
Noname manuscript No.
(will be inserted by the editor)

Optimal Navigation for a Differential Drive Disc Robot:
A Game Against the Polygonal Environment

Rigoberto Lopez-Padilla, Rafael Murrieta-Cid, Israel Becerra, Guillermo Laguna and

Steven M. LaValle

the date of receipt and acceptance should be inserted later

Abstract This paper considers the problem of globally op-

timal navigation with respect to minimizing Euclidean dis-

tance traveled by a disc-shaped, differential-drive robot (DDR)

to reach a landmark. The robot is equipped with a gap sen-

sor, which indicates depth discontinuities and allows the robot

to move toward them. In this work we assume that a topo-

logical representation of the environment called GNT has al-

ready been built, and that the landmark has been encoded in

the GNT. A motion strategy is presented that optimally nav-

igates the robot to any landmark in the environment, with-

out the need of using a previously known geometric map of

the environment. To our knowledge this is the first time that

the shortest path for a DDR (underactuated system) is found

in the presence of obstacle constraints without knowing the

complete geometric representation of the environment. The

robot’s planner or navigation strategy is modeled as a Moore

Finite State Machine (FSM). This FSM includes a sensor-

A preliminary version of portions of this work has been presented

at the Tenth International Workshop on the Algorithmic Foundations

of Robotics, WAFR 2012 [25]. This work was supported in part by

NSF grants 0904501 (IIS Robotics) and 1035345 (Cyberphysical Sys-

tems), DARPA SToMP grant HR0011-05-1-0008, and MURI/ONR

grant N00014-09-1-1052.

Rigoberto Lopez-Padilla

Centro de Innovación Aplicada en Tecnologı́as Competitivas, CIATEC,

León, México

E-mail: rlopez@ciatec.mx

Rafael Murrieta-Cid and Israel Becerra

Centro de Investigación en Matemáticas (CIMAT), Guanajuato,

México

E-mail: {murrieta,israelb}@cimat.mx

Guillermo Laguna

Iowa State University, Ames, IA, USA

E-mail: glaguna@iastate.edu

Steven M. LaValle

University of Illinois at Urbana-Champaign, Urbana, IL, USA

E-mail: lavalle@illinois.edu

feedback motion policy. The motion policy is based on the

paradigm of avoiding the state estimation to carry out two

consecutive mappings, that is, from observation to state and

then from state to control, but instead of that, there is a direct

mapping from observation to control. Optimality is proved

and the method is illustrated in simulation.

Keywords combinatorial filters · optimal navigation ·

underactuated system · environment constraints · feedback

motion strategies

1 Introduction

This paper considers the problem of globally optimal navi-

gation with respect to minimizing Euclidean distance trav-

eled by a disc-shaped, differential-drive underactuated robot

to reach a landmark in an environment with obstacle con-

straints.

The robot observes the world mainly using a gap sen-

sor, introduced in [39], which allows it to determine the di-

rections of discontinuities in depth (distance to the bound-

ary of the environment) and move toward any one of those

directions. Under this model, but for a point robot, a com-

binatorial filter called the Gap Navigation Tree (GNT) was

introduced in [38,39], it encodes precisely the part of the

shortest-path visibility graph that is needed for optimal nav-

igation. The GNT can also be considered a topological map.

A topological map can be represented as a graph, in which

the vertices depict particular sensor readings and configura-

tions and the edges refer to the controls between two dif-

ferent configurations. The GNT differs from previous ap-

proaches in that it is a local representation, defined for the

current position of the robot, rather than a global one. The

learned data structure corresponds exactly to the shortest

path tree [12] from the robot’s location. This enables the

(a) (b)

gL2

gL3

gR1

gL5

gR4

(c)

Fig. 1 a) The optimal path for a point robot, b) The optimal path for

a disc robot, c) The gap sensor (attached at the small solid disc on the

robot’s boundary) detects the sequence of gaps G = [gR
1 ,g

L
2 ,g

L
3 ,g

R
4 ,g

L
5],

in which gR
1 and gR

4 are right (near-to-far) gaps and gL
2 , gL

3 , and gL
5 are

left (far-to-near) gaps.

robot to navigate to any previously seen landmark by fol-

lowing the shortest-distance path, even though it cannot di-

rectly measure distances. This modeling avoids building a

geometric map of the environment. Furthermore, the robot

does not need to localize itself with respect to a global ref-

erence frame. The GNT was extended and applied to explo-

ration in [30]. The GNT was extended to point cloud models

in [19]. A larger family of gap sensors is described in [21].

The case of a disc robot is important because real robots

have nonzero width. It is therefore interesting to study the

case of a disc robot, which could correspond, for example,

to a Roomba platform. Unfortunately, the problem is con-

siderably more challenging because without additional sens-

ing information, the robot could accidentally strike obstacles

that poke into its swept region as it moves along a bitangent.

See Fig. 1 (a) and (b). In navigation, the robot must instead

execute detours from the bitangent. Sensing, characterizing,

and optimally navigating around these obstructions is one

of the contributions of this paper. The method for generat-

ing optimal navigation motions is modeled as a Moore Finite

State Machine (FSM).

Fig. 2 shows bitangents and bitangent complements, fol-

lowing the presentation of [39], a bitangent is identified with

connected open sets I ∈ ∂E and J ∈ ∂E , where ∂E is the

boundary of the polygonal environment. A pair of disjoint

connected open sets I and J identify a bitangent if at least

one point of I is visible to one point of J and if there is a line

L that partitions I and J into sets I1, I2 and I3, and J1, J2 and

J3 respectively, such that: 1) I1 is an open set that does not

intersect L (the same for J1); 2) I2 is a closed subset of L (the

same for J2); and 3) I3 is an open set that does not intersect

Bitangent

Bitangent complement
Bitangent complement

Bitangent complement

Bitangent complement
Bitangent

Fig. 2 bitangents and bitangent complements

L and that lies on the same side of L from I1 (the same for J3

and J1).

It is important to keep in mind that the robot is placed

into an environment with obstacles, but it is not given the

obstacle locations or its own location and orientation. The

robot observes this information over local reference frames.

The purpose is to show how optimal navigation is surpris-

ingly possible without a geometric map.

However, in this paper, we assume that the GNT repre-

senting the environment has been built and that a landmark

is encoded in the GNT. Either the method for building the

GNT with a point robot [38,39] or with a disc robot [18]

can be used. The works in [38,39] presented the original

GNT, a method to explore the environment and to encode a

landmark in it (to come back later to the landmark) have also

been presented. Since the robot was assumed to be a point

robot, then any visible point in the environment was also

reachable by the robot. In [18], the robot is assumed to be

a disc, hence, even if the robot can see certain place within

the environment, that place might not be reachable for the

robot. The exploration problem addressed in [18] is more

challenging than the case of a point robot because visibil-

ity information does not provide collision free paths in the

configuration space. The method proposed in [18] guaran-

tees exploring the whole environment or the largest possible

region of it and the disc robot is able to find a landmark and

encode it in the GNT or declare than an exploration strategy

for this objective does not exist. Note that differently to [18]

where the main problem is to explore the environment and

construct the GNT encoding it, in this work the problem is

to optimally navigate toward the landmark.

Once the GNT has been built, the approach proposed in

this paper is able to determine whether or not a collision

free path exists to reach the landmark and if a path exists, it

proposes the motion controls to reach the landmark.

1.1 Related work and main contributions

Our work is related to the problem of planning robot’s paths

that avoid collision with obstacles [16,6,27], and particu-

larly with underactuated nonholonomic robots [20,3,15]. Our

problem is also related to the problem of finding optimal

paths for nonholonomic robots [2,33,40]. The study of op-

timal paths for non-holonomic systems has also been an ac-

tive research topic. Reeds and Shepp determined the short-

est paths in an environment without obstacles for a car-like

robot that can move forward and backward [31]. In [33],

a complete characterization of the shortest paths for a car-

like robot is given for an environment without obstacles.

In [2], Balkcom and Mason determined the time-optimal tra-

jectories for a Differential Drive Robot (DDR) using Pon-

tryagin’s Maximum Principle (PMP) and geometric analy-

sis also for an environment without obstacles. In this work,

we present a motion strategy that minimizes the Euclidean

distance traveled by a disc-shaped, differential-drive under-

ractuated robot to reach a landmark, in a simply connected

polygonal environment.

The approaches described above to find shortest paths

with nonholonomic systems assume that the robot moves in

an environment without obstacles [33,2], in this work the

robot moves in an environment with obstacle constraints and

the robot does not have a geometric map of the environment

as in [20,15] to avoid collision with the obstacles, the robot

discover the obstacles with its sensors.

In [1], the authors study the problem of finding the short-

est path for a point robot, between two configurations (posi-

tion and orientation) in a convex polygon. The robot path is

constrained to have curvature at most 1. The authors propose

an algorithm for determining whether a collision-free path

exists for the point robot between two given configurations.

If such a path exists, the algorithm returns a shortest one.

In this work, we find the shortest path for a disc shaped dif-

ferential drive robot DDR (a nonholonomic under-actuated

system, but that is able to rotate in place) for any simple con-

nected polygonal environment (convex or not) and without

having the exact geometric map of the environment.

Computing shortest paths for a point robot, without non-

holonomic constraints, placed into a known polygonal re-

gion is straightforward. The most common approach is to

compute a visibility graph that includes only bitangent edges,

which is accomplished in O(n2 lgn) time by a radial sweep-

ing algorithm [10] (an O(n lgn+m) algorithm also exists,

in which m is the number of bitangents [13]). An alterna-

tive is the continuous Dijkstra method, which combinatori-

ally propagates a wavefront through the region and deter-

mines the shortest path in O(n lgn) time. Numerous prob-

lem variations and results exist. Computing shortest paths in

three-dimensional polyhedral regions is NP-hard [7]. Allow-

ing costs to vary over regions considerably complicates the

problem [29,32]. See [12,28] for surveys of shortest path

algorithms. For recent efforts on curved obstacles, see [8].

Once the robot has nontrivial dimensions, the problem

can be expressed in terms of configuration space obstacles.

Solutions for finding shortest paths assuming that the map

is known, are presented in [9,24]. Given strong sensors and

good odometry, standard SLAM approaches [11,37] could

be applied to obtain a geometric map.

Once a polygonal map is obtained, an alternative to find

the shortest path for a disc robot is to expand the obstacles

by the robot radius and reason over this extended polygonal

map. But that approach requires to built first a precise polyg-

onal map of the environment, which is a hard problem. One

main advantage of the approach presented in this work is

that it does not require that polygonal map. Even if the com-

plete polygonal map is available and the obstacle expansion

is done, the resulting configuration space representation is

not observable or measurable directly by the robot sensors.

Other main advantage of the approach proposed in this paper

is that information from the workspace is obtained directly

from the robot’s sensors, to infer the optimal robot paths in

the configuration space.

Other type of environment’s representations are the topo-

logical maps in the form of graphs [36,39,17,4]. In these

graphs the nodes represent environment places and the edges

represent adjacency. The problem of exploring an unknown

environment for searching of one or more recognizable tar-

gets is considered in [36]. In [17], the authors propose a

surveillance graph to model surveillance tasks performed

by teams of robots having limited sensing capabilities. A

surveillance graph is automatically extracted from occupancy

grid maps. The work in [17] represents an effort to close

a loop between a graph-based theoretical formulation and

practical scenarios. In [4], the authors study the problem of

determining the minimal information required by a robot to

reconstruct the visibility graph of an initially unknown poly-

gon. The authors allow a robot to collect sensory input while

it is located at a vertex. Vertices are not identified globally,

the vertex can be distinguished only in a local sense by a

relative position. The GNT has been used in several other

works (e.g. [38,39],[14], [30] and [18]). In the presented

work, we still use the GNT to establish connectivity in the

workspace between the robot and the landmark. However,

note that we present new contributions that are independent

of the GNT (see below).

