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Abstract This paper considers the problem of globally optimal navigation with re-
spect to Euclidean distance for disc-shaped, differential-drive robot placed into an
unknown, simply connected polygonal region. The robot is unable to build precise
geometric maps of the environment. Most of the robot’s information comes from
a gap sensor, which indicates depth discontinuities and allows the robot to move
toward them. A motion strategy is presented that optimally navigates the robot to
any landmark in the region. Optimality is proved and the method is illustrated in
simulation.

1 Introduction

If a point robot is placed into a given polygonal region, thencomputing shortest
paths is straightforward. The most common approach is to compute a visibility
graph that includes only bitangent edges, which is accomplished inO(n2 lgn) time
by a radial sweeping algorithm [4] (an(nlgn+m) algorithm also exists, in whichm
is the number of bitangents [7]). An alternative is thecontinuous Dijkstra method,
which combinatorially propagates a wavefront through the region and determines
the shortest path inO(nlgn) time. Numerous problem variations exist. Comput-
ing shortest paths in three-dimensional polyhedral regions is NP-hard [1]. Allowing
costs to vary over regions considerably complicates the problem [14, 16]. See [6, 13]
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Fig. 1 a) The optimal path for a point robot, b) The optimal path for adisc robot, c) The gap
sensor (attached at the small solid disc on the robot boundary) detects the sequence of gapsG =
[gR

1 ,g
L
2,g

L
3,g

R
4 ,g

L
5], in whichgR

1 andgR
4 are near-to-far gaps andgL

2, gL
3, andgL

5 are far-to-near gaps.

for surveys of shortest path algorithms. For recent effortson curved obstacles, see
[2].

The approaches described thus far address a point robot, which is unrealistic in
most practical settings. It is therefore interesting to study the case of a disc robot,
which could correspond, for example, to a Roomba platform. Various objective
functions are possible; we choose to optimize the distance traveled by the center of
the robot. Once the robot has nontrivial dimensions, the problem can be expressed
in terms of configuration space obstacles. Solutions are presented in [3, 11].

Now suppose that the map of the environment is not given to therobot. It must
use its sensors to explore and map the environment to developnavigation strategies.
Given strong sensors and good odometry, standard SLAM approaches [5, 17] could
be applied to obtain a map that can be used as input to the previously mentioned
methods. However, we do not allow the robot to localize itself with respect to a
global reference frame or to build a geometric map. Instead, it observes the world
using mainly agap sensor, introduced in [18], which allows it to determine the
directions of discontinuities in depth (distance to the boundary) and move toward
any one of those directions. Under this model, but for a pointrobot, a combinatorial
filter called the Gap Navigation Tree (GNT) was introduced that encodes precisely
the part of the shortest-path visibility graph that is needed for optimal navigation
[18]. The learned data structure corresponds exactly to theshortest path tree [6]
from the robot’s location. This enables the robot to navigate to any previously seen
landmark by following the distance-optimal path, even though it cannot directly
measure distances. The GNT was extended and applied to exploration in [15]. The
GNT was extended to point cloud models in [8]. A larger familyof gap sensors is
described in [10].

The case of a disc robot is important because real robots havenonzero width.
Unfortunately, the problem is considerably more challenging because without ad-
ditional sensing information, the robot could accidentally strike obstacles that poke
into its swept region as it moves along a bitangent. See Figure 1 (a) and (b). The
robot must instead execute detours from the bitangent. Sensing, characterizing, and
optimally navigating around these obstructions is the maindifficulty of this paper.
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Before proceeding to the detailed model and motion strategy, several points are
important to keep in mind:

1. The robot is placed into an environment, but it is not giventhe obstacle locations
or its own location and orientation. Robotobservesthis information over local
reference frames. The purpose is to show how optimal navigation is surprisingly
possible without ordinary SLAM.

2. The robot first learns the GNT by executing a learning phase, which is described
in [9, 18], and needs just minor changes to be used by disc-shaped robots. The
process involves iteratively chasing “unknown” gaps, causing each to split or
disappear. Eventually, only primitive gaps, which were formed by appearances
of gaps (due to inflection ray crossings), and gaps formed by merging primitives
remain. This corresponds to learning the entire shortest-path graph.

3. A simple navigation strategy is provided that guides the robot to any landmark
placed in the environment by using the learned GNT. We give precise conditions
under which the motions are optimal and prove this statement.

