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Abstract -This paper presents perceptual functions
used to build o scene description from sensory data acqui-
red in a natural environment. A mobile robot which must
ezecute motions on such environments needs geometrical
representations (ground surface,...). This knowledge can
be irproved by using additional information, such as color
and texture. From every acquisition our modelling method
builds a scene model in which (1) o hybrid segmentation
algorithm provides a synthetic image description in terms
of regions, and (2) each region is characterized and after-
wards identified to obtain its nature (grass, rocks ...) by
the use of probabilistic methods. By using the model of the
environment presented here, robot visual navigation is pro-
posed based on landmark selection.

Keywords -Vision, Segmentation, Color, Tezture, 8D,
Classification, Robot Visual Navigation.

1 Introduction

This paper concerns the perception functions required
by a mobile robot which must execute motions in out-
door environments. The classical methods proposed
for such an application are basically focused on the
3-D information obtained from a laser ranger finder
or a stereoscopic system [3, 6]. However, depth infor-
mation is not enough to get a complete environment
description. Other information given by an intensity
or a color image allows to identify the nature of the
elements found in the scene. This paper describes the
functions required to provide such a scene description
from 2D and 3D sensory data.

Our approach consists in the following steps execu-
ted in sequence:

e region extraction: first, the available images are

segmented to obtain the main regions of the scene,

e region characterization: each region is characte-
rized by a vector of 2D or 3D attributes,

o region identification: probabilistic methods are
used and compared to determine the nature of
each region, in order to identify the elements per-
ceived in the environment.

This approach is applicable to different types of at-
tributes (2-D or 3-D) and environments. In spite of
classical statistical methods have been used, they are
used in an innovate manner.

For several reasons, it is better to perform the in-
terpretation of the scene in different steps by using
different attributes in each one. Image regions cor-
responding to areas of the environment close to the
sensors (in our robot, up to 5 meters) can be analy-
zed by using 3D and luminance attributes., In these
areas the stereo-vision gives a valid information. The
segmentation performed from 3D attributes delimits
the regions where the 3D information is valid. Re-
gions corresponding to areas far away from the sensor
(beyond 5 meters) will be analyzed by using only the
color and the texture attributes given that 3D infor-
mation is not available or too noisy. For these areas,
since color is a point-wise property of images and the
texture involves a notion of spatial extent (a single
point has no texture), the color segmentation usual-
ly gives a better compromise between the precision of
region borders and the speed of computation than the
texture segmentation; consequently, we decided to use
the color instead of the texture to achieve the segmen-
tation step. In order to obtain a robust color segmen-
tation a neighborhood around points can be used in



color too (2x2 or 4x4 pixels), but it can be significant
smaller than that for texture.

Having done the segmentation, both texture and
color features are used to characterize and to identify
the image regions. In this step, texture is taken into
account in order to profit from its power of discrimi-
nation. The texture and color features are associated
globally with the regions provided by the segmenta-
tion step on 3D or color images; this strategy general-
ly gives a more discriminative information than these
same features calculated from an arbitrary division of
the image.

Moreover, we profit by the cooperation between the
segmentation and classification steps, so that the re-
sult of the first step can be checked by the second
one and, if necessary corrected. Over-segmentation
is corrected by classification, identification errors can
be corrected by using contextual information of the
environment.

The texture attributes are based on histogram ana-
lysis. The histograms change gradually in function
of the view point, the distance from the sensor to
the scene and the occlusions [14]. This characteris-
tic is interesting in the field of mobile robotics where
such situations happen. Given thus, if the acquisi-
tion conditions are rather stable (especially constant
illumination), the number of data samples required to
represent different elements that we want to identify
can be reduced.

2 The segmentation method

Qur segmentation algorithm is a combination of two
techniques: the characteristic feature, thresholding or
clustering, and the region growing. The method does
the grouping in the spatial domain of square cells.
Those are associated with the same label defined in an
attribute space {i.e. color space). The advantage of
this hybrid method is that it allows to achieve the pro-
cess of growing independently of the beginning point
and the scanning order of the adjacent square cells.

The division of the image into square cells provides
a first arbitrary partition (an attribute vector is com-
puted for each cell). Several classes are defined by the
analysis of the attribute histograms, which brings the
partition into the attribute space. Thus each square
cell in the image is associated with a class. The fusion
of the square cells belonging to the same class is done
by using an adjacency graph (adjacency-4). Finally,
the regions which are smaller than a given threshold
are integrated into an adjacent region.