Considering the problem of globally optimal navigation

for a disc robot, various objective functions are possible, for

instance time or energy spent by the robot. However, we

choose to minimize the distance traveled by the center of

the robot because it turns out that such a criterion establishes

the existence of a collision free path for the worst scenario,

that is, the environments with the most narrow passage, such

that, this passage is wider than the robot’s diameter. Hence,

the problem addressed in this paper can be seen as a game

[23] against the polygonal environment. The rationale be-

hind this result is as following: our motion strategy moves

the center of the robot as less as possible, in other words

the volume of the space that the robot sweeps as it moves,

is as small as possible, hence the proposed motion strategy

requires the smallest free space region to move the robot.

The main contributions of this work are theoretical and

have not been presented in our related previous works [38,

39,18]; we consider that they are the following:

1. The original GNT guarantees that a point robot will travel

the shortest Euclidian distance path to a landmark. In

this work, we extend the work to find the shortest path

for a disc robot, between any initial robot configuration

and the landmark. The GNT is used for establishing con-

nectivity between a point robot and the landmark, but

note that a disc robot could strike obstacles that poke

into its swept region as it moves along a bitangent. In

navigation, the disc robot must execute detours from the

bitangent (see Figure 1). In this work, we present a Fi-

nite State Machine that commands the robot to execute

those detours directly maping observations into controls

and yielding the shortest path for a disc shaped robot.

2. We consider a differential drive robot (DDR) nonholo-

nomic under actuated system. In the original GNT, non-

holonomic constrains over the robotic platform have not

been considered.

3. We have shown, that the criterion that we propose to op-

timize, that is minimizing the Euclidean distance trav-

eled by the center of the robot, gives as a consequence

the existence of a geometric solution for the navigation

problem of finding a path towards the landmark. Hence

if the proposed motion strategy does not find a collision

free path to the landmark then such path does not exist.

The content of the paper is organized as follows: Section

2 formally presents the problem statement, and the robot’s

model including motion and sensing capabilities. Section

3 presents an observation vector that is used to decide the

robot action. Section 4 describes the FSM that is used for

generating optimal robot navigation. Section 5 presents a

feedback motion policy that maps observations to robot’s

commands. Section 6 argues the optimality of the motion

strategy. Section 7 presents an implementation in simula-

tion, and Section 8 concludes the paper.

2 Problem statement

The robot is a differential drive (underactuated) system hav-

ing a defined forward heading. The robot has the shape of a

disc with radius r moving in a planar and polygonal environ-

ment which could be any compact set E ⊂ R
2 for which the

interior of E is simply connected. The boundary ∂E of E is

the image of a piecewise-analytic closed curve. However, it

is assumed that the collision-free subset of the robot’s con-

figuration space is simply connected or it might have sev-

eral connected components. C-space obstacle projected in

the plane corresponds to that of a translating disc, that is, the

extended boundary of E which is due to the robot radius 1.

Let Λ be a static landmark located in the environment

having the shape of a disc with the same radius as the robot.

Let assume that Λ is painted on the ground, hence it does not

have volume and it does not produce distance discontinuities

(gaps). This assumption is made since the robot has as its

goal to park on the landmark. In this work we assume that

a GNT representing the environment has already been built,

and that the landmark has been encoded in the GNT.

One objective of this paper is to determine whether or

not a collision free path toward the landmark Λ exists, if

a path exists then a second objective is to determine com-

mands to travel the shortest path toward the landmark in fi-

nite time.

2.1 The GNT

The GNT is an efficient data structure that dynamically changes

according to some critical events until the whole environ-

ment has been discovered.

The GNT can be constructed incrementally as the robot

moves along a path τ . Initially, the GNT consists of a root

node that is connected to one leaf node for every gap in

G(τ(0)). Each time t at which a change in G(τ(t)) occurs

corresponds to a critical event. This requires updating the

GNT. There are four different kinds of critical events:

– A new gap g appears: A node g is added as a child of

the root, while preserving the cyclic ordering from the

gap sensor (see Fig. 3 (a)). For a description of the gap

sensor see Section 2.2.

– A gap g disappears: The node g, which must be a leaf,

is removed (see Fig. 3 (b)).

– Gaps g1 and g2 merge into g: Nodes g1 and g2 become

children of a new node, g, which is added as a child of

the root and preserving the ordering of gaps (see Fig. 3

(c)).

– Gap g1 splits into g2 and g3: If g1 is a leaf node, then g2

and g3 become new nodes;otherwise, they already exist

as children of g1. Both g2 and g3 are connected to the

root, preserving the ordering of gaps and removing g1

(see Fig. 3 (d)).

If any leaf vertex has the potential to split, then the GNT

is incomplete because it could expand, some gaps split and

other gaps simply disappear. The gaps that disappear are

called primitive (their corresponding nodes in the GNT are

also called primitive). If all the leaf nodes of the GNT are

primitive, then the GNT is said to be complete. Indeed, the

following Lemma in [39] guarantees the termination of the

GNT’s construction.

1 Note that this is the configuration space for a translating disc rather

than for a rigid body because of rotational symmetry.

g

(a)

g

(b)

g1 g2 g

g1 g2

(c)

g1 g2g

g1 g2

(d)

Fig. 3 Critical events: (a) Gap appears, (b) Gap disappears, (c) Gap

merge, (d) Gap splits.

Lemma 1 The procedure of iteratively chasing non-primitive

leaves terminates with a resulting complete GNT.

For the proof please refer to [39].

The GNT can be extended to encode landmarks in it. If

a landmark disappears behind a gap g, then it is added to the

GNT in the node corresponding to g (see Fig. 4). The robot

can return to any previously visible landmark by traveling to

the node g until the landmark is visible.

The next theorem states that once completely constructed,

the extended GNT can be used for navigation from the cur-

rent position of the robot to any landmark in the environ-

ment.

gap

robot

robot

gap gap

Fig. 4 A landmark encoded in a node of the GNT.

Theorem 1 The extended GNT encodes a path to any object

or landmark in the environment from the current position of

the robot.

The proof is presented in [39].

2.2 Sensing model

The robot has an omnidirectional sensor, which is used to

sense the environment. The omnidirectional sensor is also

able to detect and track discontinuities in depth information

(gaps). Hence, over the omnidirectional sensor, it is possi-

ble to build a gap detector, further referred as the gap sen-

sor. The robot uses a side sensor that is a laser pointer use

to measure distance in a particular direction. The robot is

also equipped with a contact sensor that is able to tell the

robot when it is in contact with the environment in particular

points over the robot boundary. Finally the robot has a land-

mark detector sensor that tells the robot that it has reached

the landmark.

The sensor model is minimalist in the sense that the nav-

igation strategy described in Section 4 makes use of infor-

mation provided by these four sensors and if any component

is taken away then the robot will fail to solve its task. On the

other hand, it is interesting to notice that navigation strat-

egy only needs the information provided by those sensors,

so any component more powerful is unnecessary.

Furthermore, the sensing components are standard in the

literature and can be implemented using existing technol-

ogy. For instance using laser range finders [39], laser point-

ers [26], tactile bumpers [5] and for detecting the landmark

a color [5] or line detectors [35]. Below we describe in more

detail the sensing requirements.

1) Gap sensor: The omnidirectional sensor [21,39] is able

to detect and track two types of discontinuities in depth in-

formation (considering a counterclockwise direction along

∂E): discontinuities from far to near and discontinuities from

near to far (see Fig. 1(c)). Let G = [gt
1, ...,g

t
k] denote the cir-

cular sequence of gaps observed by the sensor. Using this

notation, t represents the discontinuity type, in which t = R

refers to a right gap where the hidden environment’s portion

is to the right (a discontinuity from near to far), and t = L

refers to a left gap where the hidden environment’s portion

is to the left (a discontinuity from far to near). For example,

the gap sensor in Fig. 1(c) detects gaps of different types:

G = [gR
1 ,g

L
2 ,g

L
3 ,g

R
4 ,g

L
5].

We place the gap sensor on the robot boundary and de-

fine motion primitives that during navigation send the robot

on collision-free trajectories that possibly contact the obsta-

cles (moving along the boundary of the free subset of the

configuration space, that is semi-free trajectories, is neces-

sary for optimal paths). These motion primitives, described

in detail in Section 2.4, allow the robot to rotate itself so that

it is aligned with a desired gap, to move forward while chas-

ing a gap, and to follow ∂E while the sensor is aligned to a

gap.

It is assumed that the gap sensor can be moved to two

different fixed positions on the robot’s boundary: the ex-

tremal left and right sides with respect to the forward wheel

direction. One way to implement this is with a turret that

allows the robot to move the gap sensor from its right side

to its left side and vice-versa. Fig. 6(c) shows the sensor

aligned to a right gap in which the gap sensor is on the right

side of the robot. To align the sensor to a left gap, the robot

moves the gap sensor to the left side of the robot. The om-

nidirectional sensor is able to measure distance and angles

to the vertices that generate gaps. Let du be the distance be-

tween the omnidirectional sensor and the vertex ui that orig-

inated the gap gi (in Fig. 5(d) gi = gR
0).

2) Side sensors: To detect obstacles that obstruct the robot,

our method needs to measure distances between the extremal

left and right side robot’s points along the direction of the

robot heading (forward) and the obstacles. Let those partic-

ular robot points be left side point l p and right side point

rp. The particular forward direction tangent to the robot’s

boundary at rp is called rt. The particular forward direction

tangent to the robot boundary at l p is called lt (see Fig. 5(a)).

Note that based on distance the discontinuities can be de-

tected. Let dR be the distance between rp and the obstacles at

the particular direction rt, and dL be the distance between l p

and the obstacles at the particular direction lt (see Fig. 5(b)).

If the particular direction, either rt or lt, is pointing to

a reflex vertex2 (a gap is aligned with this direction), then

a discontinuity in the sensor reading at this direction oc-

curs. Let dR
t denote the distance from rp to the closer point

along the discontinuity direction in the boundary of environ-

ment ∂E . Similarly, dL
t denotes the distance from l p. See

Fig. 5(c).

Sensor errors are not considered in this work. However,

note that our motion strategies will require only comparisons

of distances to determine which is larger, rather than needing

precise distance measurements.

2 A reflex vertex is a polygon vertex of an internal angle greater than

π .

forward direction

Laser pointer

sensor

Robot heading,

Omnidirectional

lp

rp

rt direction

lt direction

(a)

sensor
Omnidirectional

Laser pointer

dR

lp dL

rp

(b)

Omnidirectional
sensor

Laser pointer
dL

t

dRrp

lp

(c)

Omnidirectional

Laser pointer

sensor

gR0u0
rp

lp
du

(d)

Omnidirectional

Laser pointer

sensor reading

sensor
Particular omnidirectional

(e)

Fig. 5 Side Sensors: (a) Points rp and l p, and directions rt and lt ,

(b) dL and dR, (c) dL
t , (d) du, (e) Omnidirectional sensor readings for

contact detection.

3) Contact sensors: Our approach requires detecting whether

the robot is contacting ∂E at rp or l p.

4) Landmark reached sensor: Our approach also requires

a sensor that detects that the landmark has been reached.

Distance measurements between the obstacles and rp

and l p in directions rt and lt (forward), and the informa-

tion of whether the robot is touching ∂E at rp or l p, can

be obtained with different sensor configurations. For exam-

ple, it is possible to use two laser pointers and two contact

sensors, each of them located at rp and l p. However, to use

a smaller number of sensors and facilitate the instrumen-

tation of the robotic system, it is possible to emulate both

the contact sensors and one of the laser pointers, using the

omnidirectional sensor. The omnidirectional sensor reading

in the particular forward robot heading direction emulates

the laser pointer reading. The sensor readings at directions

perpendicular to the robot heading are used in this case. If

the robot is touching ∂E at the point at which the omnidi-

rectional sensor is located, then the sensor reading is zero.