4. We believe that even when the optimality conditions are not met, the strategy
itself is close to optimal. Therefore, it may be useful in many practical settings
to efficiently navigate robots with simple sensor feedback.

Section 2 formally describes the robot model and the sensor-based motion prim-
itives. Section 3 introduces an automaton that characterizes all possible sequences
of motion primitives that could occur when executing optimal motions to a land-
mark. Section 4 describes how obstacle blockages are detected and handled when
the robot chases a gap. This includes detours (that is, the modification of the path
encoded in the GNT for a point robot) needed to achieve optimal navigation. Section
6 argues the optimality of the motion strategy. Section 7 presents an implementation
in simulation, and Section 8 concludes the paper.

2 Problem statement

The robot is modeled as a disc with radiusr moving in an unknown environment,
which could be any compact setE ⊂ R

2 for which the interior ofE is simply con-
nected and the boundary,∂E, of E is a polygon. Furthermore, it assumed that the
collision-free subset of the robot’s configuration spaceC is connected. C-space ob-
stacle corresponds to that of a translating disc, that is, the extended boundary ofE
which is due to the robot radius1.

1 Note that this is the configuration space for a translating disc rather than for a rigid body because
of rotational symmetry.
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2.1 Sensing capabilities

1) Gap sensor:The robot has an omnidirectional gap sensor [10, 18], which is able
to detect and track two types of discontinuities in depth information: discontinuities
from far to near and discontinuities from near to far (in the counterclockwise direc-
tion along∂E). Figure 1(c) shows a robot in an environment in which the gapsensor
detects some near-to-far and far-to-near gaps.

Let G= [gt
1, ...,g

t
k] denote the circular sequence of gaps observed by the sensor.

Using this notation,t represents the discontinuity type, in whicht = R means a
discontinuity from near to far (the hidden portion is the right) andt = L means a
discontinuity from far to near (the hidden portion is to the left). For example, the
gap sensor in Figure 1(c) detects gaps of different types:G= [gR

1,g
L
2,g

L
3,g

R
4,g

L
5].

We place the gap sensor on the robot boundary and define motionprimitives that
send the robot on collision-free trajectories that possibly contact the obstacles (mov-
ing along the boundary of the free subset of the configurationspace is necessary for
most optimal paths). These motion primitives, described indetail in Section 2.2,
allow the robot to rotate itself so that it is aligned to move the gap sensor directly
toward a desired gap, move forward while chasing a gap, and follow ∂E while the
sensor is aligned to a gap.

Imagine that a differential drive robot is used. It is assumed that the gap sensor
can be moved to two different fixed positions on the robot boundary: The extremal
left and right sides with respect to the forward wheel direction. One way to imple-
ment this is with a turret that allows the robot to move the gapsensor from its right
side to its left side and vice versa. Figure 3(c) shows the sensor aligned to a near-to-
far gap in which the gap sensor is on the right side of the robot. To align the sensor
to a far-to-near gap, the robot moves the gap sensor to the left side of the robot.

Finally, letΛ be a static disc-shaped landmark inE with the same radius as the
robot. A landmarkΛ is said to berecognizedif the landmark is visible at least par-
tially from the location of the gap sensor. Furthermore, during the exploration phase,
if required, the landmark can be reached (hence, the complete landmark would be
visible from the location of the gap sensor), by traveling along optimal detours.
2) Side sensors:To detect obstacles that obstruct the robot while it chases agap,
our algorithms need to measure distances between the extremal left and right side
robot’s points along the direction of the robot heading (forward) and the obstacles.
Let those particular robot points be left side pointl p and right side pointrp. The
particular direction tangent to the robot boundary atrp is calledrt . The particular
direction tangent to the robot boundary atl p is calledlt (See Figure 2(a)). Thus, we
assume that the omnidirectional sensor is able tomeasuredistance. Note that based
on distance the discontinuities can be detected. LetdR be the distance betweenrp
and the obstacles at the particular directionrt , anddL be the distance betweenl p
and the obstacles at the particular directionlt (see Figure 2(b)).

