Optimal Gap Navigation for a Disc Robot

Rigoberto Lopez-Padilla, Rafael Murrieta-Cid and Steveri&Valle

Abstract This paper considers the problem of globally optimal nawigewith re-
spect to Euclidean distance for disc-shaped, differexiti@k robot placed into an
unknown, simply connected polygonal region. The robot iahl@ to build precise
geometric maps of the environment. Most of the robot’s imfation comes from
a gap sensor, which indicates depth discontinuities amavalthe robot to move
toward them. A motion strategy is presented that optimadlyigates the robot to
any landmark in the region. Optimality is proved and the rodtls illustrated in
simulation.

1 Introduction

If a point robot is placed into a given polygonal region, themputing shortest
paths is straightforward. The most common approach is topotena visibility
graph that includes only bitangent edges, which is accamned inO(n?Ign) time

by a radial sweeping algorithm [4] (dnlgn+ m) algorithm also exists, in whicim

is the number of bitangents [7]). An alternative is ttentinuous Dijkstra methqd
which combinatorially propagates a wavefront through #gian and determines
the shortest path i®(nlgn) time. Numerous problem variations exist. Comput-
ing shortest paths in three-dimensional polyhedral registNP-hard [1]. Allowing
costs to vary over regions considerably complicates thieleno[14, 16]. See [6, 13]
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Fig. 1 a) The optimal path for a point robot, b) The optimal path fadisc robot, c) The gap
sensor (attached at the small solid disc on the robot boyhdatects the sequence of gaps=
[9R, 05,05, 0%, ok], in which g andgR are near-to-far gaps arg, g5, andgs, are far-to-near gaps.

for surveys of shortest path algorithms. For recent effont€urved obstacles, see
[2].

The approaches described thus far address a point robah vghuinrealistic in
most practical settings. It is therefore interesting talgtthe case of a disc robot,
which could correspond, for example, to a Roomba platforariodis objective
functions are possible; we choose to optimize the distaiaweled by the center of
the robot. Once the robot has nontrivial dimensions, thélpra can be expressed
in terms of configuration space obstacles. Solutions arepted in [3, 11].

Now suppose that the map of the environment is not given tedhet. It must
use its sensors to explore and map the environment to demeidgation strategies.
Given strong sensors and good odometry, standard SLAM appes [5, 17] could
be applied to obtain a map that can be used as input to theopidyimentioned
methods. However, we do not allow the robot to localize fteéth respect to a
global reference frame or to build a geometric map. Instead, it mesethe world
using mainly agap sensarintroduced in [18], which allows it to determine the
directions of discontinuities in depth (distance to the fmtary) and move toward
any one of those directions. Under this model, but for a pahot, a combinatorial
filter called the Gap Navigation Tree (GNT) was introducedt #ncodes precisely
the part of the shortest-path visibility graph that is nekfte optimal navigation
[18]. The learned data structure corresponds exactly tcshivetest path tree [6]
from the robot’s location. This enables the robot to nawdatany previously seen
landmark by following the distance-optimal path, even tioit cannot directly
measure distances. The GNT was extended and applied toratipioin [15]. The
GNT was extended to point cloud models in [8]. A larger fantifygap sensors is
described in [10].

The case of a disc robot is important because real robots @aveero width.
Unfortunately, the problem is considerably more challagdiecause without ad-
ditional sensing information, the robot could accidentattike obstacles that poke
into its swept region as it moves along a bitangent. See €igu@a) and (b). The
robot must instead execute detours from the bitangentil8greharacterizing, and
optimally navigating around these obstructions is the rdéficulty of this paper.
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Before proceeding to the detailed model and motion strateral points are
important to keep in mind:

1. Therobotis placed into an environment, but it is not gitrenobstacle locations
or its own location and orientation. Robaolbserveghis information over local
reference frames. The purpose is to show how optimal naeigat surprisingly
possible without ordinary SLAM.

2. The robot first learns the GNT by executing a learning phabkeh is described
in [9, 18], and needs just minor changes to be used by digeeshabots. The
process involves iteratively chasing “unknown” gaps, @agigach to split or
disappear. Eventually, only primitive gaps, which werenfed by appearances
of gaps (due to inflection ray crossings), and gaps formeddxgimg primitives
remain. This corresponds to learning the entire shortat-graph.