If robot is touching ∂E at the point diametrically opposed

to the omnidirectional sensor, then the sensor reading will

correspond to the robot diameter (see Fig. 5(e)). Thus, one

option is to have the robot equipped with an omnidirectional

sensor and a laser pointer; they will be located at l p and

rp. Recall that a turret can be used to swap the locations of

the laser pointer and the omnidirectional sensor to avoid un-

necessary robot rotations in place. The turret moves on the

boundary of the robot. The gaps or landmarks are always

chased with the omnidirectional sensor; the laser pointer is

used to help to detect obstacles (see below). Also to detect

that the landmark has been reached several different hard-

ware implementation might be used, for instance using the

omnidirectional sensor.

An observation vector is obtained with the robot’s sen-

sors, this vector is used to decide the robot action. In Section

3 this observation vector is described in detail.

2.3 Landmark encoding

In [18], the landmark is said to be recognized if Λ is visi-

ble at least partially from the location of the omnidirectional

sensor. In [18], if the landmark is totally visible (fully con-

tained in the visibility polygon V (q)) from the omnidirec-

tional sensor location then the landmark is encoded in the

GNT as a node child of the root. If the landmark is totally or

partially occluded from the omnidirectional sensor location

then the landmark is encoded as a node child of the node

representing a gap in the GNT [39].

Let rpΛ be an extremal point on the landmark such that

whenever rt is aligned to rpΛ the body of the landmark is to

left of particular direction rt. There is an analogous defini-

tion for point l pΛ .

If a reflex vertex occludes point rpΛ then the Λ is en-

coded with the gap generated by the vertex. Similarly, if a

reflex vertex occludes point l pΛ then it is also encoded with

the gap generated by the vertex. This is the encoding used

in [18], hence the landmark Λ can be encoded at most with

two gaps. The navigation strategy proposed in this paper is

able to find the path that minimizes the Euclidian distance

to reach the landmark.

2.4 Motion model

The robot navigates using a sequence of motion primitives

that are generated by an automaton for which state transi-

tions are induced by sensor feedback alone. To navigate, a

gap (or equivalently the vertex that generates it) or a land-

mark is given to the robot as goal. There are five motion

primitives (see Fig. 6). Let the angular velocity of the right

and left wheels be wr and wl , respectively, with wr,wl ∈

{−1,0,1}. Thus, the motion primitives are generated by the

following controls:

– Clockwise rotation in place: wr =−1,wl = 1.

– Counterclockwise rotation in place: wr = 1,wl =−1.

– Clockwise rotation w.r.t. to point rp: wr = 0,wl = 1.

– Counterclockwise rotation w.r.t. to point l p: wr = 1,wl =
0

– Forward straight line motion: wr = 1,wl = 1.

In this work, we propose the simple controls described

above, which produce the three needed motion primitives

(straight line motion, rotation in place and rotation w.r.t.

point rp or l p) that yield the shortest path in terms of the Eu-

clidian distance. The rotation primitives are used to align rt

or lt to a specific gap (or landmark). Once rt or lt is aligned

u0

gR0

(a)

u0

gR0

(b)

gR0

u0

(c)

gR0
u1 u0

(d)

u0

gR0

(e)

Fig. 6 The motion primitives: (a) Clockwise rotation in place, (b)

Counterclockwise rotation in place, (c) Straight line motion, (d) Clock-

wise rotation w.r.t. to point rp, (e) Counterclockwise rotation w.r.t. to

point l p.

to a gap, the robot moves in a straight line to chase the gap.

If the path to the chosen gap is blocked, then the robot exe-

cutes a detour by choosing a new vertex as a subgoal. More

details are given in Section 4.

It would be interesting to consider some suitable prop-

erties of the robot controls. Since the optimization criterion

is the Euclidian distance and not time, then to preserve opti-

mality is not mandatory to travel at saturated maximal speed.

This gives flexibility in how to execute the motion primitives

and concatenate them. We leave for future work to include

suitable properties over the robot controls. For instance, to

include smooth transitions between controls or to propose

control laws able to deal with noise.

3 Observation vector

The GNT encodes the shortest path to any place in the en-

vironment for a point robot, it also encodes the robot’s goal.

However, for a disc robot this information is not enough for

optimal navigation. The observation vector provides the in-

formation that the robot needs to make decisions about the

actions yielding optimal motion. First, some useful defini-

tion are presented.

Definition 1 The gap that encodes the path toward the land-

mark in the GNT is called a goal gap ggoal. It is encoded in

a node child of the root in the GNT.

Definition 2 A goal vertex ugoal is the vertex that generates

the goal gap. A goal vertex is visible to the omnidirectional

sensor.

Definition 3 A sub-goal vertex is the next vertex to be vis-

ited in the optimal path for a disc robot, when a detour to the

goal vertex is required.

Definition 4 A vertex that generates a right gap, is called a

right vertex.

Definition 5 A vertex that generates a left gap, is called a

left vertex.

We will also refer to a candidate vertex, which is a vertex

that might become a sub-goal vertex. The precise conditions

that define a candidate vertex are given in definition 6.

The observation vector yni has 14 binary observations, in

the list below a description of each one is presented. Some

of them are more complex and they are described with more

detail.

1. FI: the landmark Λ is reached (1) or not (0).

2. LV: the landmark is totally visible from the omnidirec-

tional sensor location (1) or not (0).

3. FR: the robot is aligned by the first time to a sub-goal

vertex (1) otherwise (0).

4. RP: the robot is touching ∂E with point rp (1) or not (0).

5. LP: the robot is touching ∂E with point l p (1) or not (0).

6. VR: the vertices generating right gaps have been located

over a local reference frame (1) or not (0).

7. VL: the vertices generating left gaps have been located

over a local reference frame (1) or not (0).

8. AL: the robot is aligned to a given vertex or to a land-

mark (1) or not (0).

9. BL: there is a blockage toward a given vertex or a land-

mark (1) otherwise (0).

10. UN: the goal gap has merged (1) or not (0).

11. GT: the type of goal gap, right (1) or left (0).

12. CT: the type of the candidate vertex, right (1) or left (0).

13. O1: sensor location (two bits are needed to establish the

sensor location).

14. O2: sensor location.

VL and VR: To find a candidate vertex, it is necessary to

locate the vertices in local reference frames. There are four

types of local reference frames. Two of them are just the

symmetric cases of the other two. We describe the two basic

local reference frames in Appendices A and B.

VR = 1 when the locations of right vertices has been

computed, otherwise VR=0. VL = 1 when the locations of

left vertices has been computed, otherwise VL=0.

Robot alignment AL: The robot might be aligned to a given

vertex or to a landmark. The robot aligns direction rt to a

right vertex. Symmetrically, the robot aligns direction lt to a

left vertex. To chase a landmark, the robot aligns lt with l pΛ

or rt with rpΛ .

Blockage BL: This bit is (1) if there is a blockage toward a

given vertex or a landmark and (0) otherwise. A given vertex

or landmark is blocked if the robot cannot travel in straight

line toward it. A formal definition for blockage conditions is

given in Section 4.

There are four ways to detect a blockage:

1. The first one takes places when the robot is aligned to a

vertex. To detect the blockage, distances dL, dR, dL
t and

dR
t are used. If direction rt is aligned to a right vertex

and dR
t
> dL then a straight line robot path toward this

vertex is blocked. Likewise, if direction lt is aligned to

a left vertex and dL
t
> dR then a straight line robot path

toward that vertex is blocked.

2. The second way to detect a blockage is used when the

robot is not aligned to a given vertex. It might happen

that the robot cannot align either rt or lt to the goal

vertex, because this motion will produce an unneces-

sary robot translation, and the global optimality would

be lost. In Fig. 7, if the robot rotates counterclockwise

with respect to rp then the center of the robot will move

backward and optimality would be lost. Whenever the

robot is touching a vertex with point rp to align rt with

the goal vertex ugoal or landmark, the maximal angle

measured in clockwise sense from rt to the goal vertex

can never be larger than π , thus, if this angle is larger

than π a blockage is detected, as a robot collision neces-

sarily occurs (robot touches ∂E with a point different to

rp).

u2
gL2

u4 u3
gL4

lt

rt

rp

lp

gRgoal
ugoal

Fig. 7 Blockage type 2

There is a symmetric blockage detection whenever the

robot is touching a vertex with point l p.

3. The third way to detect a blockage requires several mea-

surements, this detection type is equivalent to fulfill the

blockage condition defined in Section 4.

4. For the fourth way to detect a blockage, the robot is

aligned to a landmark and the landmark is totally visible

from the omnidirectional sensor location. The distance

from the omnidirectional sensor to the landmark cannot

be sensed. Consequently, the path to reach the landmark

is declared as blocked, since a turret motion must be ex-

ecuted to establish whether or not the landmark can be

reached without visiting first a vertex. Thus, a Landmark

blockage is detected using visibility. If the landmark is

totally visible from the omnidirectional sensor located at

both points rp and l p then the path toward a landmark

is not blocked. Case 2-R and Case II-RP (see subsection

4.2) present the procedures for alignment with a land-

mark.

Sensor Location O1 and O2: We use two bits to estab-

lish the omnidirectional sensor location. O1=0 and O2=0

establishes that the omnidirectional sensor is at l p, O1=0

and O2=1 establishes that the omnidirectional sensor moves

from l p to rp, O1=1 and O2=0 establishes that the omni-

directional sensor is at rp, and O1=1 and O2=1 establishes

that the omnidirectional sensor moves from rp to l p.

4 Finite State Machine for Optimal Navigation

The robot navigates toward a landmark by moving toward

gaps based on the GNT. The GNT in [39] was designed for a

point robot, for a disc robot, the robot must execute detours

from the bitangent lines between vertices. At the end, the

navigation consists in visiting goal vertices. However, the

straight line path to a goal vertex might be blocked, in such

a case a sub-goal vertex is found. The vertex that generates

the goal gap, which is encoded in the GNT, is always visited.

For this reason, we call the modified path a detour. A detour

starts whenever a goal-vertex is blocked and it ends when

the sub-goal vertex is reached.

In this section a Finite State Machine (FSM) for optimal

navigation is provided. A main objective of this FSM is to

find the sub-goal vertex. Once the sub-goal vertex is found,

the robot rotates to get aligned with that vertex and then it

moves in straight line to reach it. There are two types of

rotation: rotation in place or rotation with respect to a point

(rp or l p). To find a sub-goal vertex, the robot determines

candidate vertices. The selection of a sub-goal vertex from a

set of candidate vertices is slightly different for a rotation in

place and for a rotation with respect to point rp or l p which

is further described in the next subsections.

The definition of candidate vertices is given below. This

definition is recursive and makes use of the local frames F ,

search domains, and θ angles defined in Appendix A (rota-

tions in place) and Appendix B (rotations with respect to an

extremal point), which are used to verify traversability to-

ward a vertex u. The definition slightly changes depending

on whether F is over rp or l p, and if the vertex u, which is

used to build F , is right or left vertex, producing two differ-

ent scenarios. Scenario 1 corresponds to F centered on rp

(or l p) and u being right (or left respectively), which appears

in both rotations in place and rotations with respect to an ex-

tremal point, and scenario 2 corresponds to F centered on

rp (or l p) and u being left (or right respectively), which only

appears in rotations with respect to an extremal point. To ad-

equate the correct definition for each scenario, just make the

proper substitutions in the definition according to Table 1.

Table 1 Labels for Definition 6

Scenario 1 Scenario 2

qp = rp u is right u is left

(or qp = l p) (or u left respectively) (or u right respectively)

Ξ means larger smaller

ϒ means largest smallest

Used local Appendix A or Appendix B

frame F built according to Appendix B

Conditions B (blockage conditions): Consider a local frame

F properly built (see Table 1) over qp (rp or l p). An oppo-

site type vertex o (left if u is right, or right if u is left) blocks

u in F , if

(a) o is within the search domain of u with respect to F

(b) o has a θo angle (θL if o is left, or θR if o is right) that is

Ξ than the θu angle related to u (θR if o is left, or θL if o

is right), both measured according to F , and

(c) o has a distance dt
o (dt

L if o is left, or dt
R if o is right)

smaller than distance dt
u (dt

R if o is left, or dt
L if o is right)

related to u.