If the particular direction, eitherrt or lt , is pointing to a reflex vertex (a gap is
aligned with this direction), then a discontinuity in the sensor reading at this direc-
tion occurs. LetdR

t denotes the distance fromrp to the closer point on∂E along
the discontinuity direction. Similarly,dL

t denotes the distance froml p. See Figure
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2(c). For avoiding blockages toward the vertex that generates a gap to be chased,
the robot rotates. There are two types of rotation: clockwise and counterclockwise.
A clockwise rotation can be executed either with respect torp or a rotation in place
(w.r.t. the robot center). Symmetrically, a robot counterclock wise rotation can be
executed either with respect tol p or a rotation in place (w.r.t. the robot center). Fi-
nally, let du be the distance between the omnidirectional sensor and the vertexui

that originated the gapgi (in Figure 2(d)gi = gR
0).

Our motion strategy will require only comparisons of distances to determine
which is larger, rather than needing precise distance measurements. Any small error
in the comparison (if the distances are close) causes only a small deviation from
optimality, which may be relatively harmless in practice. Our approach will further-
more require detecting whether the robot is contacting∂E at rp or l p to enable
wall-following motions.

Distance measurements between the obstacles andl p andrp in directionsrt and
lt (forward), and the information of whether the robot is touching ∂E at rp or l p,
can be obtained with different sensor configurations. For example, it is possible to
use two laser pointers and two contact sensors, each of them located atrp and l p.
However, to use a smaller number of sensors and facilitate the instrumentation of the
robotic system, it is possible to emulate both the contact sensors and one of the laser
pointers, using the omnidirectional sensor. The omnidirectional sensor reading in
the particular forward robot heading direction emulate thelaser pointer reading. An
omnidirectional sensor can also be used to determine whether the robot is touching
∂E at rp or l p. The sensor readings at directions perpendicular to the robot heading
are used in this case. If the robot is touching∂E at the point at which the omnidirec-
tional sensor is located, then the sensor reading is zero. Ifrobot is touching∂E at the
point diametrically opposed to the omnidirectional sensor, then the sensor reading
will correspond to the robot diameter (see Figure 2(e)). Thus, one option is to have
the robot equipped with an omnidirectional sensor and a laser pointer; they will be
located atl p andrp. Recall that a turret can be used to swap the locations of the
laser pointer and the omnidirectional sensor to avoid unnecessary robot rotations in
place. The gaps or landmarks are always chased with the omnidirectional sensor;
the laser pointer is used to detect obstacles and to correctly align the robot.

2.2 Motion primitives

The robot navigates using a sequence of motion primitives that are generated by an
automaton for which state transitions are induced by sensorfeedback alone. To nav-
igate a gap (or equivalent the vertex that generates it) or a landmark is given to the
robot as goal. There are five motion primitives (see Figure 3). Let the angular veloc-
ity of the right and left wheels bewr andwl , respectively, withwr ,wl ∈ {−1,0,1}.

Thus, the motion primitives are generated by the following controls:

• Clockwise rotation in place:wr =−1,wl = 1.
• Counterclockwise rotation in place:wr = 1,wl =−1.
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Fig. 2 Side Sensors: (a) Pointsrp and l p, and directionsrt and lt , (b) dL anddR, (c) dL
t , (d) du,

(e) Omnidirectional sensor readings for contact detection.
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Fig. 3 The motion primitives: (a) Clockwise rotation in place, (b)Counterclockwise rotation in
place, (c) Straight line motion, (d) Clockwise rotation w.r.t. to point rp, (e) Counterclockwise
rotation w.r.t. to pointl p.

• Clockwise rotation w.r.t. to pointrp: wr = 0,wl = 1.
• Counterclockwise rotation w.r.t. to pointl p: wr = 1,wl = 0
• Forward straight line motion:wr = 1,wl = 1.

The rotation primitives are used to alignrt or lt to a specific gap (or landmark).
Oncert or lt is aligned to a gap, the robot moves in a straight line to chasethe gap. If
the path to the chosen gap is blocked, then the robot executesa detour by choosing
a new vertex as a subgoal. More details are given in Sections 3and 4.

3 The movement automaton

The algorithm for generating optimal navigation motions can be nicely captured by
an automaton or (Moore) finite state machineM. See Figure 4. Every state corre-
sponds to the selection and execution of a motion primitive on the robot or it is a
decision. Each state transition is triggered by a sensor observation change. There
are 21 total states, with clear right/left symmetry. The tenupper states in Figure 4
correspond to near-to-far gaps (theR cases) and the ten lower states correspond to
far-to-near gaps (theL cases). The other remaining state is NTOUCHING, which is
used when the robot is not touching∂E and decides whether the gap to be chased is
left or right.
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Fig. 4 The sequence of executed primitives depends on sensor feedback. The possible executions
are captured by a Moore machineM in which each state applies a specific motion primitive and
each transition edge is triggered by a sensing event.

