered. Thus, a pure visual servoing
technique will fail because it ignores the geometry of
the workspace.

Maintaining visibility of targets is related to the art-
gallery problem [11], where the goal is to compute the
locations of a minimal number of guards such that all
points in the workspace (the art gallery) are visible to
at least one guard. In tracking, we are interested in
guarding a moving point (the target) using a mobile

guard (the observer).

A. Previous Work

Previous works have studied the motion planning
problem for target tracking. Game theory [2] is pro-
posed in [7] as a framework to formulate the tracking
problem and an online algorithm is presented. This
algorithm operates by maximizing the probability of
future visibility of the target.

The approach presented in [9] computes a motion
strategy by maximizing the shortest distance to escape
– the shortest distance the target needs to move in
order to escape the observer’s visibility region. This
planner has been integrated and tested in a robot sys-
tem which includes perceptual and control capabilities.

In [5], a technique is proposed to track a target with-
out the need of a global map. Instead, a range sensor is
used to construct a local map of the environment, and
a combinatorial algorithm then computes a differential
motion for the observer at each iteration.

The problem of planning observer motions to main-
tain visibility of a moving target has received a good
deal of attention in the motion planning community
over the last few years. Several techniques have been
reported in the literature, and a variety of strategies
have been proposed to perform the tracking. However,
complete algorithms [10] have been rarely proposed.

The main goal of this work is to proposed a com-
plete motion strategy for the problem of maintaining
visibility of a moving target.

II. Problem definition

The problem consists in always maintaining vis-

ibility of a mobile evader (the target) by using a
mobile robot equipped with sensors (the observer).
The target and the observer are represented as points.
The environment where they are moving is modeled
as a polygon. The visibility between the target and
the observer is represented as a line segment and it is
called the bar. This bar is emulating the visual sensor
capabilities of the observer.



A. Assumptions

It is possible to think about several variants of this
problem. There are two main factors to be considered:
The speeds of the target and the observer, and the
existence of delay between the target and the observer
motions.

The simplest case consists in assuming that there is
no delay between the target and the observer motions,
and that the observer’s speed is infinite. Even with
these simplistic assumptions it is important to estab-
lish the existence of a solution for a given polygon and
a given bar length; as this is used for solving the more
complex cases.

In [10] we have proposed a complete and optimal
algorithm for this case. In the present work, it is as-
sumed that there is a delay between the target’s

motions and the observer’s.
In a real robotic system this delay in the observer’s

reaction exists because of the execution time of percep-
tion and motion planning algorithms. The main im-
plication of the existence of delay is that the observer
computes where to move based on a target position
that may have changed. Therefore, the exact position
of the target is unknown.

The target moves continuously, its trajectory is un-
known but its maximal speed is known and finite. On
the other hand, the observer is able to move with infi-
nite speed. Other than this, no kinematic nor dynamic
constraints are imposed on the observer or the target
motions.

III. Problem Modeling

The basic idea for solving the problem in a polygon
consists in partitioning the configuration space

and the workspace in non-critical regions sepa-

rated by critical curves.
Delay is an important factor in the problem mod-

eling. In order to deal with it the sensor must have
range.

In this section, the relation between range and de-
lay is established, the curves used to partition the
work and configuration spaces are described and, some
particular regions defined in the workspace are intro-
duced.

A. Delay and Range

The delay in the reaction of the observer is due to
the execution time of perception and motion planning
algorithms. The observer does not have information
about the target position continuously.

However, if the delay can be estimated or an upper
bound established, and the maximal target speed is
known, then the possible target positions can be de-
fined by a disk. The radius of the disk is proportional

to the delay. Maintaining target visibility under these
conditions is equivalent to maintaining visibility of this
disk.

The visibility between the target and the observer
is represented by a bar. In order to maintain visibility
of the disk, the bar must vary its length between a
maximum and a minimum value. The bar is also able
of rotating around the observer or around the target.
Thus, the bar is emulating the sensor range and field
of view. The target controls the bar’s position (x, y)
and the observer controls the bar’s orientation θ and
length.

Smax is the maximal target speed and dt is the
delay time, r is the maximal distance that the target
can travel during the delay, thus r = Smax × dt.

Let us call the maximal bar length Lmax and the
minimal bar length Lmin. The bar length at steady
state is called Lss = Lmin + 2 × r.