Definition 6 For a given goal vertex ugoal, a candidate ver-

tex c is a reflex vertex such that:

(a) c is an opposite type vertex to ugoal, where c fulfills the

blockage conditions for ugoal, and c has the ϒ θ angle

properly generating the local frame F (see Table 1), or

(b) c is an opposite type vertex to another candidate vertex

c′, where c fulfills the blockage conditions for c′, and c

has the ϒ θ angle properly generating the local frame F

(see Table 1).

The complete FSM is presented in subsection 4.1. Later,

we describe the procedures to find a sub-goal vertex and to

align the robot to that vertex. The procedures described in

subsections 4.2 and 4.4 are part of the FSM presented in

subsection 4.1.

4.1 Complete FSM for Optimal Navigation

Fig. 8 shows the FSM M for navigation. For modularity and

simplicity M is organized in 3 procedures and 5 states. No-

tice that the procedures themselves are computed by a set of

states. The procedures are ALIGN, RPALING and LPALIGN.

These procedures have as a main objective to find a sub-goal

vertex. The cases in procedures ALIGN, RPALIGN are de-

scribed in detail in Appendix C, the procedure LPALIGN is

just the symmetric case of RPALIGN.

The Finite State Machine modeling allows one to orga-

nize the several cases and to consider symmetry on them.

ALIGN

DETOURR

DETOURL

RCHASE

LCHASE

RPALIGN

LPALIGN

Λ-REACHED

yn61

yn61

yn62

yn62

yn60

yn60

Fig. 8 Complete FSM for Optimal Navigation

Once that the FSM is designed, it can be used to navigate

in any simple connected environment by directly mapping

observations into controls.

The robot rotates to get aligned with a sub-goal vertex.

In ALIGN, the robot rotates in place either in clockwise or

counterclockwise sense. In RPALIGN the robot rotates in

clockwise sense with respect to point rp and in LPALIGN

the robot rotates in counterclockwise sense with respect to

point l p.

The states in the machine M are RCHASE, LCHASE,

DETOURL, DETOURR and Λ -REACHED. RCHASE makes

the robot to move in straight line to a right goal vertex or to

the landmark (when the robot moves toward the landmark

direction rt is aligned with point rpΛ). The omnidirectional

sensor is placed at rp. LCHASE makes the robot to move in

straight line to a left goal vertex or to the landmark (when

the robot moves toward the landmark direction lt is aligned

with point l pΛ). The omnidirectional sensor is placed at l p.

DETOURR makes the robot to move in straight line to a right

sub-goal vertex. The omnidirectional sensor is placed at rp.

DETOURL makes the robot to move in straight line to a left

sub-goal vertex. The omnidirectional sensor is placed at l p.

The state Λ -REACHED indicates that the robot has reached

the landmark and the navigation task is over.

The observation vectors for the states in machine M are

shown in Table 2 (refer to Fig. 8). For simplifying the pre-

sentation of Fig. 8, the observations yielding transitions be-

tween procedures and states are not labeled, because there

might several ones that generate the transition. However, in-

side the procedures at the level of states all the transitions

are labeled with the corresponding observation.

4.2 Rotation in Place: ALIGN

ALIGN is a procedure that is organized in cases. Each case

corresponds to a set of states in the FSM.

In procedure ALIGN a rotation in place is executed to (1)

align the robot to a no blocked goal vertex, (2) align it to a

landmark, or (3) align it to a sub-goal vertex; an alignment

to a sub-goal vertex might require one or more alignments

to candidate vertices.

Fig. 9 shows the design of the part of the FSM dealing

with the three cases mentioned above, which in turn each of

them is instantiated in a left case and a right case. Thus, this

part of the FSM is organized in three right cases and three

left cases. Note that in the machine the cases are related, that

means that while the procedure to find the sub-goal vertex is

carried out the current case might change.

The state START1 is the initial state of the whole FSM,

it decides whether the robot must get align with a left goal

vertex, a right goal vertex, to l pΛ or to rpΛ . The observation

vectors that make this state to transit to other state are shown

in Table 3. In all the further tables 1 denotes true, 0 false and

x any value.

In Appendix C three of the six cases are described in

detail. The three cases correspond to an alignment to a right

goal vertex, to rpΛ , and to a left candidate vertex. The other

three cases are just symmetric.

4.3 Example of the execution of ALIGN

Fig. 10 shows an example of the execution of Case 1-R,

Case 3-L (left candidate vertex) and Case 3-R (right candi-

date vertex) in ALIGN to find a sub-goal vertex. These cases

occur sequentially one after the other.

Fig. 10(a) shows the alignment of rt to the goal vertex

u0 corresponding to the execution Case 1-R. First, the goal

vertex u0 is a right vertex, hence the FSM transits to state

RV1. Second, the FSM transits to state RCCW1 to align rt

to the right goal vertex u0. Third, once the robot is aligned,

the FSM transits to T1B1. This state decides whether or not

the right goal vertex u0 is blocked. Since this goal vertex is

blocked the FSM transits to state TCCW2, the first state in

Case 3-L.

Fig. 10(b) shows the alignment of lt to the left candidate

vertex u2 corresponding to the execution of Case 3-L (left

candidate vertex). First, in state TCCW2 the robot moves

the omnidirectional sensor to point l p. Once the omnidirec-

tional sensor is at l p the robot locates the left vertices (in the

reference frame F defined in Appendix A) and selects u2

as the current candidate vertex. Second, since the lt is not

aligned to the left candidate vertex u2 the FSM transits to

RCW1. In this state the robot rotates to align lt to candidate

vertex u2 (see Fig. 10(b)). Third, once the robot is aligned,

the FSM transits to T1B2. This state decides whether or

Table 2 Observation vectors for the states in machine M, Fig. 8

FI LV FR RP LP VR VL AL BL UN GT CT O1 O2

yn60 1 1 1 0 0 x x x x x x x x x

yn61 x x 1 1 0 x x 0 x x x x x x

yn62 x x 1 0 1 x x 0 x x x x x x

Table 3 Observation vectors for state START1

FI LV FR RP LP VR VL AL BL UN GT CT O1 O2

yn0 x 0 x x x x x x x x 0 x x x

yn1 x 0 x x x x x x x x 1 x x x

yn2 x 1 x x x x x x x x 0 x 0 x

yn3 x 1 x x x x x x x x 0 x 1 x

START1

RL1

CASE 2-R

RCCW2 TCCW1 LCHASE

RV1 RCCW1TCW1

CASE 1-R

T1B1

RCHASE

TCCW2

CASE 3-L

RCW1 T1B2

DETOURL

LL1

CASE 2-L

RCW3 TCW2 RCHASE

LV1 RCW2TCCW3

CASE 1-L

T1B3

LCHASE

TCW3

CASE 3-R

RCCW3 T1B4

DETOURR

yn0

yn1

yn2

yn3

yn5

yn4
yn7

yn6

yn8

yn10

yn9

yn11

yn12

yn13

yn14

yn16

yn15

yn1

yn18

yn17

yn0

yn20

yn19

yn10

yn9

yn11

yn12

yn22

yn21

yn6

yn7

yn23

yn10

yn9

yn11

yn12

yn13

yn14
yn15

yn16

yn0

yn25

yn25

yn1

yn27

yn26

yn10

yn9
yn11

yn12

Fig. 9 Procedure ALIGN

not the left candidate vertex u2 is blocked. Given that the

left candidate vertex u2 is blocked, the FSM transits to state

TCW3, the first state in Case 3-R (right candidate vertex).

Fig. 10(c) shows the alignment of rt to the right candi-

date vertex u1 corresponding to the execution of Case 3-R

(right candidate vertex). In this case, while in TCW3, the

FSM selects u1 as a candidate vertex then the FSM transits

to RCCW3 and later to T1B4. State T1B4 decides that the

right candidate vertex u1 is not blocked. Therefore, the right

candidate vertex u1 becomes the right sub-goal vertex.

4.4 Rotation with respect to point rp: RPALIGN

In this subsection, we present a procedure that makes the

robot rotate w.r.t. a point. Again, the main objective is to find

the sub-goal vertex. RPALIGN is also organized in cases.

Each case corresponds to a set of states in the FSM.

A rotation w.r.t. point rp is executed to (I) align the robot

to a right goal vertex, (II) align it to a landmark, (III) align

it to a left goal vertex or (IV) align it to a sub-goal vertex.

In Appendix C, we present in detail the cases of the pro-

cedure RPALIGN that makes the robot to rotate with re-

spect to point rp. There is an equivalent procedure called

LPALIGN which is symmetric to RPALIGN and makes the

robot to rotate with respect to point l p.

In a rotation in place, the center of the robot does not

translate, and the robot can align rt to any right vertex or lt

to any left vertex without the risk of loosing optimality in

terms of the distance traveled by the center of the robot. In

contrast, in a rotation with respect to point rp the center of

the robot translates. Consequently, the robot cannot align lt

to each left vertex, or rt to each right vertex exhaustively one

by one to check whether that vertex is blocked or not. That is

because the center of the robot might translate unnecessarily

and optimality might be lost. To deal with this problem Al-

u0
gR0dR

dL

u1
g1

g2
u2

(a) Case 1-R

u0u1

u2

g2

g1
g0

dL

dR

(b) Case 3-L (left candidate vertex)

u0
gR0dR

dL

u1
g1

g2
u2

(c) Case 3-R (right candidate vertex)

Fig. 10 An example of the execution by the robot of Case 1-R, Case

3-L (left candidate vertex) and Case 3-R (right candidate vertex) in

ALIGN

gorithm 1 is used. Thus, in Case IV-RP, a sub-goal vertex is

found with Algorithm 1. This algorithm guarantees that the

robot is able to rotate to get aligned with the sub-goal vertex

without losing path optimality.

It might happen that the gap generated by a sub-goal

vertex merges with other gap, while the robot rotates to get

aligned with a sub-goal vertex. If this occurs then the sub-

goal vertex is re-calculated by executing again Algorithm 1.

There is another issue, there are vertices that from the

omnidirectional sensor location do not generate a gap when

Algorithm 1 is invoked. Such a vertex might block the path

toward the goal vertex or the landmark. We call this other

issue a hidden vertex (see cases III-RP and IV-RP in Ap-

pendix C and Lemma 5 for more details about a hidden ver-

tex). In Lemma 5 is shown that a hidden vertex always will

eventually generate a gap. Once a hidden vertex is detected

Algorithm 1 is invoked again and the sub-goal vertex is re-

calculated.

Fig. 11 shows the design of the part of the FSM dealing

with the four cases mentioned above. Again, the cases are

related, while the procedure to find the sub-goal vertex is

carried out the current case might change. The symmetric

cases correspond to LPALIGN.

4.5 Algorithm for finding a sub-goal vertex

This algorithm is only used in RPALIGN Case IV-RP (pre-

sented in Appendix C) to find a sub-goal vertex (or in the

symmetric left Case IV-LP in LPALING). We call up to a

left sub-goal vertex and un to a right sub-goal vertex. To find

vertices up or un all vertices are located in the local refer-

ence frame F presented in Appendix B. Using the vertices’

locations, the distances and angles of alignments dR
t , dL

t , θR

and θL are computed.

Algorithm 1 uses two orders. The first order is estab-

lished w.r.t. distances. This order includes distances dR
t for

the right vertices and distances dL
t for the left vertices. The

order is defined from smaller to larger distances. The second

order is an angular order also from smaller to larger; vertices

are ordered by angle including both θR and θL, angle θR is

used to consider right vertices and θL is used to consider left

vertices. The vertices that Algorithm 1 must consider to find

a sub-goal vertex are located in the search domain presented

in Appendix B.

Algorithm 1 Find a sub-goal vertex in RPALIGN or LPAL-

ING

1) The algorithm starts from the goal vertex. The goal vertex is de-

clared a candidate vertex.