The machine has three main levels (see Figure 4). The first onecorresponds to
decide whether the goal gap is far-to-near (left gap) or near-to-far (right gap). It also
decides whether the robot is touching∂E. If the robot is touching∂E, then the first
level determines whether the robot is touching it atl p (left side) orrp (right side).
The second level is the main one, it detects blockages. According to the decisions
made in the first level, the second level makes the robot execute one of the four
types of rotations: 1) counterclockwise rotation in place,2) clockwise rotation in
place, 3) clockwise rotation w.r.t.rp and 4) counterclockwise rotation w.r.t.l p. The
second level determines whether the path to the goal gap is blocked. According to
this decision, the robot executes either a straight line motion toward the gap (the
path is not blocked) or executes a detour (the robot travels in a straight line toward
the subgoal vertex). The third level is in charge of executing the motion toward the
gap to be chased.

In the first level no motion primitive is executed, and in thislevel, there are three
states:

• NTOUCHING: This state happens when the robot is not touching∂E. It decides
whether the gap to be chased is left or right.

• TOUCHINGRP: This state is triggered when the robot is touching∂E at rp and
the gap being chased splits, or the robot goal is a landmarkΛ (i.e., the landmark
is totally visible to the omnidirectional sensor). The state decides whether the
new gap to be chased is a left or right gap. If the new selected gap is a right gap
(near-to-far), then the next state will be R-ALIGNRP. If the new selected gap is a
left gap (far-to-near), then the next state will be L-ALIGNRP. Finally, whenever
the goal isΛ the state will transit toΛ -ALIGNRP.

• TOUCHINGLP: This state is the left symmetric equivalent to TOUCHINGRP.

The second level determines whether the path to the chosen gap is blocked. There
are eight states in the second level (four for the right case and four for the left). The
states for the right case are:

• R-ALIGN: Right gap alignment executing clockwise rotation in place.
• R-ALIGNLP: Right gap alignment executing counterclockwise rotation w.r.t.l p.
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• R-ALIGNRP: Right gap alignment executing clockwise rotation w.r.t. rp.
• Λ -ALIGNRP: Right landmark alignment executing clockwise rotationw.r.t. rp.

There are other four equivalent states when the goal gap is left gL
0, or the land-

mark is chased with the omnidirectional sensor located atl p (these areL cases in
M). For all of these states, there are three possible transitions. 1) If the path is not
blocked, then a straight line motion is allowed. 2) The robotdetects a blockage and
the subgoal vertex corresponds to a right gap. 3) There is a blockage and the subgoal
vertex generates a left gap.

In the third level, the robot always executes a straight linemotion. Either the
robot moves to the goal gapg0 (these states are calledCHASE) or toward the vertex
u that represents the subgoal (these states are calledDETOUR). Note that the goal
vertex or the vertex that blocks the path can generate a left or right gap; for this
reason the states are designed as left or right.

There are ten states in the third level (five for the right caseand five for the left).
The states for the right case are:

• R-CHASE: The robot moves toward the goal gapgR
0 .

• R-DETOURR: The robot moves toward a subgoal vertexun that generates a right
gapgR

n detour.
• R-DETOURL: The robot moves toward a subgoal vertexup that generates a left

gapgL
p detour.

• RΛ -CHASE: The robot moves towardΛ , and the omnidirectional sensor is lo-
cated atrp.

• Λ -DETOURR: The robot moves toward a subgoal vertexun that generates a right
gapgR

n detour to the landmark.

There are five symmetrically equivalent states when the goalgap is leftgL
0 or the

landmark is chased with the omnidirectional sensor locatedat l p (theL cases inM).
This establishes the details of the state machineM.

The next section analyzes blockage detection and gap selection. For lack of
space, in this paper we briefly present an algorithm used to determine an optimal
detour. This algorithm is described in detail in [12].