3. A simple navigation strategy is provided that guides thtsot to any landmark
placed in the environment by using the learned GNT. We gieeipe conditions
under which the motions are optimal and prove this statement

4. We believe that even when the optimality conditions aremet, the strategy
itself is close to optimal. Therefore, it may be useful in manactical settings
to efficiently navigate robots with simple sensor feedback.

Section 2 formally describes the robot model and the selogsed motion prim-
itives. Section 3 introduces an automaton that charaetedl possible sequences
of motion primitives that could occur when executing optimmetions to a land-
mark. Section 4 describes how obstacle blockages are ddtantd handled when
the robot chases a gap. This includes detours (that is, thificadion of the path
encoded in the GNT for a point robot) needed to achieve optimagation. Section
6 argues the optimality of the motion strategy. Section B@més an implementation
in simulation, and Section 8 concludes the paper.

2 Problem statement

The robot is modeled as a disc with radiusioving in an unknown environment,
which could be any compact setc R? for which the interior ofE is simply con-
nected and the bounda@dk, of E is a polygon. Furthermore, it assumed that the
collision-free subset of the robot’s configuration sp@de connected. C-space ob-
stacle corresponds to that of a translating disc, that éseittended boundary &
which is due to the robot radids

1 Note that this is the configuration space for a translatisg dither than for a rigid body because
of rotational symmetry.



4 Rigoberto Lopez-Padilla, Rafael Murrieta-Cid and SteMerbaValle

2.1 Sensing capabilities

1) Gap sensor:The robot has an omnidirectional gap sensor [10, 18], wiicble
to detect and track two types of discontinuities in deptbiinfation: discontinuities
from far to near and discontinuities from near to far (in tbemterclockwise direc-
tion alongdE). Figure 1(c) shows a robot in an environment in which theggypsor
detects some near-to-far and far-to-near gaps.

LetG = [g},...,g}] denote the circular sequence of gaps observed by the sensor.
Using this notationt represents the discontinuity type, in whith- R means a
discontinuity from near to far (the hidden portion is thehtijgandt = L means a
discontinuity from far to near (the hidden portion is to te&). For example, the
gap sensor in Figure 1(c) detects gaps of different ty@es: (g}, g5, g5, o, ok |.

We place the gap sensor on the robot boundary and define npuiroitives that
send the robot on collision-free trajectories that pogsibhtact the obstacles (mov-
ing along the boundary of the free subset of the configuraii@te is necessary for
most optimal paths). These motion primitives, describedetril in Section 2.2,
allow the robot to rotate itself so that it is aligned to mokie gap sensor directly
toward a desired gap, move forward while chasing a gap, dfeWf@E while the
sensor is aligned to a gap.

Imagine that a differential drive robot is used. It is assdni®t the gap sensor
can be moved to two different fixed positions on the robot hiauy: The extremal
left and right sides with respect to the forward wheel dimttOne way to imple-
ment this is with a turret that allows the robot to move the gpsor from its right
side to its left side and vice versa. Figure 3(c) shows themealigned to a near-to-
far gap in which the gap sensor is on the right side of the rofmalign the sensor
to a far-to-near gap, the robot moves the gap sensor to th&defof the robot.

Finally, letA be a static disc-shaped landmarl&mwith the same radius as the
robot. A landmarkA is said to beecognizedf the landmark is visible at least par-
tially from the location of the gap sensor. Furthermoreirtyithe exploration phase,
if required, the landmark can be reached (hence, the coenfgletimark would be
visible from the location of the gap sensor), by travelingngl optimal detours.

2) Side sensorsTo detect obstacles that obstruct the robot while it chasgespa
our algorithms need to measure distances between the eattieftnand right side
robot’s points along the direction of the robot headingWf@rd) and the obstacles.
Let those particular robot points be left side pdiptand right side pointp. The
particular direction tangent to the robot boundarymis calledrt. The particular
direction tangent to the robot boundany}pts calledlt (See Figure 2(a)). Thus, we
assume that the omnidirectional sensor is ablaéasuralistance. Note that based
on distance the discontinuities can be detecteddkdie the distance betweep
and the obstacles at the particular directibnandd, be the distance betweép
and the obstacles at the particular direcfio(see Figure 2(b)).