In previous works the classes were defined by de-
tecting the principal peaks and valleys in the histo-
gram [4]. Generally, it is possible to assume that the
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bottom of a valley between two peaks can define the
separation between two classes. However, for complex
pictures, it is often difficult to detect the bottom of
the valley precisely. Several problems prevent us from
determining the correct value of separation: the attri-
bute histograms are noisy, the valley is often flat and
broad or the peaks are extremely unequal in height.
Some methods have been proposed in order to over-
come these difficulties [8]. However, these techniques
require considerably tedious and sometimes unstable
calculations. We have adapted the method suggested
by Otsu (7], which determines an optimal criterion of
class separation by the use of statistical analysis. This
approach maximizes a measure of class separability.
It is quite efficient when the number of thresholds is
small (3 or 4). But when the number of classes in-
crease the selected threshold usually become less re-
liable. Since we use different attributes to define a
class, the above problem is avoided. In his method,
Otsu deals only with a part of the class determination
problem. It determines only the thresholds correspon-
ding to the separation for a given number of classes.
Our contributions are:

e the partition of the attribute space which gives
the best number n* of classes, where n* €
[2,...,N].

o the integration of this automatic class separation
method in a segmentation algorithm thanks to a
combination with the region growing technique.

For each attribute, A* is the criterion determining
the best number n* of classes. A\* must maximize A,
k€ [25: 0 :N]
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is the intraclass variance defined by:

Lm denote the mean of the level ¢ of the class m,
Wy, the class probability and p(;y the probability of the
level ¢ of the histogram.
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The normalized histogram is considered to be a pro-
bability distribution: n; is the number of samples for
a given level and Np is the total number of samples.
A class m is delimited by two values (the inferior and
superior limits) corresponding to two levels in the his-
togram.

The automatic class separation method was applied
to the two histograms shown in figure 1: in both cases
the class division was tested for two and three classes.
For the first histogram, the value A\* corresponds to a
division into two classes; the threshold is placed in the
valley bottom between the two peaks. In the second
histogram, the optimal A* corresponds to a division
into three classes.
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Figure 1: Threshold Localization

2.1 The 3D image segmentation

This segmentation algorithm can be applied to images
of range, by the use of 3D attributes (height and nor-
mals). On our LAMA robot, the 3D image is provi-
ded by a stereo-vision algorithm [3]: height and nor-
mals are computed for each point in the 3D image.
The height correspond to the distances from the 3-D
points of the object, with respect to the plane which
approximates the ground area from which this object
is emerging. The normals (# and ¢) are computed in
a spherical coordinate system [1]. Height and normals
are coded in 256 levels.

Comparing with the method we developed pre-
viously [1], this one is more generic (we can add as
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many attributes as it is required) and less dependent
on the parameter selection. The normal is not always
the best attribute. Height is generally good enough
for obtaining an acceptable 3D segmentation.

2.2 The color image segmentation

A color image is usually described by the distribu-
tion of the three color components R (red), G (green)
and B (blue), moreover many other attributes can al-
so be calculated from these components. Two goals
are generally pursued: first the selection of uncorre-
lated color features [8, 14], and secondly the selec-
tion of attributes which are independent of intensi-
ty changes, especially in outdoor environments where
the light conditions are not controlled [11]. Howe-
ver, some previous methods depend greatly on inten-
sity features [5]. Several color representations have
been tested: R.G.B., r.g.b. (normalized components
of R.G.B.), Y.E.S. defined by the SMPTE (Society
of Motion Pictures and Television Engineers), H.S.I.
(Hue, Saturation and Intensity) and I, I, I, color
features derived from the Karhunen-Logve (KL) trans-
formation of RGB. The results of segmentation obtai-
ned by using each color space have been compared.
Good results with only chrominance attributes depend
on the type of images. Chromimance effects are redu-
ced in images with low saturation. For this reason, the
intensity component is kept in the segmentation step.
Over-segmentation errors can occur due to the pre-
sence of strong illumination variations (i.e. shadows).
However, over-segmentation is better than the loss of a
border between classes. The over-segmentation errors
will be easily detected and fixed during the identifica-
tion step.