4 Blockage detection and optimal detours

During the navigation phase, to detect a blockage, distancesdL, dR, dL
t anddR

t are
used. If directionrt is aligned to a vertex that generates a right gap anddR

t
> dL,

then a straight line robot path toward this vertex is blocked. Likewise, if direction
lt is aligned to a vertex that generates a left gap anddL

t
> dR then a straight line

robot path toward that vertex is blocked. In [12], we prove that during the navigation
phase, these conditions are sufficient to detect blockages or declare the robot path
collision free. Whenever the path is blocked, the robot executes a detour; that is,
the robot travels in a straight line toward another vertex before reaching the vertex
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associated to the gap being chased (called goal gap). The vertex that generates the
original gap to be chased, which is encoded in the GNT, is always visited. For this
reason, we call the modified path a detour.

The selection of the gap (or equivalent a vertex) that corresponds to an optimal
detour depends on the robot sense of rotation. We callup andun the vertices that
determine an optimal detour. To determineup and un vertices, it is necessary to
compute distancesdR

t anddL
t . It is also necessary to compute two angles: 1) the

angle that the robot needs to rotate (either counterclockwise or clockwise) to align
rt to a right vertex (a vertex that generates a right gap), this angle is calledθR, and
2) the angle that the robot needs to rotate (either counterclockwise or clockwise) to
align lt to a left vertex (a vertex that generates a left gap), this angle is calledθL. To
compute these distances and angles, we locate the vertices in local reference frames.
Either a reference frame is defined by pointrp and a right goal vertex or a reference
frame is defined by pointl p and a left goal vertex. In [12], a detailed description
of the construction of these local reference frames is provided. To find a vertexun

or a vertexup, we use two orders. In one order w.r.t. distance, distancedR
t is used

to consider vertices that generate right gaps. Symmetrically, distancedL
t is used to

consider vertices that generate left gaps. An order from smaller to larger distances
including bothdR

t anddL
t is generated. The second order is an angular order also

from smaller to larger; vertices are ordered by angle including bothθR andθL, angle
θR is used to consider vertices that generate right gaps andθL is used to consider
vertices that generate left gaps. Now, we defineun andup based on these two orders.

Definition 1. The next vertexun is the first vertex in clockwise order after the orig-
inal goal vertex, which is aligned withrt . It is reachable by the robot travelling a
straight line path and it corresponds to the optimal detour.

Definition 2. The previous vertexup is the last vertex in clockwise order before the
original goal vertex, which is aligned withlt . It is reachable by the robot travelling
a straight line path and it corresponds to the optimal detour. Refer to Figure 5 and
Table 1.

Remark 1.There are two analogous definitions ofun andup, for a counterclockwise
rotation.

4.1 Algorithm to find an optimal detour

Table 1 shows an example of the execution of Algorithm 1 and the determination of
aup vertex;↑ indicates the subgoal vertex,× indicates the vertices that might block
the path toward the subgoal vertex,⊗ indicates the vertex selected as subgoal at each
iteration,− indicates that the distance to this vertex is smaller than the distance to
the subgoal vertex,+ indicates that the distance to this vertex is larger than the
distance to the subgoal vertex,→ indicates that for a left vertex, the vertex that must
be selected as subgoal is the last in the angular order, and← indicates that for a
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right vertices, the vertex that must be selected as subgoal is the first in the angular
order. The algorithm determines thatuf is aup vertex corresponding to the optimal
detour.

Algorithm 1 : Handle an optimal detour
1) The algorithm starts from the goal vertex. If the goal vertex is a left vertex, then go to Step 4.
2) Detect left vertices that block the path toward a right goal vertex.
To block the path toward right goal vertexuR

goal, left vertices must have an angleθL larger than
the angleθR related to the goal vertex, and a distancedL

t smaller than distancedR
t related to the

goal right vertexuR
goal. If no vertex blocks the path toward the goal vertex, then go to Step 6.

3) Selection of a left goal vertex.
The left vertex with largestθL, the last in the angular order is selected as a new goal vertex.
4) Detect right vertices that block the path toward a left goal vertex.
To block the path toward left goal vertexuL

goal, right vertices must have an angleθR smaller than
the angleθL related to the goal vertex, and a distancedR

t smaller than distancedL
t related to the

left goal vertexuL
goal. If no vertex blocks the path toward the goal vertex, then go to Step 6.

5) Selection of a right goal vertex.
The right vertex with smallest angleθR, the first in the angular order is selected as a new goal
vertex. Go to Step 2.
6) The vertex selected as goal is not blocked.