Let us established the minimal range mor able to
keep target visibility for a given r.

Observation: The shortest path for the target to es-
cape the observer range is over the line passing through
the points representing the observer and the target.

Proposition III.1 The minimal observer range mor

to maintain target visibility for a given r is mor = 4×r
(see figure 1).

Target
the range is over the line
between observer and

Lmax

R R R R

Range

Lss

Lmin

Observer

target

shortest path to escape

Fig. 1. Minimum range

Lemma III.2 Target must be at Lss distance from
the observer at the moment of the first sensing t0.

Proof To prove the lemma, consider that if the target
at time t0 is at Lss±ε distance from the observer then
in the next sensing at time t1 the target will appear,
in the worse case, at Lss ± (r + ε) form the observer.
Therefore the target may actually be at distance >
Lmax or < Lmin from the observer, and then outside
of the range.

Proof To prove the proposition, consider that if the
target at time t0 is exactly at Lss distance from the
observer then in the next sensing at time t1 the target



will appear, in the the worse case, at Lss ± r form
the observer. Therefore the target may actually be at
distance Lmax or Lmin from the observer, and then
inside of the range. mor = Lmax−Lmin = 4×r.

The result above shows that the range must be
greater or equal than 4 × r. For a given delay ra-
dius (target speed), the model that allows to solve the
largest number of cases is the one where the range
extends from the minimal observer range Lmin to 4
times the delay radius (provided that this lees or equal
than Lmax), as shown in figure 1. This model is used
throughout this paper.

There are three interesting corollaries that will be
used later to establish the existence of a solution.

Corollary III.3 The observer motion that guarantees
having the target within the range must be made, in the
worst case, either at distances Lmin + r or Lmax− r
from the previous target position.

Corollary III.4 The observer must move if the target
appears in any sensing at distance different of Lss.

Corollary III.5 Any new sensing must be made at
distance Lss between the current observer position and
the previous target position.

B. Partitioning the work and configuration spaces

The curves used to model the problem correspond
to those used to establish the cell decomposition for
ladder motion planning [13], [1]. The present approach
uses 4 sets of such curves. Two of the sets use all the
types of curves. One of these is calculated at distance
Lss from the obstacles, the other at Lim + r.

The third set of curves are of type 2 only. These
curves are defined at 2 × r distance from the reflex
vertices (those with interior angle larger than π). This
type of curve is an arc of circle centered in every re-
flex vertex and limited by the segments touching the
vertex.

The fourth set of curves is composed of straight lines
emerging from every reflex vertex and having the di-
rection of the segments associated to the vertex. These
lines correspond to the inflection rays in an aspect
graph based on perspective projection [12]. These lines
also correspond to curve type 3, if the bar had infinite
length.

The five types of curves used to establish cell de-
composition for ladder motion planning are in some
way capturing the notion of visibility, note that if the
curves were defined in a polygon of finite size by a bar
of infinite length then the resulting curves would cor-
respond exactly to those of an aspect graph based on
perspective projection.

B.1 Cell decomposition for ladder motion planning

The curves defined in [13], [1] are the set of points
where the structure of the C-obstacle region above
the xy-plane undergoes a qualitative change. Indeed,
when such a curve is crossed, either the C-obstacles’s
faces which are intersected by a line perpendicular to
the xy-plane at the current position changes, or the
number of intersection points changes [8].

Two sets of curves are defined for determining nec-
essary conditions for the existence of a solution (see
section IV).

Thanks to these curves it is possible to divide and
represent the configuration space with a connectivity
graph G. G is a non-directed graph whose nodes are
all the C-space cells. There is an edge connecting any
two nodes only if the corresponding cells are adjacent
(see below).

The cells are non-critical regions. A region is a max-
imal subset of admissible positions of the bar which
intersect no critical curve.

Roughly speaking, the definition of a non-critical
region is based on stops. Consider a non-critical region
R and define F (x, y) = {θ/(x, y, θ) ∈ Cfree}.

If all orientations of the bar are collision free at (x, y)
then F (x, y) = [0, 2π), else F (x, y) contains a finite
number of open, maximal intervals. The center of the
bar rotation (point P ) corresponds in our problem to
the target position.