If the particular direction, eithett or It, is pointing to a reflex vertex (a gap is
aligned with this direction), then a discontinuity in theaser reading at this direc-
tion occurs. Ledr' denotes the distance fronp to the closer point o@E along
the discontinuity direction. Similarlyd, ' denotes the distance frolp. See Figure
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2(c). For avoiding blockages toward the vertex that geesratgap to be chased,
the robot rotates. There are two types of rotation: clockwisd counterclockwise.
A clockwise rotation can be executed either with respecptor a rotation in place
(w.r.t. the robot center). Symmetrically, a robot couniteck wise rotation can be
executed either with respecttp or a rotation in place (w.r.t. the robot center). Fi-
nally, letd, be the distance between the omnidirectional sensor andettiexw;
that originated the gag (in Figure 2(d)gi = g§).

Our motion strategy will require only comparisons of distes to determine
which is larger, rather than needing precise distance meamnts. Any small error
in the comparison (if the distances are close) causes onfyadl sleviation from
optimality, which may be relatively harmless in practicewr@pproach will further-
more require detecting whether the robot is contactiigat rp or Ip to enable
wall-following motions.

Distance measurements between the obstaclefpeanadr p in directionsrt and
It (forward), and the information of whether the robot is tongvE atrp orIp,
can be obtained with different sensor configurations. Fange, it is possible to
use two laser pointers and two contact sensors, each of theatet atrp andlp.
However, to use a smaller number of sensors and facilitetmiirumentation of the
robotic system, it is possible to emulate both the contatt@es and one of the laser
pointers, using the omnidirectional sensor. The omnidiiveal sensor reading in
the particular forward robot heading direction emulateléiser pointer reading. An
omnidirectional sensor can also be used to determine whistheobot is touching
JE atrp orlp. The sensor readings at directions perpendicular to that fekading
are used in this case. If the robot is touchéig at the point at which the omnidirec-
tional sensor is located, then the sensor reading is zemabdit is touchin@E at the
point diametrically opposed to the omnidirectional senten the sensor reading
will correspond to the robot diameter (see Figure 2(e)).sTlome option is to have
the robot equipped with an omnidirectional sensor and a |aaiater; they will be
located atlp andrp. Recall that a turret can be used to swap the locations of the
laser pointer and the omnidirectional sensor to avoid ueseary robot rotations in
place. The gaps or landmarks are always chased with the aectidnal sensor;
the laser pointer is used to detect obstacles and to coradigh the robot.

2.2 Motion primitives

The robot navigates using a sequence of motion primitivesate generated by an

automaton for which state transitions are induced by sefesdiback alone. To nav-

igate a gap (or equivalent the vertex that generates it) andnhark is given to the

robot as goal. There are five motion primitives (see Figureé&)the angular veloc-

ity of the right and left wheels be; andw, respectively, withw;,w € {—1,0,1}.
Thus, the motion primitives are generated by the followiogtools:

e Clockwise rotation in placey, = —1,w; = 1.
e Counterclockwise rotation in place; = 1,w = —1.
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Fig. 2 Side Sensors: (a) Pointp and|p, and directionst andlt, (b) d_ anddg, (c) d.*, (d) dy,
(e) Omnidirectional sensor readings for contact detection

/
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Fig. 3 The motion primitives: (a) Clockwise rotation in place, ®punterclockwise rotation in
place, (c) Straight line motion, (d) Clockwise rotation.w.to pointrp, (e) Counterclockwise
rotation w.r.t. to pointp.

e Clockwise rotation w.r.t. to poirmp: w; = 0,w; = 1.
e Counterclockwise rotation w.r.t. to poilg: wy =1, w; =0
e Forward straight line motiornw, = 1,w = 1.

The rotation primitives are used to alignor It to a specific gap (or landmark).
Oncert orlt is aligned to a gap, the robot moves in a straight line to ctiesgap. If
the path to the chosen gap is blocked, then the robot exeautetour by choosing
a new vertex as a subgoal. More details are given in Sectiamsl 3.