Search region forup
ug

rt

ue uf

Search region forun

ugoalubucud

Fig. 5 A up vertex

Table 1 Example of orders for selecting aup vertex

Angular order Distance order
Index 1 2 3 4 5 6 7 Index 1 2 3 4 5 6 7

Direction rt rt lt rt lt rt lt Direction rt lt lt rt lt rt rt
Type R R L R L R L Type R L L R L R R

Vertex ugoal ub ue uc uf ud ug Vertex ud ue uf uc ug ub ugoal

→ ↑ × × ⊗ - - - ↑
← ⊗ × ↑ - - ↑ + +
→ × ↑ ⊗ - - ↑ +
← ↑ × - ↑ + + +

Lemma 1. Algorithm 1 finds the optimal detour in the sense of Euclideandistance
toward the goal vertex.
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Proof. The structure of the path representing a detour is a sequenceof sub-paths be-
tween vertices, hence for the global path to be optimal, eachelement of the sequence
must be locally optimal. Since each vertex selected as subgoal lies on the boundary
of the restriction then each element of the sequence is locally optimal. Therefore,
the resulting detour is optimal.⊓⊔

5 The feedback motion strategy

Although M represents the decision component of the system, the commands to
the motors can be implemented by simple sensor feedback. Only five binary sen-
sor observations affect the control: 1) the robot is touching ∂E with the left side
(point l p); (2) it is touching∂E with the right side (pointrp); (3) the robot is
aligned to a gap; (4) there is a blockage; and (5) the type of gap (left 0, right 1).
Depending on the observation, one of the five different motion primitives will be
executed: (1) straight line motion, (2) counterclockwise rotation in place, (3) clock-
wise rotation in place, (4) counterclockwise rotation withrespect to pointl p and
(5) clockwise rotation with respect to pointrp. Recall that the angular velocities
of the differential-drive wheels yield one of these motion primitives. Hence, the
feedback motion strategy can be established by:γ : {0,1}5→{−1,0,1}2, in which
the sensor observation vector is denoted asyi = (rp, l p,aligned,blockage, type), to
obtainγ(yi) = (wr ,wl ). The set of all 32 possible observation vectors can be parti-
tioned be lettingx denote “any value” to obtain:y1 = (x,x,1,0,x), y2 = (0,0,x,1,0),
y3 = (0,0,0,x,0), y4 = (0,0,x,1,1), y5 = (0,0,0,x,1), y6 = (x,1,0,x,x), y7 =
(x,1,x,1,x), y8 = (1,x,0,x,x), y9 = (1,x,x,1,x).

The strategyγ can be encoded as

γ(y1) = (1,1); γ(y2∨y3) = (1,−1)
γ(y4∨y5) = (−1,1); γ(y6∨y7) = (1,0)
γ(y8∨y9) = (0,1),

in which∨means “or”.

6 Proof of optimal navigation

6.1 Non-blocked GNT-encoded paths

In this section we establish that the robot executes a Euclidean, distance-optimal
path in the absence of blockages. The shortest path toΛ is encoded as a sequence of
gaps in the GNT. LetU = (un,un−1, ...,u0) be the sequence of connected intervals
ui ⊂ ∂E that the robot contacts when the gap sensor (fixed to the robotboundary)
moves from its initial position to its final position inΛ . Let H = (gn,gn−1, ...,g0)
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Fig. 6 a) A non-blocked GNT-encoded path that involves only near-to-far gaps, b) A non-blocked
GNT-encoded path that involves both types of gaps (near-to-far and far-to-near), c) Robot path.

denote the corresponding sequence of gaps that are chased, in whichgi ∈ H is the
gap that is being chased on the path toui or while traversingui .

Now consider the problem in terms of the configuration space of the robot. The
obstacle region in the configuration space is obtained by growing the environment
obstacles by the robot’s radius. LetC denote the projection of the obstacle region
into the plane, thereby ignoring rotation. LetV = (vn,vn−1, ...,v0) be the sequence
of intervalsvi ⊂ ∂C obtained by transforming the interval sequenceU from ∂E to
∂C, element by element. The following lemma uses the definitionof a generalized
bitangent from [18].

Lemma 2. Chasing the sequence H of gaps produces the shortest path if and only
if: 1) there is a straight collision-free path from the center of the robot to vn, 2)
there is a (generalized) bitangent line between vi+1 and vi , 3) there is a straight
collision-free path from v0 to the landmark center, and 4) C is connected.