2) If the candidate vertex is a left vertex, then go to Step 6.

3) Detect left vertices that block the path toward the right candidate

vertex uR
c . To block the path toward uR

c , left vertices must have an

angle θL larger than the angle θR related to uR
c , and a distance dL

t

smaller than distance dR
t related to uR

c .

4) If no vertex blocks the path toward the candidate vertex uR
c , then

go to Step 9.

5) Selection of a left candidate vertex uL
c . The left vertex with largest

θL, the last in the angular order is selected as uL
c .

6) Detect right vertices that block the path toward the left candidate

vertex uL
c . To block the path toward uL

c , right vertices must have an

angle θR smaller than the angle θL related to uL
c , and a distance dR

t

smaller than distance dL
t related to uL

c .

7) If no vertex blocks the path toward the candidate vertex uL
c , then

go to Step 9.

8) Selection of a right candidate vertex uR
c . The right vertex with

smallest angle θR, the first in the angular order is selected as a new

candidate vertex uR
c . Go to Step 3.

9) The right vertex uR
c is selected as sub-goal vertex un or the left

vertex uL
c is selected as sub-goal vertex up.

Table 4 shows an example of the execution of Algorithm

1 and the selection of a up vertex, this example is shown in

Fig. 12. Each row in the botom part of Table 4 is an iteration

of Algorithm 1. In Table 4, ↑ indicates the current candidate

vertex to which the blockage conditions are verified,× indi-

cates the vertices whose distance to each of them is smaller

than the distance to the candidate vertex ↑, ⊗ indicates the

vertex selected as the next candidate at each iteration, − in-

dicates that the distance to this vertex is smaller than the dis-

tance to the candidate vertex ↑, + indicates that the distance

START2

LV2 TCCW5 D T2B1

RPCW3

CASE III-RP

TCCW6 TCW4 RPCW4 LCHASE

RL2

CASE II-RP

RPCW2 TCCW4 LCHASE

RV2

CASE I-RP

RPCW1 T1B5 RCHASE

A1

TCCW9

CASE IV-RP

TCCW7 TCW5 RPCW5

DETOURL

TCW6 RPCW6

T1B6

DETOURR

TCCW8

yn28

yn29

yn30

yn11

yn12

yn10

yn9

yn12

yn11

yn31

yn32

yn14

yn9

yn34

yn35

yn33

yn36 yn38

yn40 yn37,39

yn42

yn41

yn43

yn21

yn45

yn44

yn47yn48

yn46

yn49

yn50

yn51

yn50

yn51

yn53

yn52

yn53

yn21

yn45

yn54
yn56

yn57 yn55

yn53

yn58

yn59

yn44

yn10

yn9

yn11

yn12

Fig. 11 Procedure RPALIGN

Table 4 Example of orders for selecting a up vertex (refer to Fig. 12).

Angular order Distance order

Index 1 2 3 4 5 6 7 Index 1 2 3 4 5 6 7

Direction rt rt lt rt lt rt lt Direction rt lt lt rt lt rt rt

Type R R L R L R L Type R L L R L R R

Vertex ugoal u1 u5 u3 u4 u6 u2 Vertex u6 u5 u4 u3 u2 u1 ugoal

→ ↑ × × ⊗ - - - ↑
← ⊗ × ↑ - - ↑ + +

→ × ↑ ⊗ - - ↑ +

← ↑ × - ↑ + + +

Table 5 Orders for selecting a un vertex (refer to Fig. 13).

Angular order Distance order

Index 1 2 3 4 Index 1 2 3 4

Direction rt lt rt lt Direction lt rt lt rt

Type R L R L Type L R L R

Vertex ugoal u3 u2 u4 Vertex u3 u2 u4 ugoal

→ ↑ × ⊗ - - ↑
← ⊗ ↑ - ↑ +

→ × ↑ - ↑ +

to this vertex is larger than the distance to the candidate ver-

tex ↑,→ indicates that for a left vertex, the vertex that must

be selected as the next candidate is the last in the angular

order, and← indicates that for a right vertex, the vertex that

must be selected as the next candidate is the first in the an-

gular order. The algorithm determines that u4 is a up vertex.

Table 5 shows another example of the execution of Al-

gorithm 1 and the selection of a un vertex, u2 is a un. The

corresponding example is shown in Fig. 13.

4.6 Example of the execution of RPALIGN

Fig. 14 shows an example of the execution by the robot of

Case I-RP (right goal vertex) and Case IV-RP (left goal ver-

tex) in RPALIGN. These cases occur sequentially one after

the other.

Fig. 14(a) shows the execution of Case I-RP. First, the

goal vertex is a right vertex, hence the FSM transits to state

RV2. Second, the FSM transits to state RPCW1 to align rt

to the right goal vertex u0. Third, once the robot is aligned

(see Fig. 14(b)), the FSM transits to T1B5. This state de-

cides whether or not the right goal vertex is blocked (detec-

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

������
������
������

������
������
������

������
������
������
������

������
������
������
������

Search region for up

Search region for un

rt

ugoalu1

u2

u3

u4u5

u6

Fig. 12 A up vertex, u4 in this example.

u3

ugoalu2

u4

rt

Search region for up

Search region for un

Fig. 13 A un vertex, u2 in this example.

tion of type 1). Since this goal vertex is blocked the FSM

transits to state TCCW9, the first state in Case IV-RP.

In state TCCW9, first, the robot locates right vertices in

the local reference frame F presented in Appendix B, sec-

ond the robot moves the omnidirectional sensor to point l p.

Third, once the omnidirectional sensor is at l p, left vertices

are located in the reference frame presented in Appendix B.

The FSM transits to state A1. In this state the left sub-goal

vertex u2 is selected using Algorithm 1. Once the left sub-

goal vertex u2 is selected the FSM transits to state RPCW5.

In this state the robot rotates w.r.t point rp to try to align lt

to u2 (see Fig. 14(b)). During the rotation the gap generated

by vertex u2 merges with the gap generated by vertex u3.

Refer to Fig. 14(c), the omnidirectional sensor crosses the

bitangent line between vertex u2 and u3. When the merge

between the gaps occurs the FSM transits to state TCW5. In

state TCW5 the robot stops, and the turret places the omni-

directional sensor at rp. The right vertices are located in the

reference frame F defined in Appendix B. Once the right

vertices are located in the local reference frame, the FSM

transits to state TCCW7. In state TCCW7 the omnidirec-

tional sensor is placed at l p, and left vertices are located in

the reference frame. The FSM transits to state A1. In this

state the u3 is selected as sub-goal vertex using Algorithm

1. Once the left sub-goal vertex is selected the FSM transits

to state RPCW5. In this state the robot rotates w.r.t point rp

to align lt to u3 (see Fig. 14(d)). Since u3 is not blocked no

re-invocation of Algorithm 1 is required and u3 remains as

the sub-goal vertex.

g0
u0u1

g2
u2

(a)

g0
u0

dR

dL

u1

g2
u2

(b)

u0u1

(c)

u0u1

g3

u3

(d)

Fig. 14 Case I-PR (right goal vertex u0) and Case IV-RP (left sub-goal

vertices u2 and u3) in RPALIGN

4.7 Considering all possibilities for the FSM

The graphs shown in Figs. 15(a) and 15(b) have as objec-

tive to show that the design of the FSM is exhaustive, all

possibilities are considered.

For the case of rotation in place (see Fig 15(a)) the pos-

sibilities are as follows. (G) The robot’s objective is to get

aligned with a gap, or, (Λ) the robot’s objective is to get

aligned with the landmark. First, consider the possibilities

for node (G). Indeed, there is only one possibility as the

alignment with the gap is always possible by executing a ro-

tation in place, therefore, (R) the robot rotates in place, and

(A) it gets aligned with the gap. Once the robot is aligned

with the gap, there are only two possibilities. (B1) There

exists a blockage (detection type 1) or not (NB1). If (B1)

happens there is only one possibility, namely, (C) the robot

finds a candidate vertex. Since the candidate vertex gener-

ates a gap the only possibility is to return to node (G) for the

robot to get aligned with this gap. If (NB1) there is no block-

age then (SL) the robot moves in straight line. A straight line

motion can only yield two possibilities: (S) there is an opti-

mal path toward the gap (the robot touches the vertex with

point rp or l p), or, (NS) the robot collides (it touches ∂E

with a point different to rp or l p and hence there is no solu-

tion path).

Now, consider that (Λ) the robot’s objective is to get

aligned with the landmark. There is only one possibility,

(R) the robot rotates in place, and (A) gets aligned with the

landmark. Once the robot is aligned to the landmark, (B4)

the path toward the landmark is always assumed as blocked

(blockage detection of type 4). From (B4) there are two pos-

sibilities: (S) there is an optimal path toward the landmark,

or, the path toward the landmark is blocked by a vertex, since

this vertex generates a gap, (G) the robot must get aligned

with a gap. This analysis lists all possibilities for rotation in

place.

G

R

A

B1

C

NB1

SL

S NS

Λ

R

A

B4

S

(a) Rotation in place

G

NB2, NB3

R

NS A

NB1

SL

S NS

B1

US

B2, B3UG

SG

Λ

B2 NB2

R

A

B4

S

NS

(b) Rotation w.r.t. point rp or l p

Fig. 15 Graphs that present all the possibilities in the FSM

Let us consider a rotation w.r.t point rp or l p. (G) The

robot’s objective is to get aligned with a gap, or, (Λ) the

robot’s objective is to get aligned with the landmark. First,

consider the possibilities for node (G). There are two pos-

sibilities: (NB2,NB3) the path toward the vertex generating

the gap is not blocked, or, (B2,B3) it is blocked (blockage

detection of type 2 or type 3). If (B2,B3) occurs there is

only one possibility, (SG) a sub-goal vertex is found using

Algorithm 1. Once the sub-goal vertex has been found, (R)

the robot rotates. If (NB2,NB3) occurs the only possibility

is (R). If (R) happens there are four possibilities: (NS) the

robot collides (the robot touches ∂E with a point different to

rp or l p), (UG) the gap generated by the goal vertex merges

with other gap, (US) the gap generated by the sub-goal ver-

tex merges with other gap, or (A) the robot is able to achieve

the alignment with the vertex generating the gap. If (UG)

then there is a new goal vertex and it is needed to verify a

blockage for this vertex; the process starts again in (G). If

(US) occurs then the sub-goal must be re-calculated using

Algorithm 1 in (SG). If (A), once the alignment has been

done, there are two possibilities: (NB1) the path toward the

vertex is not blocked, or, (B1) it is blocked (blockage detec-

tion of type 1). If (B1) then a sub-goal vertex is calculated

using Algorithm 1 in (SG). If (NB1), no blockage, then (SL)

the robot moves in straight line. A straight line motion can

only yield two possibilities: (S) there is a an optimal path

toward the gap (the robot touches the vertex with point rp or

l p), or, (NS) the robot collides (it touches ∂E with a point

different to rp or l p).

Finally, consider that (Λ) the robot’s objective is to get

aligned with the landmark. There is only one possibility,

(B2) the path toward the landmark is blocked (blockage de-

tection of type 2), or, (NB2) the path is not blocked. If (B2)

then the path toward the landmark is blocked by a vertex,

since this vertex generates a gap, (G) the robot must get

aligned with such gap. If (NB2) then (R) robot rotates. Once

the robot rotates there are two possibilities: (NS) robot col-

lides, there is no solution, or, (A) the robot is able to achieve

the alignment with the landmark. If (A) then, once the robot

is aligned to the landmark, (B4) the path toward the land-

mark is always assumed as blocked (blockage detection of

type 4). From (B4) there are two possibilities: (S) there is

an optimal path toward the landmark, or, the path toward the

landmark is blocked by a vertex, since this vertex generates

a gap, (G) the robot must get aligned with a gap. This analy-

sis lists all possibilities for rotation with respect to point rp

or l p.