Finally, the best color segmentation was obtai-
ned by using the I, ls, I3 space, defined as [5, 14):
I = BG+8 [, = (R-B), I = 26==8  The com-
ponents of this space are uncorrelated, so statistically
it is the best way for detecting color variations. The
number of no homogeneous regions (sub-segmentation
problems) is very small (2% ); a good tradeoff between
fewer regions and the absence of sub-segmentation has
been obtained, even in the case of complex images.

3 The identification method

The nature of the elements in the scene is estimated
by comparing their attribute vectors (computed from
the 3D features, color and texture features) with a
database composed by different, classes, issued from a
learning step executed off line.

This database is a function of a certain type of en-
vironment and it is obtained by a supervised learning



process. Here, we have selected 4 generic classes, whi-
ch correspond to the 4 principal elements of our envi-
ronment: grass, sky, tree and rock.

3.1 The region characterization

Image regions corresponding to areas of the environ-
ment close to the sensor can be characterized with
the 3D and the intensity attributes. Image regions
corresponding to areas far away from the sensor are
characterized by using only the color and the texture
attributes. Up to now, the color attributes have not
been used for the closer regions, because our stereo
system is composed of black and white cameras; ano-
ther one composed of color cameras is under test and
will be mounted on the robot as soon as possible.

The region scene, where the 3D information is va-
lid, is delimited by the 3D segmentation. Figure 3(a)
shows an example. The border is marked with a bold
line. Intensity attributes to a region issued from the
3D image segmentation, are taken from the corres-
ponding 2D region in the left image acquired from the
stereo system.

The texture operators are based on the sum and
difference histograms [15]. This texture measurement
is an alternative to the usual co-occurrence matrices.
The sum and difference histograms used conjointly are
nearly as powerful as co-occurrence matrices for tex-
ture discrimination. Moreover, it requires less com-
putation time and memory storage than the classical
spatial gray level dependence method.

If m is the number of points belonging to a region,
the normalized sum and difference histograms are de-
fined:

Hali) = Card!ii{;!m,y)l Ha(j) = Card(j€14(z,y))
HS(i) € [O! 1} Hd(j) € [01 1]
Texture Feature Equation
Mean u = %Ei‘Ps(;')
Variance Q-2 P:(s) + 237 Fagi))
1 3
Energy ; Pf(].) . Z Pj(j)
k3
Entropy — 2 Pagi) - log Pai) —JZ Fagy - 1og Pagy)
Contrast : DIt P;(f)
Homogeneity l—ig Z “Pagi)
j

Table 1: Texture Features computed from the sum
and difference histograms

The relative displacement (éz,dy) must be chosen
in such a manner that the computed texture attributes
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allow to discriminate the interesting classes. For our
problem we have chosen: dz = dy = 1.

Histograms provide a probabilistic characterization
of the spatial organization in a region, based on neigh-
borhood analysis. Statistical information can be ex-
tracted from these histograms. Six texture features,
defined in Table 1, are computed from the sum and
difference histograms.

When the color information is available, in addition
to these texture features the statistical means of I» and
I3 are used to characterize the color in a region. In
order to reduce the dependency of intensity changes
in the identification step, the intensity component has
been dropped out.

3.2 The region classification

Two classification techniques have been compared:
the Bayesian classification and an hierarchical one, ba-
sed on the concept of the average mutual information,
which generates an efficient partitioning tree.

3.2.1 The Bayesian classifier

This classical probabilistic approach is based on the
Bayesian rule defined as [2]:

P(X | C;)P(Cy)

P(C; | X) = " P(X [C)P(C))

As an equal e priori probability is assumed, the
computation of a pesteriori probability P(C; | X) can
be simplified and its value depends only on P(X | Cj).
The value of P(X | C;) is estimated by using the k-
nearest neighbor method. The observation X will be
assigned to the class C; so that the sample which is the
k — th nearest neighbor to X, is closest to X than to
any other training class. The Bayesian classification
does not perform a feature selection, the whole vector
of previously defined attributes has to be computed
for each sample; nevertheless, in order to reduce the
computational running time of both classification and
characterization steps, a data analysis is performed off
line to decrease the dimension of the attribute space.
This data analysis is composed of two steps, Analysis
of capacity of discrimination and analysis of correla-
tion the first one is done by using the Fisher’s criterion
and the second one is based on PCA.