A stop is the vertex or edge that the bar contacts
at an endpoint of an interval in position (x, y). Thus,
each interval has a clockwise and counterclockwise stop
associated to it. σ(x, y) denotes the pair of stops as-
sociated with F (x, y). If F (x, y) = [0, 2π), then we
write σ(Ω, Ω), where Ω designates no stop. For any
two points (x, y) and (x′, y′) both in the same non-
critical region R: σ(x, y) = σ(x′, y′). λ(x, y, s) = θ
denotes the orientation θ at which the bar hits stop s.

Cells are define as follows: Cell(R, S1, S2) =
{(x, y, θ)/(x, y) ∈ R and θ ∈ (λ(x, y, s1), λ(x, y, S2)}.
Cell(R, Ω, Ω) denotes a cell with no stops. Cell(R, ∅, ∅)
denotes a cell where the bar is always in collision.
Note, that this situation can occur for a given bar
length and polygon.

The adjacent condition is:
Two cells k = cell(R, S1, S2) and k′ = cell(R′, S′

1, S
′

2)
are adjacent if and only if:

• The boundaries of R and R′ share a section of the
critical curve β
• ∀(x, y) ∈ int(β)
(λ(x, y, S1), λ(x, y, S2)) ∩ (λ(x, y, S

′

1
), λ(x, y, S′

2)) 6= ∅

If two cells, k and k′ are adjacent, any configuration
in k can be connected to any configuration in k′ by
a free path whose projection onto xy-plane crosses β
transversely, with constant orientation in some neigh-



borhood of the crossing point. From here on, regions
denote sets of points in the xy-plane and cells denote
sets of configurations in the configuration space.

B.2 Target escape region

Target escape regions ter′s are regions in the neigh-
borhood of a reflex vertex. Every reflex vertex has an
associated ter. A ter is the region contained inside
curves type 2. The curve is established at distance
2 × r thus, the observer can always detect the target
at least r distance from the vertex, even in the worst
case. Because of the delay, when the target is detected
at distance r from the reflex vertex (after processing)
the target can actually be on the vertex at the present
time, exactly before it escapes behind the corner. This
gives the observer the opportunity to react and move
to a cgr (see below). It is assumed that the observer
can move with infinite speed. When the target is in-
side one of these regions, the observer must be in a cgr
and must see all the ter through which the target can
escape.

B.3 Corner guard regions

Corner guard regions cgr′s are used to prevent the
target from escaping behind a reflex vertex. This is
equivalent to determining if the corresponding target
escape region ter is visible by a bar having length Lss.

Every reflex vertex has an associated cgr. The cgr
is the region contained inside the two inflection rays
of every vertex. These lines would also correspond to
curves type 3, if the bar had infinite length.

If the target is inside a ter region then the observer
must move to the cgr from where it is possible to see
the complete ter region through which the target can
escape.

Critical curves and non-critical regions for ladder
motion planning are used to reach a cgr with an appro-
priate bar configuration (see traveling condition IV-A
and motion strategy V).

IV. Conditions for solving the target

tracking problem

There are four necessary conditions to establish the
existence of a solution and therefore the completeness
of the strategy. This section explains the first three,
the fourth will left for the motion strategy section due
to their relationship.

The firsts three conditions are: a) The observer must
travel at least at distance Lmin+ r between two sens-
ings (traveling condition), b) the observer must always
sense the current target position being at Lss distance
from the previous target position (steady state condi-
tion), and c) for each reflex vertex there must exist a

cgr from which ter can be completely seen (visibility
condition).

A major difference between the problem without de-
lay and with delay is that, with delay the observer
must be stationary some time after sensing. The ob-
server cannot move immediately after sensing because
it needs time to process this information and determine
where the target was and decide where the observer
must move. Since it is assumed that the observer mo-
tion takes zero time, sensing while moving is pointless.
Because of the delay, the observer may need to guard
one o more ter’s at a time. Therefore a strategy able
to guard all the ter’s through which the target can
escape is required (see section V).

A. Traveling condition

Satisfying this condition is equivalent to determin-
ing the existence of a solution for the case where the
observer speed is infinite and, there is no delay between
the target and the observer motions [10].