5 The feedback motion strategy for navigation

In this section two motion policies are syntethized from the

FSM, which maps observations to actions are presented. In

the first one, the motion of a turret that changes the omnidi-

rectional sensor position is included, and in the second one

it is implicit. The motion policy is based on the paradigm

of avoiding the state estimation to carry out two consecu-

tive mappings: y→ x→ u, that is from observation y to state

x and then to control u, but instead of that there is a direct

mapping y→ u. The observation vector yn for navigation

including the turret’s motion has 14 binary sensor observa-

tions (see Section 3 for the description of each binary obser-

vation). It is interesting to note that the observation vector

ym for the feedback motion strategy without turret’s motion

is a subset of yn, that is ym⊂ yn. This means that some of the

observation elements of yn are not relevant for the feedback

motion strategy that makes implicit the turret’s motion and

they can be any value, consequently they are not included.

5.1 Feedback motion strategy including turret’s motion

In this feedback motion strategy the turret’s motion is in-

cluded. Whenever the robot translates the turret is static and

whenever the turret moves the robot is motionless. Depend-

ing on the observation, one of the five different motion prim-

itives will be executed for the robot and two for the turret:

(1) straight line motion; (2) clockwise rotation in place; (3)

counterclockwise rotation in place; (4) clockwise rotation

with respect to point rp and (5) counterclockwise rotation

with respect to point l p. In the next two motion primitives

the robot is motionless and the turret moves: (6) the robot

moves the turret on its boundary in clockwise sense and (7)

the robot moves the turret on its boundary in counterclock-

wise sense.

The feedback motion strategy can be established by: γ :

{0,1}14→{−1,0,1}3. The feedback motion strategy is given

by γ(yni) = (wr,wl ,vt), where wr and wl are the angular ve-

locities of the right and left wheels, and vt is the velocity

displacement of the turret on the robot boundary. The set of

all 16384 possible observation vectors can be grouped by

letting x denote “any value” . This can be done using stan-

dard boolean algebra and reduction techniques, which might

be implemented using software. Doing so we obtain:

yn63 = (0,x,x,x,x,x,1,1,0,0,x,x,x,0),
yn64 = (0,x,x,x,x,x,0,1,0,0,x,x,x,0),
yn65 = (0,x,0,x,x,0,0,0,x,0,0,0,0,0),
yn66 = (0,x,0,x,x,1,1,0,0,0,x,0,0,0),
yn67 = (0,0,0,x,x,0,0,0,0,0,1,0,1,0),
yn68 = (0,x,0,x,x,0,0,0,1,0,x,0,1,0),
yn69 = (0,x,0,x,x,1,1,0,0,0,x,1,1,0),
yn70 = (0,x,1,1,0,1,1,0,0,0,x,0,0,0),
yn71 = (0,x,1,1,0,1,1,0,0,0,x,1,1,0),
yn72 = (0,0,1,1,0,x,0,0,0,0,1,0,1,0),
yn73 = (0,1,1,1,0,1,0,0,0,0,0,0,1,0),
yn74 = (0,0,1,1,0,x,0,0,0,1,1,0,0,0),
yn75 = (0,0,1,1,0,0,0,0,0,0,0,0,0,0),
yn76 = (0,x,1,0,1,1,1,0,0,0,x,1,1,0),
yn77 = (0,x,1,0,1,1,1,0,0,0,x,0,0,0),
yn78 = (0,x,1,0,1,0,x,0,0,0,0,0,0,0),
yn79 = (0,0,1,0,1,0,x,0,0,1,0,0,1,0),
yn80 = (0,0,1,0,1,0,0,0,0,0,1,0,1,0),
yn81 = (x,x,x,x,x,x,x,x,x,x,x,x,0,1),
yn82 = (0,x,x,x,x,x,x,1,1,0,x,x,0,0),
yn83 = (0,0,0,x,x,0,0,0,0,0,1,0,0,0),
yn84 = (0,0,1,1,0,0,0,0,0,1,0,0,0,0),
yn85 = (0,x,1,1,0,1,1,0,0,0,x,1,0,0),
yn86 = (0,x,1,1,0,1,1,0,0,1,x,0,0,0),
yn87 = (0,0,1,0,1,0,1,0,0,x,1,0,0,0),
yn88 = (0,x,1,0,1,0,1,0,0,1,x,0,0,0),
yn89 = (0,x,1,0,1,0,x,0,1,0,0,0,0,0),
yn90 = (x,x,x,x,x,x,x,x,x,x,x,x,1,1),
yn91 = (0,x,x,x,x,x,x,1,1,0,x,x,1,0),
yn92 = (0,0,x,x,x,x,0,0,0,0,0,0,1,0),
yn93 = (0,x,1,1,0,1,0,0,0,1,x,0,1,0),
yn94 = (0,x,1,1,0,x,0,0,1,0,x,0,1,0),
yn95 = (0,0,1,0,1,x,x,0,0,1,1,x,1,0),
yn96 = (0,x,1,0,1,1,1,0,0,0,x,0,1,0),
yn97 = (0,x,1,0,1,1,1,0,0,1,0,1,1,0).

The strategy γ can be encoded as

1 γ(yn63 ∨ yn64) = (1,1,0);
2 γ(yn65 ∨ yn66) = (−1,1,0);
3 γ(yn67 ∨ yn68 ∨ yn69) = (1,−1,0);
4 γ(yn70 ∨ yn71 ∨ yn72∨ yn73 ∨ yn74 ∨ yn75) = (0,1,0);
5 γ(yn76 ∨ yn77 ∨ yn78∨ yn79 ∨ yn80) = (1,0,0);
6 γ(yn81 ∨ yn82 ∨ yn83∨ yn84 ∨ yn85 ∨ yn86∨ yn87 ∨ yn88∨ yn89) = (0,0,1);
7 γ(yn90 ∨ yn91 ∨ yn92∨ yn93 ∨ yn94 ∨ yn95∨ yn96 ∨ yn97) = (0,0,−1).

in which ∨ means “or”.

5.2 Feedback motion strategy with turret motion made

implicit

Only six binary sensor observations affect the control of the

wheels motors. The used observation vector is ymi = (FR,

RP, LP, AL, BL, O1). Refer to Section 3 for the meaning

of each element of the observation vector. Depending on

the observation, one of the five different motion primitives

will be executed: (1) straight line motion; (2) clockwise ro-

tation in place; (3) counterclockwise rotation in place; (4)

clockwise rotation with respect to point rp and (5) coun-

terclockwise rotation with respect to point l p. Recall that

the angular velocities of the differential-drive wheels yield

one of these motion primitives. Hence, the feedback motion

strategy can be established by: γ : {0,1}6→ {−1,0,1}2 to

obtain γ(ymi) = (wr,wl). The set of all 64 possible observa-

tion vectors can be grouped by letting x denote “any value”

to obtain: ym1 =(x,x,x,1,0,x), ym2 =(0,x,x,0,x,0), ym3 =

(0,x,x,0,x,1), ym4 = (1,0,1,0,x,x), ym5 = (1,1,0,0,x,x).

The strategy γ can be encoded as

(1)γ(ym1) = (1,1); (4)γ(ym2) = (−1,1);

(2)γ(ym3) = (1,−1); (5)γ(ym4) = (0,1);

(3)γ(ym5) = (1,0).

6 Proof of optimal navigation

In this section, we prove that the center of the disc non-

holonomic robot travels the shortest distance to reach the

landmark. Our methodology is not based on numerical op-

timization techniques but on a geometrical and topological

reasoning. To our knowledge this is the first time that the

shortest path for a DDR (system) is found in the presence

of obstacles (environment constraints) without knowing the

complete geometric representation of the environment. Note

that our result is not an approximation but the exact solution.

The robot path is found in the continuous. However, recall

that the robot follows only three motions primitives (straight

line motion, rotation in place and rotation with respect to

point rp or l p), the finite state machine triggers one of these

motion primitives according to critical changes in the sen-

sor readings. Hence, we think that the approach is related to

hybrid control in which continuous and discrete modeling is

combined.

In this section, we also stress the fact that minimizing

the Euclidean distance traveled by the center of the robot,

gives as a consequence the existence of a geometric solution

for the navigation problem of reaching a landmark. Hence if

the proposed motion strategy does not find a collision free

path to the landmark then such path does not exist.

The methodology presented here might be used to solve

other related problems, e.g., finding the shortest path for

other nonholonomic underactuated systems.

Subsection 6.1 considers the case when the GNT en-

coded paths are non-blocked and Subsection 6.2 considers

the case of blocked paths.

6.1 Non-blocked GNT-encoded paths

The shortest path to Λ is encoded as a sequence of gaps in

the GNT. Let U = (un,un−1, ...,u0) be the sequence of con-

nected intervals ui⊂ ∂E that the robot contacts when the gap

sensor (fixed to the robot boundary) moves from its initial

position to its final position in Λ . In this section we establish

that the robot executes an Euclidean, distance-optimal path

in the absence of blockages, namely, no detours between in-

tervals ui+1 and ui are done.

Let H = (gn,gn−1, ...,g0) denote the corresponding se-

quence of gaps that are chased, in which gi ∈ H is the gap

that is being chased on the path to ui or while traversing ui.

Now consider the problem in terms of the configuration

space of the robot. The obstacle region in the configuration

space is obtained by growing the environment obstacles by

the robot’s radius. Let C denote the projection of the ob-

stacle region into the plane, thereby ignoring rotation. Let

V = (vn,vn−1, ...,v0) be the sequence of intervals vi ⊂ ∂C

obtained by transforming the interval sequence U from ∂E

to ∂C, element by element. The following lemma uses the

definition of a generalized bitangent from [39].

Lemma 2 Chasing the sequence H of gaps produces the

shortest path if and only if: 1) there is a straight collision-

free path from the center of the robot to vn, 2) there is a

(generalized) bitangent line between vi+1 and vi, 3) there is

a straight collision-free path from v0 to the landmark center,

and 4) C is connected.

Proof: We first proof the left to right direction of the if

and only if statement. The gap sensor is located over points

rp or l p. Chasing the sequence H of gaps makes the robot

to touch the intervals ui ⊂ ∂E with points rp or l p, as a

consequence, the robot’s center visits intervals vi ⊂ ∂C. If

chasing the gaps in H produces the shortest path and the

robot’s center visits each interval vi ∈ V , then a solution

global path must exist (C is connected), and there must ex-

ist local straight collision free paths connecting the initial

location of the robot’s center with the sequence V , connect-

ing each pair vi+1 and vi in V , and the sequence V with Λ ,

which in conjunction are the four conditions in the Lemma

statement.

To proof the other direction of the statement, we proceed

by contradiction. Let’s suppose that the three first conditions

are fulfilled and that there exists a solution path, hence, the

fourth condition is also fulfilled. Now, let’s suppose that the

shortest path is not the one depicted by the three first condi-

tions. If such shortest path exists, then there must be a block-

age in the straight paths of either the initial position of the

robot’s center and V , between intervals vi+1 and vi in V , or

between V and Λ , therefore, at least one of the three condi-

tions is not fulfilled, which is a contradiction. Furthermore,

as the path depicted by the three conditions visits the inter-

vals vi ∈V , then it is traversable chasing the gaps in H. The

result follows.

6.2 Blocked GNT-encoded paths

We now consider the cases for which either of the first three

conditions of Lemma 2 is violated, meaning that the robot

would become blocked when applying the GNT in the usual

way. For these cases, various forms of “detours” are required.

The GNT-encoded path is based on the bitangent lines be-

tween intervals in ∂E . However, in C, some bitangent lines

disappear. Bitangent lines in the workspace that remain in

C are displaced by a distance r or are rotated by some fixed

angle.