The acknowledge of the discrimination power for
each feature (computed from the Fisher criterion), the
variance of the samples over the axis and the correla-
tion among them (computed from the PCA) allows
us to select theses ones having the greatest discrimi-
nation power and uncorrelated. We had decided to
use the pertinent subset of original features instead



of their linear combination, given that these last ones
force the computation of several original features per
factorial axis. Additionally to employ linear combina-
tion of original features does not have interest, since
the k-nearest neighbor method is used to estimate
P(X | Cy).

The features chosen were: Entropy, Homogeneity,
12, 13, and Mean. These features have the greatest
discrimination capacity. Entropy, Homogeneity and
I; are correlated among them, however these ones had
been conserved because it have maximal dispersion
and appropriate discrimination capacity.

3.2.2 The Hierarchical classifier

The second classification method is based on an algo-
rithm for the partitioning of the feature space (see [13]
for more details). This algorithm determines the num-
ber of hyper-planes (parallels to feature axes), the as-
sociated features and their order so as to divide the
feature space. This algorithm has inherent feature se-
lection capability. The algorithm gives rise to a local-
ly optimal decision tree by maximizing the amount of
average mutual information gained at each partitio-
ning step. The average mutual information obtained
about a set of classes C, from the observation of an
event Xy, at a node k in a tree T is defined as:
P(Ci | Xxj)

(G Xi) = 323 P(Chs Xog) o [ )

Event X} represents the measurement value of a
feature selected at node k and has two possible out-
comes; measurement values are greater or smaller than
a threshold associated with that feature at that node.

In addition to the partitioning of the feature space,
identification security areas have been associated with
each partition. The statistical means and standard
deviations of each feature conserved at each terminal
node are computed using only the training subset, w-
hich defines the partition concerned. For the attribute
7, these areas are determined by:

5 i i Cca‘ic(j) .
Li = 8 e — T Q
nf(3) = 1 (4) T jcy

. v o Cebg(d )
Lsup(F) = . (5) + Cetnld) P JC

Vg

where Linf(j) and L,.,(j) are the inferior and su-
perior limits of the area, ¢ (j) is the standard devia-
tion, 7k (j) is the statistical means, () is the feature
subset in the terminal node k, C. is the confidence co-
efficients and ny, is the number of samples in the parti-
tion k. Thus, the local distribution of the training set
into each partition is also taken into account. Areas of
the feature space that are outside the confidence bor-
ders can be interpreted as regions of non-classification.
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3.3 Fusion of regions and coherence of
the model

At this step of the process, each region given by the
segmentation step has been associated with a class.
Some drawbacks of the segmentation can be corrected
now: the segmentation provides large regions, that
do not always correspond to the real borders between
classes; the area corresponding to the same class is
often over-segmented. Consequently, a fusion step is
necessary in order to merge adjacent regions belonging
to the same class.

By the use of some contextual characteristics of
the environment the model consistency can be tes-
ted; possible errors in the identification process could
be detected and corrected by using simple contextual
rules (example: “grass cannot be surrounded by sky
regions”).

4 Robot visual navigation based on
landmarks

This approach has been applied to several tasks in
the context of mobile robotics. First, a partial imple-
mentation was used to select an appropriate landmark
in function of its nature and shape (2-D) [4]. Then,
the nature and the 3D representation of the objects
present in the scene allow the construction of a com-
plete and global model of the environment, which will
be updated during the robot motion. Some objects
in this map can be used to localize the robot. Some
of the developments presented here are used for this
purpose in the case of planetary environment [9].

We are currently investigating visual robot naviga-
tion based on landmark identification. To navigate
during a long robot motion, a sequence of different
landmarks (or targets) is used as sub-goal that the ro-
bot must successively reach. The landmark change is
automatic. It is based on the nature of the landmark
the distance between the robot and the landmark w-
hich represents the current sub-goal. When the robot
attains the current landmark (or, more precisely, when
the current landmark is close to the limit of the came-
ra field of view), another one is dynamically selected
in order to control the next motion.

The selection of the target (as a sub-goal) is linked
to the landmark definition. A landmark should be a
single discriminant structure or a discriminant confi-
guration of features. The landmark should have some
properties that distinguish them from other objects:
Discrimination a landmark should be easy to diffe-
rentiate from other surrounding objects. Accuracy a
landmark must be useful to reduce the uncertainty of
the robot position. In our case landmarks are selec-



ted between unstructured objects, mainly rocks on the
ground. An object is selected as landmark if: It is not
occluded by another object or by the image contour
and its topmost point is the most accurate.