3 The movement automaton

The algorithm for generating optimal navigation motions ba nicely captured by
an automaton or (Moore) finite state machMe See Figure 4. Every state corre-
sponds to the selection and execution of a motion primitiveh@ robot or it is a
decision. Each state transition is triggered by a sensagred8on change. There
are 21 total states, with clear right/left symmetry. The upper states in Figure 4
correspond to near-to-far gaps (tReases) and the ten lower states correspond to
far-to-near gaps (the cases). The other remaining state is?UJICHING, which is
used when the robot is not touchid& and decides whether the gap to be chased is
left or right.
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Fig. 4 The sequence of executed primitives depends on sensoraigedbhe possible executions
are captured by a Moore machiiMein which each state applies a specific motion primitive and
each transition edge is triggered by a sensing event.

The machine has three main levels (see Figure 4). The firstomesponds to
decide whether the goal gap is far-to-near (left gap) or-teedar (right gap). It also
decides whether the robot is touchigg. If the robot is touchin@E, then the first
level determines whether the robot is touching it@tleft side) orrp (right side).
The second level is the main one, it detects blockages. Aaogto the decisions
made in the first level, the second level makes the robot ¢éxeme of the four
types of rotations: 1) counterclockwise rotation in plaZeclockwise rotation in
place, 3) clockwise rotation w.ritp and 4) counterclockwise rotation w.ip. The
second level determines whether the path to the goal gapdékédd. According to
this decision, the robot executes either a straight lineéondbward the gap (the
path is not blocked) or executes a detour (the robot tramedsstraight line toward
the subgoal vertex). The third level is in charge of exegutire motion toward the
gap to be chased.

In the first level no motion primitive is executed, and in tleigel, there are three
states:

e NTOUCHING: This state happens when the robot is not toucldlkg It decides
whether the gap to be chased is left or right.

e TOUCHINGRP: This state is triggered when the robot is touchigat rp and
the gap being chased splits, or the robot goal is a landvdile., the landmark
is totally visible to the omnidirectional sensor). The stdecides whether the
new gap to be chased is a left or right gap. If the new selecgpdga right gap
(near-to-far), then the next state will be R-ISNRP. If the new selected gap is a
left gap (far-to-near), then the next state will be L4&ANRP. Finally, whenever
the goal is/A the state will transit ta\-ALIGNRP.

e TOUCHINGLP: This state is the left symmetric equivalent toJCHINGRP.

The second level determines whether the path to the chopds bimcked. There
are eight states in the second level (four for the right casfeur for the left). The
states for the right case are:

e R-ALIGN: Right gap alignment executing clockwise rotation in place
e R-ALIGNLP: Right gap alignment executing counterclockwise rotat.r.t.I p.
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e R-ALIGNRP: Right gap alignment executing clockwise rotation w.pt
¢ A-ALIGNRP: Right landmark alignment executing clockwise rotationt. rp.

There are other four equivalent states when the goal ga;ﬁig'aleor the land-
mark is chased with the omnidirectional sensor locatdg these ard cases in
M). For all of these states, there are three possible transitil) If the path is not
blocked, then a straight line motion is allowed. 2) The ratetects a blockage and
the subgoal vertex corresponds to a right gap. 3) There msckaye and the subgoal
vertex generates a left gap.

In the third level, the robot always executes a straight fim&tion. Either the
robot moves to the goal gap (these states are calle#hiASE) or toward the vertex
u that represents the subgoal (these states are aailedur). Note that the goal
vertex or the vertex that blocks the path can generate alefgbt gap; for this
reason the states are designed as left or right.

There are ten states in the third level (five for the right casfive for the left).
The states for the right case are:

R-CHASE: The robot moves toward the goal ggip
R-DETOURR: The robot moves toward a subgoal vertgthat generates a right
gapgR detour.

e R-DETOURL: The robot moves toward a subgoal vertgxthat generates a left
gapg detour.

e RA-CHASE The robot moves toward, and the omnidirectional sensor is lo-
cated atp.

e /-DETOURR: The robot moves toward a subgoal ventgxthat generates a right
gapgR detour to the landmark.

There are five symmetrically equivalent states when the gaplis Ieftgg or the
landmark is chased with the omnidirectional sensor locatégl (theL cases irM).
This establishes the details of the state macMne

The next section analyzes blockage detection and gap isele€or lack of
space, in this paper we briefly present an algorithm used termée an optimal
detour. This algorithm is described in detail in [12].