In a polygon (closed curve) this condition will al-
ways depend in the initial bar configuration. If the bar
starts in an unappropriated configuration (escapable
cell, see below) the target can break the bar. Other-
wise, this condition is satisfied if the target can never
bring the bar to an unappropriated configuration.

The cell decomposition for ladder motion planning
is used for determining whether or not this condition
is satisfied.

This set of curves is defined at Lmin + r distance
from the obstacles. The cells in the configuration space
defined by these curves are used to determine if the ob-
server can change the bar configuration (by rotating
around the target) at the minimal distance that guar-
antees the target being inside the range (see III.3).
Cells in the configuration space where the target can
break the bar must be eliminated. We call those cells
escapable cells.

Definition For cell K ⊂ <2XSO(2) above region
R ⊂ <2, if ∃ R′ adjacent to R such that there is not a
K ′ adjacent to K projecting onto R′ then cell K is an
escapable cell.

All the escapable cells must be eliminated. This rule
must be recursively applied to all the cells on the con-
figuration space until either no cell K is eliminated
(the condition is satisfied) or all the cells Ki corre-
sponding to a single region R are eliminated (the con-
dition is not satisfied).

Proposition IV.1 If ∃ R such that all its correspond-
ing cells Ki are escapable, then the target can get out-
side the observer range.

Proof If ∃ R such that all its corresponding cells Ki

are escapable cells then by definition there exists at



least one R′ adjacent to R such that it does not have
any cell K ′ adjacent to any cell Ki. Therefore the
target can move between regions R and R′ but the
observer will not be able to bring the bar from a con-
figuration in Ki to an adjacent configuration in K ′.

The following examples illustrate the previous con-
dition. In all the examples, the edges are denoted by
Ei and the vertices by Vi.

Figure 2 shows an example of a very narrow and
long non-convex corner. There are 15 regions in the
xy-plane and 22 cells in the configuration space. The
graph representing the environment does not contain a
single connected component. This means that the bar
cannot completely rotate between region 4 and region
10.

The rule used to detect non escapable cells is ap-
plied to all the cells until no more escapable cells are
detected. Red rectangles indicate the escapable cells.
One of the components contains only escapable cells.
The other component contains all the region in the
xy-plane. Therefore, if the bar does not start in a non
escapable cell a solution exist for the case of no de-
lay. This also means that the traveling condition is
satisfied for the case of delay.

Figure 3 shows a polygon (a rectangle). The rect-
angle has two parallel segments smaller that 2 times
the bar length. There are 18 regions in the xy-plane
and 32 cells in the configuration space. The rule used
to detect non escapable cells is recursively applied to
all the cells until all the cells corresponding to a sin-
gle region are eliminated. Red rectangles indicate the
escapable cells. The graph in the figure only contains
the cells after elimination of escapable cells. The re-
gion 8 is not in the graph. If the target is in region 8,
it can leave the region toward an adjacent region (i.e
region 9) that does not have a cell adjacent to the bar
configuration in region 8. Therefore, a solution does
not exist with or without delay.

For more details on this condition see [10].

B. Steady state condition

In this case, the set of curves for the ladder mo-
tion planning are defined at distance Lss. These other
curves are used to determine if the observer can sense
the current target position being at Lss distance from
the previous target position. This is a condition to en-
sure the target always being inside the observer range
(see III.5).

Proposition IV.2 If ∃K = Cell(R, ∅, ∅) in the poly-
gon then the observer cannot maintain the target
within the sensor range and therefore this condition
is not satisfied.
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Fig. 3. Rectangle

Proof If the target at time tn−1 is inside a region R
such that ∃K = Cell(R, ∅, ∅) then the observer cannot
be at distance Lss from the target at time tn. There-
fore by III.5 the target at time tn+1 could be outside
of the range.

C. Visibility condition

The visibility condition consists in verifying if all
the ter regions in a polygon can be guarded by the
observer, for a given length of the bar.



There can only be two reasons why the observer
cannot see a single ter region being in a cgr: 1) a
portion of ter is occluded, b) the end point of a bar
of Lss length cannot sweep all ter being inside cgr.
these reasons are called non-shadow and coverage con-
ditions. The visibility condition is satisfied when the
non-shadow and coverage conditions are satisfied.

Of course, the non-shadow and coverage conditions
must only be verified in polygons with reflex vertices.