5 Experimental results

The construction of the model of the scene (segmen-
tation, region characterization and identification) is
done in about 2.5 seconds on SPARC 20. The results
of the identification by using 2-D features were as fol-
lows: the database was generated from 60 images, the
segmentation on these images provided 418 regions,
these regions were employed as the training set. The
identification was performed over 30 images, none of
which were included in the training set. The hierar-
chical classifier gives 92 % of successful regions classi-
fication and the Bayesian classification 89 %.

The hierarchical classifier gives somewhat better re-
sults than the Bayesian classification. However, as the
number of terminals is larger than the number of ac-
tual classes, the classification time and memory space
requirements are larger than for the Bayesian classi-
fication. By using a reduced space of attributes, the
Bayesian classification gives a better compromise bet-
ween computational running time and correct identi-
fication than the hierarchical classifier.

Figure 2 show images corresponding to natural en-
vironment. The segmented and classified image is pre-
sented in 2 (e), 2 (f), 2 (g), 2 (h), Figures 2 (a),
2 (b), 2 (d) show objects (trees, rocks ...) which are
far from the sensor. In this case, a laser ranger finder
or a stereoscopic system cannot give a valid 3D infor-
mation and so a 3D model cannot be directly built,
unlike video camera, which can give valid texture and
color information to build a 2-D model. This model
can be used in order to give to the robot a goal (di-
rection) corresponding to a landmark of a requested
class and 2-D shape.

In order to show the approach’s capability to work
in different environmental conditions, the images were
taken in different light conditions and the sensor was
placed at different distances from the elements in the
scenes.

Figures 2 (d) shows a new class (road of soil). This
one was included in the data base. The objective is
to present the possibility to increase the number of
classes.

This method had been also tested over more than
100 scenes closed to the sensor. The attributes em-
ployed to characterize the elements were the texture
features presented in § 3.1 and the statistical mean
and the standard deviation of the height from the 3D
points of the element. The figure 3 shows some re-
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sults. Figures 3 {(a), 3 (e) and 3 (i) show the video
image. The segmentation is indicated by using lines
on the image. Figures 3 (b), 3 (f) and 3 (j) present
the height image. White pixels correspond to non cor-
related points (too distant 3D points, regions with low
texture or occlusions). Figures 3 (¢), 3 (g) and 3
(k) show the classified and merged images. Non corre-
lated points are detected, these ones labeled in black.
Figures 3 (d), 3 (h) and 3 (1) show the 3D images.

5.1 Experiments of robot visual navi-
gation based on landmarks

We illustrate this task with a experiment carried out
with the mobile robot LAMA. The figure 4 (a) shows
the video image, figure (b) presents the 3-D image
and the figure (c) shows the 3-D image segmentation,
classification and boundary box including the selected
landmark. The selection was done taking into account
3-D shape and nature.

The second line of figure 4 represent the tracking
of a landmark through an image sequence. The land-
mark is marked on the picture with a little bounda-
ry box. The tracking process is performed based on
a comparison between a model of the landmark and
the image. In [4] is described in detail the tracking
technique used. When the landmark position is close
to the image edge, then it is necessary to select ano-
ther landmark. So the figure 4 III presents the new
landmark selection based on image segmentation and
classification. The next sequence of tracking is shows
on the line IV of figure 4 and the next landmark com-
mutation is presents on line V. Finally on the line VI
the robot continue navigation task.

6 Discussion and future work

Given that the identification step is based on supervi-
sed learning process, its good performance depends on
the utilization of a database representative enough of
the environment. However if the robot navigates just
in a single type of environment (i.e terrestrial or pla-
netary terrains), this limit is not a big deal because a
specific environment can be represented by a reduced
number of classes. If different types of environment
are considered, it can be possible to solve the problem
by a hierarchical approach: a first step could identify
the environment type (i.e. whether the image shows
a forest, a desert or an urban zone) and the second
one the elements in the scene. The first step has been
considered in recent papers [10]: these approaches are
not able to identify the elements in the scene but the
whole image like an entity. After having obtained the
scene type, our identification method could be used
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Figure 3: Identification using 2D and 3D attributes

to realize the second step. In this case a database
organized in function of the types of environment is
suitable. It allows to reduce the number of classes,
then decreasing the complexity of the problem (i.e. in
lunar environment the tree class is not looked for, but
the depression class “holes” is). Additionally it is ea-
sier to profit from contextual information when the
environment type is known. We propose this strategy
as a first perspective.
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