The GNT-encoded path cannot be executed by the robot

when there is a blockage while chasing gi ∈ H (or Λ). If

this happens it means that: 1) the robot is in a zone in which

it cannot detect the crossing of a bitangent line in C, that

means that because of the width of the disc robot, there is

a bitangent line between the sensor location and the ver-

tex un, but there is not a bitangent line between the center

of the robot and vn, 2) there is no bitangent line between

vi+1 and vi in C, 3) there is no straight line path to chase Λ

when the robot sees Λ , or 4) C is disconnected. These are

the conditions of Lemma 2. In Theorem 2, we state that our

navigation strategy is able to deal with the first three cases

presented above. Therefore, it is always possible to detect an

optimal collision free path if one exists. The disconnection

of C, the case in which there is no path to Λ will produce

a robot collision when commanded by the FSM M. In The-

orem 3, we prove that if our motion strategy does not find

a collision free path to reach the landmark, then there is no

path to reach it.

If the robot detects a blocked path, then it performs a

detour to avoid the obstacles that block the GNT-encoded

path. We cannot re-plan the entire path to Λ because the path

depends on the gap gi ∈ H (or Λ) that is in the gap sensor

field of view. For this reason the detour to avoid obstacles is

done when the robot detects a blocked path while chasing gi

or Λ .

In the remaining of this section, without loss of general-

ity, when a rotation w.r.t. a point is referred it is a rotation

w.r.t. rp. To prove some lemmas and theorems below, we

introduce the following concepts. Let us consider a given

candidate vertex uc. If uc is blocked by any other vertex then

the candidate vertex u j that deforms the most the straight

line robot path toward uc is said to lie on the boundary of

the restrictions. For a uc = uR
c , the u j that lies on the bound-

ary of the restriction corresponds to the uL
j that blocks the

path toward uR
c , and has the largest θL angle, the last in the

angular order, see Fig. 16. Symmetrically, for a uc = uL
c , the

u j that lies on the boundary of the restriction corresponds to

the uR
j that blocks the path toward uL

c , and has the smallest

θR angle, the first in the angular order.

Lemma 3 Algorithm 1 finds a sub-goal vertex among the

vertices generating gaps at the robot configuration when the

algorithm is invoked. The candidates vertices, including the

sub-goal vertex, lie on the boundary of the restrictions of

semi-collision free motion imposed by the vertices blocking

the path toward the goal vertex.

u2 u1

Fig. 16 vertex u1 lies on the boundary of the restriction

Proof: By Construction Algorithm 1 detects left ver-

tices that block the path toward a right candidate vertex or

right vertices that block the path toward a left candidate ver-

tex. For a blocked right candidate vertex, Algorithm 1 se-

lects as a new candidate vertex the left vertex with largest

θL, the last in the angular order, which lies on the bordary

of the restriction. For a blocked left candidate vertex, Al-

gorithm 1 selects as a new candidate vertex the right vertex

with smallest θL, the first in the angular order, which lies on

the bordary of the restriction. This procedure repeats until

the candidate vertex is not blocked selecting this last one as

the sub-goal vertex. Hence, the result follows.

A path toward a landmark might be blocked by a hidden

vertex. Whether or not a vertex is hidden depends on the rel-

ative positions between the omnidirectional sensor and the

vertex. A hidden vertex is important because if it blocks the

robot it must be considered to find the optimal path, which

is done using Algorithm 1, and hence if there was a hidden

vertex when Algorithm 1 was invoked then this algorithm

must be invoked again when the vertex generates a gap.

Exhaustively, there are four possible cases analyzing if

(EG) the hidden vertex eventually generates a gap or (NG)

it never generates a gap, and if (S) there exists a collision

free path toward the landmark or not (NS), while the robot

moves commanded by the FSM. Below we show, through

the four cases, that either, if there is a solution (an optimal

path) then the FSM finds it, or if there is no solution then the

robot collides.

The case 1 is the following: 1) in the path that the robot

follows the hidden vertex eventually generates a gap (EG)

and 2) there is not an optimal path (NS). See Fig. 17(a) and

element (EG,NS) in Table 6. In this case the FSM returns a

sub-goal vertex but robot collides since there is no solution

path.

The case 2 is: 1) the hidden vertex eventually generates

a gap (EG) while the robot moves in the optimal path and 2)

there is an optimal path (S). See Figs. 17(b) and 17(c), and

element (EG, S) in Table 6. Lemma 4 proves that if there

exists a solution path then each hidden vertex always even-

tually generates a gap while the robot is commanded by the

FSM.

Table 6 4 cases relating the existence of the optimal path and a hidden

vertex

NS S

EG Yes Yes

NG Yes No

The case 3 is: 1) the hidden vertex never generates a gap

while the robot moves commanded by the FSM (NG) and 2)

there is not an optimal path (NS). See Fig. 17(d) and element

(NG, NS) in Table 6. In this case the FSM will never take

into account the hidden vertex but the no solution will be

detected because the robot collides.

The case 4 is: 1) the hidden vertex never generates a gap

while the robot moves commanded by the FSM (NG) and

2) there is an optimal path (S). Element (NG, S) in Table 6.

Note that given that there exists a solution, this case is the

complement of case 2 and by Lemma 4 case 2 always oc-

curs, hence case 4 does not exist.

Omni−directional
sensor (O)

u0u2

lt

gR0
rt

u1

gL1

(a) case 1

u2

u1
u3

gL1

lhtrajectory ac
Omni-directional sensor

Omni-directional sensor

(b) case 2: bitangent complement

trajectory ac
Omni-directional sensor

Omni-directional sensor

u2

u1
u3

gL1

lh

(c) case 2: same connected interval over ∂ E

sensor (O)
Omni−directional

u0u2

u3 u1

gL1

(d) case 3

Fig. 17 Cases relating the existence of the optimal path and a hidden

vertex

Lemma 4 Let us assume that a sub-goal vertex us is ob-

tained by Algorithm 1. If there is a collision free path to the

landmark Λ , then a hidden vertex uh that blocks to us must

generate a gap while the robot rotates with respect to rp to

align lt to a left sub-goal vertex us.

Proof: Refer to Figs. 17(b) and 17(c). The robot rotates

w.r.t. point rp to align lt to a left us. While the robot rotates

the omnidirectional sensor is moving in an arc of circle path

ac. Consider a line lh that contains us and uh. For blocking

the path toward us by uh, the line lh must intersect ac, other-

wise the robot is always able to align lt to us. Furthermore

the line lh must be crossed by the omnidirectional sensor in

order to align lt to the us vertex, as lt is tangent to the robot

boundary, lh contains us and lh is a secant line to the cir-

cle ac. For this robot rotation, two cases exist according to

the gap events triggered by crossing lh. The first one occurs

when vertex uh generates a gap and this gap merges with

the gap generated by the us, see Fig. 17(b). Since two gaps

merged there must exist a bitangent complement between uh

and us (as defined in [39]) over lh. Originally the vertex uh

does not generate a gap, but due to the omnidirectional sen-

sor motion the bitangent complement is crossed (the gaps

generated by us and uh merge), hence a gap originated by

vertex uh must appear. The second case occurs when the gap

generated by us changes of vertex generating it, and the gap

is generated by vertex uh, see Fig. 17(c). In this second case

the segment joining vertices us and uh lies over line lh. Since

the line segment joining uh and us is the same connected in-

terval over ∂E , then the gap generated by us must change the

vertex generating it. The gap must be generated by vertex uh

at the moment that line lh is crossed by the gap sensor while

the robot is rotating. Hence the vertex uh must eventually

generate a gap. The result follows.

There is an equivalent lemma for the case when the robot

rotates w.r.t. point l p to align rt to a right us.

Lemma 5 Consider a procedure ζ , which invokes Algorithm

1 at each time that a hidden vertex is detected. Procedure ζ

terminates and finds the sub-goal vertex. The path toward

the sub-goal vertex is optimal in the sense of Euclidean dis-

tance traveled by the center of the robot.

Proof: By Lemma 3 Algorithm 1 delivers a sub-goal

vertex. By Lemma 4 a hidden vertex is always detected. If

the sub-goal vertex is not blocked by a hidden vertex then

the sub-goal vertex is not re-calculated. Otherwise, Algo-

rithm 1 is invoked again. Therefore, procedure ζ finds the

sub-goal vertex us and as there is a finite number of ver-

tices the procedure ζ terminates. Furthermore, by Lemma 3

a sub-goal vertex us lies on the boundary of the restriction

and it is not blocked then the path toward the sub-goal vertex

us is optimal.

Now, we present the theorem that ensure globally opti-

mal navigation when using M.

Theorem 2 The path that the robot center follows when com-

manded by the automaton M, using the information encoded

in the GNT and making detours when the straight line path

to chase gi ∈ H is blocked or when the straight line path to

chase Λ is blocked, is globally optimal in the sense of Eu-

clidean distance.

Proof: Let assume that there is a collision free path to-

ward the landmark, that is, C is connected. The GNT-encoded

path is the shortest path for a point in the workspace and

it is in the same homotopy class that the shortest path in

C because E and C are simply connected. The sequence of

connected intervals V in ∂C that the robot traverses is only

changed when either of the first 3 conditions of Lemma 2 are

not satisfied. However, even if any of the first 3 conditions

of Lemma 2 are not satisfied then the original sequence of

intervals in V does not change the order, as the homotopy

class of the shortest path in C remains the same, but new

sub-goals vertices are added corresponding to new intervals

of ∂C. These sub-goals produce detours between original

consecutive intervals of vi and vi−1, and they are locally op-

timal (as proved in Lemma 5) as all of them belong to the

boundary of the restriction (as proved in Lemma 3). Hence,

the resulting global path is optimal.

Theorem 3 is one of our main results. In short it indi-

cates that if our motion strategy does not find a solution, then

there is no solution. This result also increases the interest of

the proposed optimization criterion, i.e. to move the center

of the circular robot as less as possible, since from a point of

view of the geometric existence of a solution, it establishes a

solution for the worst scenario -the most restricted polygonal

environment, that is, the environment with the most narrow

passage, such that, this passage is wider than the robot’s di-

ameter. So that, the problem addressed in this paper can be

considered a game [23] against the polygonal environment.

Theorem 3 If robot is commanded by the automaton M yield-

ing the optimal path in the sense of Euclidean distance and

the robot touches ∂E with a point different to lp or rp (robot

collides) then there does not exist a path to reach the land-

mark.

Proof: By Lemma 5 sub-goal vertices are found. The

restriction of collision free path is imposed by all vertices

blocking the straight line path toward the goal vertex. The

sub-goal vertices are located on the boundary of the restric-

tion of semi-collision free motion and must be touched by

point rp or l p. Hence, if robot collides (that is the robot

touches ∂E with a point different to l p or rp) then there is

no solution.

7 Implementation

The whole method has been implemented and simulations’

results are included. All our simulation experiments were

(a) (b)

(c) (d)

(e)

Fig. 18 A simulation of optimal gap navigation for a disc robot. (e)

shows the path in the projected configuration space that the robot tra-

verses to go to the landmark.

run on a PC with a quad-core processor, equipped with 4

GB of RAM, running Linux, and were programmed in C++

using the computational geometry library LEDA. Our soft-

ware implementation exactly emulates the FSM.

The planning time for obtaining each one of the five sim-

ulation experiment presented in this section, is always less

than a second. These planning times do not include the exe-

cution time of the navigation itself.

We have implemented the method with several objec-

tives: (1) to illustrate the execution of the FSM, (2) to graph-

ically show the path in C, and (3) to display the evolution of

the GNT as the navigation task is executed.

Fig. 18 shows a simulation of the optimal gap naviga-

tion for a disc robot. In this first example, the vertices that

the robot visits in its shortest path toward the landmark are

the same that the ones visited by a point robot. Figs. 18(a)

and 18(c) show the robot at different times while following

a sequence of gaps to reach the landmark. To the right of

each figure is shown the complete GNT with the represen-

tation used in [39]. The landmark to be chased is marked as

a blue triangle in the workspace and in the GNT as a leaf

triangle node. Fig. 18(a) shows the robot chasing the gap

in the path toward the landmark. Finally, Fig. 18(c) shows

the robot chasing the landmark. Fig. 18(e) shows the short-

est path in the configuration space that the robot traverses to

navigate to the landmark. This path was computed based on

the information obtained by the robot sensors and using the

automaton M from Section 4.