Besides, if ter regions intersect, then the observer
must move to the intersection of the cgr regions asso-
ciated with the ter regions. In section V the motion
strategy to reach these cgr’s will be discussed in more
detail.

C.1 Non-shadow condition

The non-shadow condition can be characterized by
verifying whether or not some reflex vertex is inside a
ter. If a reflex vertex is inside a ter then there could
be a shadow.

If this is true then the only region where the whole
ter can be seen, is the region corresponding to the in-
tersection of the cgr’s associated to the vertices. If this
intersection exists then the whole ter can be guarded
by being in a single cgr and then the condition is satis-
fied. If the intersection of all the ter’s exists then the

2R ter1

ter2

Corner 2

cgr1

cgr2

Corner 1

Fig. 4. Non-shadow condition

boundary is a convex polygon. For simplicity when
this intersection exists it is also called cgr.

In the example shown in figure 4 the non-shadow
condition is not satisfied.

C.2 Coverage condition

For determining if the observer can guard a ter re-
gion being in an cgr region, it is necessary to know if
one end point of the bar of length Lss can sweep all
the ter region while the observer is inside cgr.

The shape of the region swept by the bar end point
must be computed. This shape corresponds to all the
possible configurations of the bar lying inside and on
the border of a specific cgr (the cgr is treated as a
closed set).

We call A(cgr|Lss) the region swept by the end
point of a bar of length Lss being inside a cgr.

A cgr could be the intersection of several single cgr
regions. In this case the intersection of the cgr regions
must cover the intersection of the ter regions associ-
ated to every cgr.

Without any lost of generality the intersection of
several cgr regions and the intersection of several ter
regions are treated as single ter and cgr for computing
A(cgr|Lss).

C.3 Computing A(cgr|lss)

The computation of A(cgr|Lss) is done using the
boundary of cgr.

A(b|Lss) is the area swept by one end point of the
bar of length lss that is rotating around while the other
end point is moved along the boundary of cgr. The
boundary of cgr is composed of line segments. Every
segment is processed independently. The area swept
by the bar along a segment is called A(s|Lss).

The computation of A(s|Lss) is done by drawing a
circle centered at each one of the 2 end points of the
segment with radius Lss (curve type 2) and 2 parallel
lines at Lss distance from the segment (curve type 1).
The lines are drawn on both sides of the segment and
are called plr and pll. The regions inside curve type 2
are called ct and cb A(s|Lss) is equal to the union of

cb

ct

Bar
end point

end point
Bar

segment
boundary

of cgr
end point

end point

pll plr

CT

CB

Bar

Fig. 5. Computing A(s/Lss)

the polygon defined by the end points of plr and pll
with regions ct and cb minus the intersection of ct and
cb (see figure 5). A(b|Lss) =

⋃
A(s|Lss)∀s∈b.

If cgr − A(b|Lss) = ∅ then A(cgr|Lss) = A(b|Lss)
(figure 6 b), else there is a hole inside A(b|Lss) and
there are two cases. When all the curves type 2 re-
lated to the vertices of the cgr intersect, the bound-
ary of the hole is composed by arcs of circle. This
hole region is the intersection of all the curves type
2. In this case A(cgr|Lss) = A(b|Lss) as well (figure
6 c). However, if this hole is composed by straight
line segments then A(cgr|Lss) = A(b|Lss)

⋃
cgr thus

this hole will disappear (figure 6 a). This method of
computing A(cgr|Lss) only works for convex polygons
and every cgr is a convex polygon. The coverage con-
dition is satisfied if ter ⊆ A(cgr|Lss). This condition



A)

B)

C)

Fig. 6. Computing A(cgr|Lss)

is equivalent to the covering set concept used in topo-
logy, for more details see [6].

V. The Motion Strategy

The motion strategy is as follows. The observer is
required not to start target pursuit in an escapable
cell. The observer must move if the target appears
in any sensing at distance different from Lss. In this
case, it must move to a position at distance Lss form
the current target sensing (previous target position).
If the target is inside a ter region the observer must
move to the corresponding cgr.