4 Blockage detection and optimal detours

During the navigation phase, to detect a blockage, distmcealr, d.' anddg! are
used. If directiorrt is aligned to a vertex that generates a right gapdid> d_,
then a straight line robot path toward this vertex is blochekewise, if direction
It is aligned to a vertex that generates a left gap drid> dr then a straight line
robot path toward that vertex is blocked. In [12], we prow thuring the navigation
phase, these conditions are sufficient to detect blockagdsaare the robot path
collision free. Whenever the path is blocked, the robot etexa detour; that is,
the robot travels in a straight line toward another vertefotgereaching the vertex
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associated to the gap being chased (called goal gap). Ttex\that generates the
original gap to be chased, which is encoded in the GNT, isydwisited. For this
reason, we call the modified path a detour.

The selection of the gap (or equivalent a vertex) that cpords to an optimal
detour depends on the robot sense of rotation. Weugadind u, the vertices that
determine an optimal detour. To determimg and u, vertices, it is necessary to
compute distancedr! andd,'. It is also necessary to compute two angles: 1) the
angle that the robot needs to rotate (either counterclassar clockwise) to align
rt to a right vertex (a vertex that generates a right gap), thigegis calleddr, and
2) the angle that the robot needs to rotate (either counigalise or clockwise) to
alignlt to a left vertex (a vertex that generates a left gap), thisesisgcalledd, . To
compute these distances and angles, we locate the vertioesi reference frames
Either a reference frame is defined by paiptand a right goal vertex or a reference
frame is defined by pointp and a left goal vertex. In [12], a detailed description
of the construction of these local reference frames is piexi To find a vertexy,
or a vertexup, we use two orders. In one order w.r.t. distance, distaktés used
to consider vertices that generate right gaps. Symmdiricistanced, ! is used to
consider vertices that generate left gaps. An order fromlemta larger distances
including bothdg! andd,! is generated. The second order is an angular order also
from smaller to larger; vertices are ordered by angle indgtothf8g and6, , angle
6r is used to consider vertices that generate right gapansl used to consider
vertices that generate left gaps. Now, we definandu, based on these two orders.

Definition 1. The next vertex, is the first vertex in clockwise order after the orig-
inal goal vertex, which is aligned witft. It is reachable by the robot travelling a
straight line path and it corresponds to the optimal detour.

Definition 2. The previous verteny is the last vertex in clockwise order before the
original goal vertex, which is aligned with. It is reachable by the robot travelling
a straight line path and it corresponds to the optimal defefer to Figure 5 and
Table 1.

Remark 1 There are two analogous definitionsupfandup, for a counterclockwise
rotation.

4.1 Algorithm to find an optimal detour

Table 1 shows an example of the execution of Algorithm 1 aeditttermination of
aup vertex;T indicates the subgoal vertex,indicates the vertices that might block
the path toward the subgoal vertexindicates the vertex selected as subgoal at each
iteration,— indicates that the distance to this vertex is smaller thardiktance to
the subgoal vertex} indicates that the distance to this vertex is larger than the
distance to the subgoal vertex, indicates that for a left vertex, the vertex that must
be selected as subgoal is the last in the angular order+aimtlicates that for a
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right vertices, the vertex that must be selected as subgahaeéifirst in the angular
order. The algorithm determines thatis au, vertex corresponding to the optimal
detour.

Algorithm 1 : Handle an optimal detour
1) The algorithm starts from the goal vertex. If the goal eriis a left vertex, then go to Step 4.
2) Detect left vertices that block the path toward a rightl geatex.
To block the path toward right goal vertagoa,, left vertices must have an anghe larger than
the anglefr related to the goal vertex, and a distadcksmaller than distanad! related to the
goal right verteXJRoal. If no vertex blocks the path toward the goal vertex, thenag8tep 6.
3) Selection of a ?eft goal vertex.
The left vertex with largesfi_, the last in the angular order is selected as a new goal vertex
4) Detect right vertices that block the path toward a leftl geatex.
To block the path toward left goal vertagoa,, right vertices must have an andle smaller than
the anglef, related to the goal vertex, and a distadgbsmaller than distancd, ! related to the
left goal vertexu'éoa|. If no vertex blocks the path toward the goal vertex, thenagBtep 6.
5) Selection of a right goal vertex.
The right vertex with smallest angB, the first in the angular order is selected as a new goal
vertex. Go to Step 2.
6) The vertex selected as goal is not blocked.