Proof. Note that if any of the first three conditions is violated, then the robot move-
ment is blocked by an obstacle and therefore does not executean optimal path. For
the last condition, ifC is not connected then there is no solution path.⊓⊔

Figure 6(a) shows an example of howM generates an optimal path for the non-
blocked case. In the figure, the GNT encodes the sequenceH = (gR

2 ,g
R
1,g

R
0). In this

example, the machineM traverses the following sequence of states while generating
the appropriate motion primitives: NTOUCHING, R-ALIGN, R-CHASE, TOUCHIN-
GRP, R-ALIGNRP, R-CHASE, TOUCHINGRP, R-ALIGNRP, R-CHASE, TOUCH-
INGRP,Λ -ALIGNRP, RΛ -CHASE.

Now we describe the association of the states with each gap and the landmark.
First, gR

2 is chased, executing states NTOUCHING, R-ALIGN, R-CHASE. Next,gR
1

is chased, executing states TOUCHINGRP, R-ALIGNRP, R-CHASE. Next, gR
0 is

chased, executing again the states TOUCHINGRP, R-ALIGNRP, R-CHASE. Finally,
Λ is chased, executing states TOUCHINGRP,Λ -ALIGNLP, RΛ -CHASE.

In the previous example all of the gaps inH were of the same type. Using the
example illustrated in Figure 6(b), we explain the operation of M when there are
different types of gaps. To reachΛ , the robot chases the sequenceH = (gR

1,g
L
0). The

resulting sequence is NTOUCHING, R-ALIGN, R-CHASE (from chasinggR
1), then

TOUCHINGRP, L-ALIGNRP, L-CHASE, (from chasinggL
0), and finally TOUCH-

INGLP, Λ -ALIGNLP, LΛ -CHASE (from chasingΛ ).
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6.2 Blocked GNT-encoded paths

We now consider the cases for which either of the first three conditions of Lemma
2 is violated, meaning that the robot would become blocked when applying the
GNT in the usual way. For these cases, various forms of “detours” are required. The
GNT-encoded path is based on the bitangent lines between intervals inE. However,
in the configuration space, some bitangent lines disappear.Bitangent lines in the
workspace that remain in the configuration space are displaced by a distancer or
are rotated by some fixed angle. The GNT-encoded path cannot be executed by the
robot when there is a blockage to chasinggi ∈ H (or Λ ). If this happens it means
that: 1) there is no bitangent line betweenvi+1 andvi in C, 2) the robot is in a zone in
which it cannot detect the crossing of a bitangent line inC, 3) there is no clear path
to chaseΛ when the robot seesΛ , or 4)C is disconnected. These are the Lemma 2
conditions. We present a solution to deal with the first threecases presented above.
However, we do not handle the disconnection ofC because there is no path toΛ .

If the robot detects a blocked path, then it performs a detourto avoid the obstacles
that blocks the GNT-encoded path. We cannot re-plan the entire path toΛ because
the path depends on the gapgi ∈H (or Λ ) that is in the gap sensor field of view. For
this reason the detour to avoid obstacles is done when the robot detects a blocked
path while chasinggi or Λ . In Section 4, we have presented a proof (see Lemma 1)
showing that the detour is optimal. Now, we present the theorem that ensure globally
optimal navigation when usingM.

Theorem 1.The path that the robot center follows when commanded by the automa-
ton M, using the information encoded in the GNT and making detours when the path
to chase gi ∈ H is blocked or when the path to chaseΛ is blocked, is optimal in the
sense of Euclidean distance.

Proof. The GNT-encoded path is the shortest path for a point in the workspace and
it is in the same homotopy class that the shortest path inC becauseE andC are
simply connected. We have shown that the sequence of connected intervals inE
that the robot traverses is only changed when the conditionsof Lemmas 2 are not
satisfied; therefore, the shortest path for a disc contains the intervals inU . Since each
detour is made between consecutive intervals ofU , and they are locally optimal (as
proved in Lemma 1). Hence, the resulting global path is optimal. ⊓⊔

Constructing a complete GNT:In [18], it has been proved that the construction of
the GNT for a point robot will terminate (Lemmas 2 and 3 in [18]). Incompleteness
of the GNT is caused by any non-primitive leaves (these that correspond to the
portions of the environment that have not been perceived by the robot). The key
observation to prove the completeness of the GNT for a point robot is that any time
that a new gap appears, it must be primitive. If the gap is chased, it cannot split.
Therefore, the only gaps that contribute to the incompleteness of the GNT are ones
that either appeared in at the beginning of the constructionor were formed by a
sequence of splits of these gaps. Now, we prove that the construction GNT for a
disc robot must also terminate. As mentioned above, compared with the GNT for a



14 Rigoberto Lopez-Padilla, Rafael Murrieta-Cid and Steven M. LaValle

point robot, a path that the robot travels to chase a gap will be of two types: non-
blocked paths and blocked paths.