At all times the observer must move to a position
that respects the sensor range. In the free space, there
may be many positions that satisfy such a constraint.
Given that the target motion is unpredictable and that
we assume that moving the shortest distance is opti-
mal, the best strategy is the one that moves the ob-
server as little as possible. This implies a movement
in the direction of the bar (toward or away from the
target) because the minimum distance between two
points is a straight line segment. We call this combi-
nation of bar rotation around the observer and trans-
lation to maintain Lss, the reactive motion rm.

If a reactive motion rm would cause the bar to
collide, the observer can rotate the minimum angle
around the target that makes the bar be in a collision
free configuration. In those cases the bar will show a
compliance motion (keeping the bar in contact with
the obstacles) [4]. The above strategy is optimal in
the minimum distance traveled.

If a reactive motion rm would cause the bar to be in
an escapable cell the observer must rotate around the
target to keep the bar configuration in a non escapable
cell.

The observer must never cause the bar configuration
to be in a escapable cell. This can be accomplished by
moving the observer at the minimum distance possible
Lmin + r from the target and going to a position at
Lss distance from the target.

If there is not delay between the target and ob-
server motions, the observer must avoid that the tar-
get brings the bar to an escapable cell exactly at the
moment when target is crossing a critical curve [10].

If delay exists, the observer does not have infor-
mation about the target position continuously. In
this case, critical curves defined at distance Lss and
Lim+r from the obstacles are used to determine when
the observer must avoid that the target brings the bar
to an escapable configuration. The region between
these two families of critical curves are used as triggers
to start observer motions. The regions between the
critical curves can be seen as a “thick curve” where it is
certain that, even with delay, the target will be sensed.
If the target is inside this region (“thick curve”), it in-
dicates the observer to start the rotation before it is
too late.

Figure 7 shows an environment with two reflex ver-
tices (black lines). The boundaries of ter’s are the arcs
of circle in blue, dashed lines show the cgr regions, red
lines indicate the critical curves at Lmin + r distance
and green lines indicates the critical curves at Lss dis-
tance. The red dot indicates the target and the blue
dots the observer. A bar of Lmin + r length is indi-
cated in yellow, this shows the observer in motion –
not in steady state. If the target is inside the trigger
between region R1 and R3 and the bar is about to be
in configuration (R3, E2, E1) then the observer must
rotate around the target to bring the bar to configu-
ration (R3, E1, E2). In this environment the traveling
condition is satisfied, since the graph after elimination
of escapable cells, contains all the region in the xy-
plane.

A. No determinable motion for a single pursuer

Because of the delay, there are situations where the
observer is not able to determine a motion that guaran-
tees to have the target within range, this is the fourth
condition for the existence of a motion strategy.

If two or more ter’s intersect and the intersection
between cgr’s regions does not exist, the observer is
not able to make a decision that ensures target visibil-
ity. The observer can move only to one of the cgr’s and
the target can move to the ter region that is guarded
by the other cgr (see figure 8). Note that in this case
the non-shadow condition is satisfied for both single
cgr’s. If regions inside the two families of curves (trig-
gers) corresponding to two or more different escapable
cells intersect, it means that the target can bring the
bar to two or more different escapable cells. If there is
not a bar configuration that can keep the bar outside
all escapable cells then there is not a solution. The
observer can only choose one of them and the target
can bring the bar to other.
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In these situations more than a single observer is re-
quired to guarantee target visibility. If this condition
occurs there does not exist a motion strategy that en-
sures target visibility.

VI. Conclusions

This work proposes an approach to solve the tar-
get tracking problem. The target is assumed to move
unpredictably and the distribution of obstacles in the
workspace is known in advance.

The approach consists in partitioning the config-

uration space and the workspace in non-critical

regions separated by critical curves.
The method can determine the existence a solution

for this problem. If a solution does exist, a motion
strategy that maintains target visibility is proposed.

We conclude that if all the conditions are satisfied
and the observer moves (at time tn) to a location at
Lss distance from the previous target position (at time
tn−1), never getting closer than Lmin + r from this
position, then it is impossible for the target to get
outside the observer range.

In this work, it is assumed that the observer speed
is infinite. This assumption was done to simplify the
analysis, and to better understand the problem. Fu-
ture work will consist in proposing a solution where
the observer’s speed is bounded.

References

[1] J. Bañon, Implementation and Extension of the Ladder
Algorithm In Proc IEEE Int. Conf. on Robotics and Au-
tomation, 1990.
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