| Search region fouy

Search region fou,

Fig. 5 A up vertex

Table 1 Example of orders for selectingug vertex

Angular order Distance order
Index | 1 2 3 45 6 7 Index |1 2 3 456 7
Direction| rt rt It rt It rt It |Directionfrt It It rt It rt rt
Type | R RLRLRUY Type [RLLRLR R
Vertex [Ugoal Up Ue Uc Us Ug Ug| Vertex |ug Ue Us Ug Ug Up Ugoal

— T X X ® - - - T
— ® x 7 - -+ o+
- x 1 ® - -+

— T ox - T+ + o+

Lemma 1. Algorithm 1 finds the optimal detour in the sense of Eucliddiatance
toward the goal vertex.
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Proof. The structure of the path representing a detour is a sequésab-paths be-
tween vertices, hence for the global path to be optimal, elshent of the sequence
must be locally optimal. Since each vertex selected as slltige on the boundary
of the restriction then each element of the sequence islyooptimal. Therefore,
the resulting detour is optimal.O0

5 The feedback motion strategy

Although M represents the decision component of the system, the codsman
the motors can be implemented by simple sensor feedback. f®albinary sen-
sor observations affect the control: 1) the robot is toughdi with the left side
(point Ip); (2) it is touchingdE with the right side (pointp); (3) the robot is
aligned to a gap; (4) there is a blockage; and (5) the type pf(tgt O, right 1).
Depending on the observation, one of the five different nmofidmitives will be
executed: (1) straight line motion, (2) counterclockwis&tion in place, (3) clock-
wise rotation in place, (4) counterclockwise rotation wiélspect to pointp and
(5) clockwise rotation with respect to poinp. Recall that the angular velocities
of the differential-drive wheels yield one of these motiamptives. Hence, the
feedback motion strategy can be established/y{0,1}® — {—1,0,1}?, in which
the sensor observation vector is denotegi as (rp,|p,aligned blockagetype), to
obtainy(y;) = (wr,w; ). The set of all 32 possible observation vectors can be parti-
tioned be letting« denote “any value” to obtaily; = (x,X,1,0,X), y» = (0,0,x,1,0),
y3 = (0,0,0,x,0), y4 = (0,0,x,1,1), ys = (0,0,0,%x,1), ¥ = (X,1,0,%,X), y7 =
(x,1,%,1,x), ys = (1,%,0,%,X), Yo = (1,%,X,1,X).

The strategy can be encoded as

y(y1) = (1,1);  y(y2Vys) =(1,-1)
y(yaVys) = (=1,1); ¥(yeVy7) = (1,0)
y(Ys Vye) = (0,1)

)

in which Vv means “or”.

6 Proof of optimal navigation

6.1 Non-blocked GNT-encoded paths

In this section we establish that the robot executes a Eeatiddistance-optimal
path in the absence of blockages. The shortest pathiseencoded as a sequence of
gaps in the GNT. Lety = (un,Un_1,...,Up) be the sequence of connected intervals
u; C JE that the robot contacts when the gap sensor (fixed to the fmigatdary)
moves from its initial position to its final position ih. LetH = (gn,gn-1,---,90)
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Fig. 6 a) A non-blocked GNT-encoded path that involves only nedeat gaps, b) A non-blocked
GNT-encoded path that involves both types of gaps (ne&artand far-to-near), ¢) Robot path.

denote the corresponding sequence of gaps that are chasegichg; € H is the
gap that is being chased on the pathitor while traversingy;.

Now consider the problem in terms of the configuration spd¢keorobot. The
obstacle region in the configuration space is obtained bwiggpthe environment
obstacles by the robot’s radius. L@&tdenote the projection of the obstacle region
into the plane, thereby ignoring rotation. Mét= (Vn,Vq_1, ..., Vo) be the sequence
of intervalsv; C dC obtained by transforming the interval sequebicéom JE to
dC, element by element. The following lemma uses the definitioam generalized
bitangent from [18].