Lemma 3. The learning (construction) phase of the GNT for a disc robotalways
terminates and produces the same GNT as in [18].

Proof. To chase a gap, a disc robot first alignslt to a left vertex, orrt to a right
vertex. If dR

t
> dL then a straight line robot path toward this vertex is blocked.

Likewise, if dL
t
> dR then a straight line robot path toward that vertex is blocked.

For blocked paths, it has been shown in Lemma 1 that the detouris correct and
locally optimal. Furthermore, while the robot traverses the detours, it will always
have the information about the identity of the original goalgap to be chasedgi ,
since it is codified in the GNT. For a non-blocked path, there are two sub-cases: 1)
From the aligned robot configuration, vertices that can be touched by the robot with
point rp (a right vertex) or pointl p (a left vertex) traveling a straight line path from
the initial robot configuration are equivalent to chase a gapfor a point robot; hence
the gap can be marked as a primitive gap. 2) From the aligned robot configuration,
vertices that cannot be touched by the robot with pointrp (a right vertex) or pointl p
(a left vertex) traveling a straight line path from the initial robot configuration cannot
occlude the landmark. Refer to Figures 7(a) and 7(b). Hence,during the exploration
phase the related gaps are marked as primitive gaps (explored gaps) at moment that
robot touch∂E with a point different tol p or rp. Therefore, the construction of the
GNT for a disc robot must terminate if and only if it would terminate for a point
robot. ⊓⊔

LandmarkΛ

l p

rp rp

lp

(a) Learning phase

sensor

Primitive gap

rp

Omnidirectional

(b) Primitive gap

Fig. 7 Gaps marked as primitive gaps during the exploration phase.

7 Implementation

We have implemented the method to further verify its correctness. Figure 8 shows a
simulation of the optimal gap navigation for a disc robot. The figure shows snapshots
of the simulation program. Figures 8(a) and 8(c) show the robot at different times
while following a sequence of gaps to reach the landmark. To the right of each figure
is shown the complete GNT with the representation used in [18]. The landmark to
be chased is marked as a blue triangle in the workspace and in the GNT as a leaf
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(a) (b) (c) (d) (e)

Fig. 8 A simulation of optimal gap navigation for a disc robot. Part(e) shows the path in the
projected configuration space that the robot traverses to goto the landmark.

triangle node. Figure 8(a) shows the robot after the first gapsplit and the robot is
chasing the gap that occludes the landmark. Finally, Figure8(c) shows the robot
chasing the landmark. Figure 8(e) shows the shortest path inthe configuration space
that the robot traverses to navigate to the landmark. This path was computed based
in the information obtained by the robot sensors and using the automatonM from
Section 3.

8 Conclusions

In this paper we have extended the GNT approach in [18] to a disc-shaped differential-
drive robot. The robot is equipped with simple sensors and itis unable to build pre-
cise geometric maps or localize itself in a global Euclideanframe. This problem is
considerably more challenging than in the case of a point robot because visibility
information does not correspond exactly to collision free paths in the configura-
tions space. Consequently, the robot must execute detours from the bitangents in
the workspace. Indeed, critical information from the workspace is obtained from
the robot’s sensors, to infer the optimal robot paths in the configuration space. To
solve this problem we developed a motion strategy based on simple sensor feed-
back and then proved that the motion strategy yields globally optimal motions in
the sense of Euclidean distance by characterizing all possible trajectories in terms
of sequences of states visited in a finite state machine. Evenif precise distance com-
parisons are not possible, the motion strategy is simple andeffective in a broader
setting. Important directions for future work include multiply connected environ-
ments, disconnected configuration spaces, and bounds with respect to optimality for
the cases in which all sensing conditions are not met.
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Robotics) and 1035345 (Cyberphysical Systems), DARPA SToMP grant HR0011-
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