Lemma 2. Chasing the sequence H of gaps produces the shortest paid ibaly
if: 1) there is a straight collision-free path from the centd the robot to ¥, 2)

there is a (generalized) bitangent line betweem\and v, 3) there is a straight
collision-free path from yto the landmark center, and 4) C is connected.

Proof. Note that if any of the first three conditions is violated rtfikee robot move-
ment is blocked by an obstacle and therefore does not exanuptimal path. For
the last condition, i is not connected then there is no solution path.

Figure 6(a) shows an example of hdWvgenerates an optimal path for the non-
blocked case. In the figure, the GNT encodes the sequéreég, g, of). In this
example, the machirnd traverses the following sequence of states while generatin
the appropriate motion primitives: NSUCHING, R-ALIGN, R-CHASE, TOUCHIN-
GRP, R-ALIGNRP, RCHASE, TOUCHINGRP, R-ALIGNRP, RCHASE, TOUCH-
INGRP,A-ALIGNRP, RA-CHASE.

Now we describe the association of the states with each gaphenlandmark.
First, g is chased, executing states NICHING, R-ALIGN, R-CHASE. Next, g}
is chased, executing state®TJCHINGRP, R-ALIGNRP, RCHASE. Next, g is
chased, executing again the states/THINGRP, R-ALIGNRP, RCHASE. Finally,

A is chased, executing state@ JCHINGRP,A-ALIGNLP, RA-CHASE.

In the previous example all of the gapshhwere of the same type. Using the
example illustrated in Figure 6(b), we explain the operatid M when there are
different types of gaps. To reagh the robot chases the sequehte: (gf,d5). The
resulting sequence is NSUCHING, R-ALIGN, R-CHASE (from chasinggf), then
TOUCHINGRP, L-ALIGNRP, L-CHASE, (from chasinggg), and finally ToucH-
INGLP, A-ALIGNLP, LA-CHASE (from chasingh).
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6.2 Blocked GNT-encoded paths

We now consider the cases for which either of the first threslitons of Lemma
2 is violated, meaning that the robot would become blockeeérwapplying the
GNT in the usual way. For these cases, various forms of “det@ue required. The
GNT-encoded path is based on the bitangent lines betweenvals inE. However,
in the configuration space, some bitangent lines disapp&angent lines in the
workspace that remain in the configuration space are disglhy a distance or
are rotated by some fixed angle. The GNT-encoded path capretdzuted by the
robot when there is a blockage to chasgg H (or A). If this happens it means
that: 1) there is no bitangent line betwegn, andy; in C, 2) the robotisina zonein
which it cannot detect the crossing of a bitangent lin€,i8) there is no clear path
to chase\ when the robot see, or 4)C is disconnected. These are the Lemma 2
conditions. We present a solution to deal with the first tloeses presented above.
However, we do not handle the disconnectiodfecause there is no pathAo

If the robot detects a blocked path, then it performs a detoavoid the obstacles
that blocks the GNT-encoded path. We cannot re-plan theegpdith toA because
the path depends on the ggp= H (or A) that is in the gap sensor field of view. For
this reason the detour to avoid obstacles is done when that dabects a blocked
path while chasingj or A. In Section 4, we have presented a proof (see Lemma 1)
showing that the detour is optimal. Now, we present the #i@dhat ensure globally
optimal navigation when usingl.

Theorem 1. The path that the robot center follows when commanded byutoerea-
ton M, using the information encoded in the GNT and makinguwtstwhen the path
to chase ge H is blocked or when the path to chadds blocked, is optimal in the
sense of Euclidean distance.

Proof. The GNT-encoded path is the shortest path for a point in thé&space and
it is in the same homotopy class that the shortest path liecausee andC are
simply connected. We have shown that the sequence of cathadervals inE
that the robot traverses is only changed when the conditbhemmas 2 are not
satisfied; therefore, the shortest path for a disc contamitervals irJ. Since each
detour is made between consecutive intervald oAnd they are locally optimal (as
proved in Lemma 1). Hence, the resulting global path is optimO

Constructing a complete GNT:In [18], it has been proved that the construction of
the GNT for a point robot will terminate (Lemmas 2 and 3 in JL8completeness
of the GNT is caused by any non-primitive leaves (these tbatespond to the
portions of the environment that have not been perceivecheyrdbot). The key
observation to prove the completeness of the GNT for a polmttis that any time
that a new gap appears, it must be primitive. If the gap is ethais cannot split.
Therefore, the only gaps that contribute to the incompktsmf the GNT are ones
that either appeared in at the beginning of the construaiiowere formed by a
sequence of splits of these gaps. Now, we prove that the ramtisin GNT for a
disc robot must also terminate. As mentioned above, cordpaitd the GNT for a
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point robot, a path that the robot travels to chase a gap withttwo types: non-
blocked paths and blocked paths.

Lemma 3. The learning (construction) phase of the GNT for a disc rodiatays
terminates and produces the same GNT as in [18].

Proof. To chase a gap, a disc robot first alighdo a left vertex, ont to a right
vertex. If dr' > di then a straight line robot path toward this vertex is blocked
Likewise, ifd.! > dg then a straight line robot path toward that vertex is blocked
For blocked paths, it has been shown in Lemma 1 that the d&tazarrect and
locally optimal. Furthermore, while the robot traverses tletours, it will always
have the information about the identity of the original ggap to be chased;,
since it is codified in the GNT. For a non-blocked path, thesetao sub-cases: 1)
From the aligned robot configuration, vertices that can belied by the robot with
pointrp (a right vertex) or pointp (a left vertex) traveling a straight line path from
the initial robot configuration are equivalent to chase afgaj point robot; hence
the gap can be marked as a primitive gap. 2) From the aligrieat smnfiguration,
vertices that cannot be touched by the robot with pginta right vertex) or poinkp
(aleft vertex) traveling a straight line path from the iaftiobot configuration cannot
occlude the landmark. Refer to Figures 7(a) and 7(b). Heha@ng the exploration
phase the related gaps are marked as primitive gaps (eggapes) at moment that
robot touchdE with a point differenttdp or rp. Therefore, the construction of the
GNT for a disc robot must terminate if and only if it would témate for a point
robot. O

Primitive gap

Omnidirectional
ensor

(a) Learning phase (b) Primitive gap

Fig. 7 Gaps marked as primitive gaps during the exploration phase.

7 Implementation

We have implemented the method to further verify its comess. Figure 8 shows a
simulation of the optimal gap navigation for a disc roboteTigure shows snapshots
of the simulation program. Figures 8(a) and 8(c) show thetab different times
while following a sequence of gaps to reach the landmarkh&wight of each figure
is shown the complete GNT with the representation used ih & landmark to
be chased is marked as a blue triangle in the workspace ahe IBNT as a leaf
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Fig. 8 A simulation of optimal gap navigation for a disc robot. P@} shows the path in the
projected configuration space that the robot traverses to tiee landmark.

triangle node. Figure 8(a) shows the robot after the firstgmip and the robot is
chasing the gap that occludes the landmark. Finally, Figcg shows the robot
chasing the landmark. Figure 8(e) shows the shortest p#tie iconfiguration space
that the robot traverses to navigate to the landmark. Thiswas computed based
in the information obtained by the robot sensors and usiagtitomatoM from
Section 3.

8 Conclusions

In this paper we have extended the GNT approach in [18] tocastiaped differential-
drive robot. The robot is equipped with simple sensors aisdihable to build pre-
cise geometric maps or localize itself in a global EuclidEame. This problem is
considerably more challenging than in the case of a pointtrbbcause visibility
information does not correspond exactly to collision freghg in the configura-
tions space. Consequently, the robot must execute detmnsthe bitangents in
the workspace. Indeed, critical information from the wakse is obtained from
the robot’s sensors, to infer the optimal robot paths in tefiguration space. To
solve this problem we developed a motion strategy basedmplsisensor feed-
back and then proved that the motion strategy yields glglmgitimal motions in
the sense of Euclidean distance by characterizing all plessijectories in terms
of sequences of states visited in a finite state machine. iEpegcise distance com-
parisons are not possible, the motion strategy is simpleeéfiedtive in a broader
setting. Important directions for future work include niply connected environ-
ments, disconnected configuration spaces, and boundsesjplect to optimality for
the cases in which all sensing conditions are not met.
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