Fig. 19 shows a second navigation example to reach a

landmark for the case where blockages of the encoded path

in the GNT occur. Fig. 19(a) shows the robot aligned to a

right vertex. Fig. 19(b) shows the case in which the first

sub-goal vertex when the robot is touching ∂E with rp is

a left sub-goal vertex -up-, vertex u4 in the figure. Algo-

rithm 1 is used to find this sub-goal vertex up. Figs. 19(c) and

19(d) show some snapshots of the navigation task. Fig. 19(e)

shows the shortest distance path in the projected configura-

tion space C that the center of the robot travels to reach the

landmark. Note that the vertices u5 and u6 are not touched by

the robot. Fig. 19(f) shows the GNT when the robot chases

the landmark.

Fig. 20 shows an example in which in the shortest path

to reach the landmark the robot moves in contact with seg-

ments of the polygonal environment (in contact with ∂E).

Figs. 20(b) and 20(c) show this case. Fig. 20(e) shows the

shortest distance path in the projected configuration space

C that the center of the robot travels to reach the landmark.

Fig. 20(f) shows the GNT when the robot chases the land-

mark.

Fig. 21 shows an example of a hidden vertex (vertex u1).

Fig. 21(a) shows the beginning of the robot’s path. Fig. 21(b)

shows that at the moment when the robot is touching vertex

u3 with rp having the omnidirectional sensor placed at rp,

the vertex u1 does not generate a gap (it is a hidden vertex).

To find a sub-goal vertex Algorithm 1 is executed without

considering vertex u1. Algorithm 1 determines that the goal

vertex ugoal is not blocked. When the robot rotates to align

lt to the left goal gap, it merges with the gap generated by

u1, see Fig. 21(c). When the gaps generated by vertices ugoal

and u1 merges Algorithm 1 is invoked again. The algorithm

determines that u2 is the sub-goal vertex. Since u2 is not

blocked by a hidden vertex Algorithm 1 is not invoked again.

Fig. 21(d) show rt aligned with u2. Fig. 21(e) shows the

shortest distance path in the configuration space C. Fig. 21(f)

shows the GNT when the robot chases the landmark.

In the multimedia material of the paper 3 videos are

available, showing from the second to the fourth simulation

experiments in the paper.

u1 ugoal

u2

u3

u4u5

u6

(a)

u1 ugoal

u2

u3

u4u5

u6

(b)

u1 ugoal

u2

u3

u4u5

u6

(c)

u1 ugoal

u2

u3

u4u5

u6

(d)

(e) (f)

Fig. 19 Example in which the first sub-goal when the robot is touching

∂ E with rp is an up vertex

8 Conclusions

In this paper we have presented an approach for distance

optimal navigation of a disc-shaped differential-drive robot.

The robot is equipped with sensors and it does not need to

build precise geometric maps or localize itself in a global

Euclidean frame. Critical information from the workspace is

obtained from the robot’s sensors, to infer the optimal robot

paths in the configuration space. To solve this problem we

developed a motion strategy based on sensor feedback and

then proved that the motion strategy yields globally optimal

(a) (b)

(c) (d)

(e) (f)

Fig. 20 The robot moves in contact with segments of the polygonal

environment

motions in the sense of Euclidean distance by characteriz-

ing all possible trajectories in terms of sequences of states

visited in a finite state machine.

To our knowledge this is the fist time that the shortest

path for a DDR (underactuated system) is found in the pres-

ence of obstacles (environment constraints) without know-

ing the complete geometric representation of the environ-

ment. Note that our result is not an approximation but the

exact solution. The methodology presented here might be

used to solve other related problems, e.g., finding the short-

est path for other underactuated systems.

This work has shown that a crucial requirement for plan-

ning navigation strategies is to define the required informa-

tion to accomplish the task. Once that this information is

established, it is possible to describe the motion strategy as

an automaton. This automaton is built prior to navigation

and determines an action to be taken by the robot for any

possible observation. Based on this automaton it is possible

to obtain a motion policy that maps directly observation to

action without estimating the state of the robot in the con-

figuration space.

It is also interesting to note that the criterion of mini-

mizing the Euclidean distance traveled by the center of the

u3

u4

u2

u1

ugoal

(a)

u3

u4

u2

u1

ugoal

(b)

u3

u4

u2

u1

ugoal

(c)

u3

u4

u2

u1

ugoal

(d)

(e) (f)

Fig. 21 An example of a hidden vertex, u1 is the fugure

robot, gives as a consequence the existence of a geometric

solution for the navigation problem of reaching a landmark.

Important directions for future work include multiple

connected environments (environments with holes) and bounds

with respect to optimality for the cases in which all sens-

ing conditions are not met. We also propose as future work

to include suitable properties over the robot controls. For

instance, to include smooth transitions between controls or

to propose control laws able to deal with noise. We want

to develop a feedback-based control law to follow the envi-

ronment boundary, which is useful for both exploration and

navigation, and we would like to implement the exploration

strategy presented in [18] in a real robot.

References

1. P. K. Agarwal, T. Biedl, S. Lazard, S. Robbins, S. Suri and

S. Whitesides. Curvature-Constrained Shortest Paths in a Convex

Polygon. SIAM J. Comput., 31(6):1814-1851, 2012.

2. D.J. Balkcom and M.T. Mason. Time optimal trajectories for

bounded velocity differential drive vehicles. Int. J. of Robotics

Research, 21(3):199–217, 2002.

3. A. Bicchi, G. Casalino, and C. Santilli. Planning shortest bounded-

curvature paths for a class of nonholonomic vehicles among obsta-

cles. J. of Intelligent Robots Systems, 16(4):387–405, 1996.

4. D. Bilò, Y. Disser, S. Suri M. Mihalák, E. Vicari, and P. Widmayer.

Reconstructing visibility graphs with simple robots. Theoretical

Computer Science, 444:52–59, 2012.

5. L. Bobadilla, F. Martinez, E. Gobst, K. Gossman, and S. M.

LaValle. Controlling wild mobile robots using virtual gates and

discrete transitions. In Proc. of American Control Conference,

pages 743–749, 2012.

6. J. Borenstein and Y. Koren. Real-time obstacle avoidance for fast

mobile robots. IEEE Transactions on Systems, Man, and Cyber-

netics, 19(5):1179–1187, 1989.

7. J. Canny and J. Reif. New lower bound techniques for robot mo-

tion planning problems. In Proc. of IEEE Symposium on Founda-

tions of Computer Science, pages 49–60, 1987.

8. D. Z. Chen and H. Wang. Paths among curved obstacles in the

plane. In Proc. of Computing Research Repository, 2011.

9. L. P. Chew. Planning the shortest path for a disc in O(n2logn) time.

In Proc. ACM Symposium on Computational Geometry, 1985.

10. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.

Computational Geometry: Algorithms and Applications, 2nd Ed.

Springer-Verlag, 2000.

11. H. Durrant-Whyte and T. Bailey. Simultaneous localization and

mapping: Part I. IEEE Robotics and Automation Magazine,

13(2):99–110, 2006.

12. S. K. Ghosh. Visibility Algorithms in the Plane. Cambridge Uni-

versity Press, 2007.

13. S. K. Ghosh and D. M. Mount. An output sensitive algorithm

for computing visibility graphs. In Proc. of IEEE Symposium on

Foundations of Computer Science, pages 11–19, 1987.

14. L. Guilamo, B. Tovar, S. M. LaValle: Gap Navigation Trees:

Minimal Representation for Visibility-based Tasks. In M. Erd-

mann et al., editor, Proc. of the Tenth Workshop on the Algorithmic

Foundations of Robotics: Springer Tracts in Advanced Robotics,

pages 425–440. 2004.

15. J.-B.. Hayet, H. Carlos, C. Esteves, and R. Murrieta-Cid. Motion

planning for maintaining landmarks visibility with a differential

drive robot. Robotics and Autonomous Systems, 4(62):456–473,

2014.

16. O. Khatib. Real-time obstacle avoidance for manipulators and mo-

bile robots. International Journal of Robotics Research, 5(1):90–

98, 1986.

17. A. Kolling and S. Carpin. Extracting surveillance graphs from

robot maps. In Proc. of IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 11–19, 2008.

18. G. Laguna, R. Murrieta-Cid, H.M. Becerra, R. Lopez-Padilla, and

S.M. LaValle. Exploration of an unknown environment with a dif-

ferential drive disc robot. In Proc. of IEEE Int. Conf. on Robotics

and Automation, pages 2527–2533, 2014.

19. Y. Landa and R. Tsai. Visibility of point clouds and exploratory

path planning in unknown environments. Communications in

Mathematical Sciences, 6(4):881–913, 2008.

20. J.-P. Laumond, P.E. Jacobs, M. Taı̈x, and R.M. Murray. A motion

planner for nonholonomic mobile robots. IEEE Trans. on Robotics

and Automation, 10(5):577–593, 1994.
21. S. M. LaValle. Sensing and filtering: A fresh perspective based on

preimages and information spaces. In Foundations and Trends in

Robotics Series. Now Publishers, Delft, The Netherlands, 2012.
22. S.M. LaValle, Planning Algorithms, Cambridge University Press;

2006.
23. S.M. LaValle. Robot motion planning: A game-theoretic founda-

tion. Algorithmica, 26(3-4):430–465, 2000.
24. Y. Liu and S. Arimoto. Finding the shortest path of a disc among

polygonal obstacles using a radius-independent graph. IEEE

Transactions on Robotics, 11(5):682–691, 1995.
25. R. Lopez-Padilla, R. Murrieta-Cid, and S.M. LaValle. Optimal gap

navigation for a disc robot. In E. Frazzoli et al., editor, Proc. of

the Tenth Workshop on the Algorithmic Foundations of Robotics:

Springer Tracts in Advanced Robotics, pages 123–138. 2013.
26. M. Mikawa, Y. Morimoto, and K. Tanaka. Guidance method using

laser pointer and gestures for librarian robot. In Proc. of IEEE

Int. Conf. on Robot and Human Interactive Communication, pages

416–419, 2011.
27. J. Minguez and L. Montano. Nearness diagram (nd) navigation:

collision avoidance in troublesome scenarios. IEEE Transactions

on Robotics and Automation, 20(1):45–59, 2004.
28. J. S. B. Mitchell. Shortest paths and networks. In J. E. Good-

man and editors J. O’Rourke, editors, Handbook of Discrete and

Computational Geometry, 2nd Ed., pages 607–641. 2004.
29. J. S. B. Mitchell and C. H. Papadimitriou. The weighted region

problem. Journal of the ACM, 38:18–73, 1991.
30. L. Murphy and P. Newman. Using incomplete online metric maps

for topological exploration with the gap navigation tree. In Proc.

of IEEE Int. Conf. on Robotics and Automation, pages 2792–2797,

2008.
31. J.A. Reeds and L.A. Shepp. Optimal paths for a car that goes both

forwards and backwards. Pacific J. of Mathematics, 145(2):367–

393, 1990.
32. J. H. Reif and Z. Sun. An efficient approximation algorithm for

weighted region shortest path problem. In B. R. Donald, K. M.

Lynch, and D. Rus editors., editors, Algorithmic and Computa-

tional Robotics: New Directions, pages 191–203. 2001.
33. P. Souères and J.-P. Laumond. Shortest paths synthesis for a car-

like robot. IEEE Trans. on Automatic Control, 41(5):672–688,

1996.
34. J. Stillwell. The Four Pillars of Geometry. Springer, 2005.
35. H. Ta, D Kim, and S. Lee. A novel laser line detection algorithm

for robot application. In Proc. of Int. Conf. on Control, Automation

and Systems, pages 361–365, 2011.
36. C.J. Taylor and D. Kriegman. Vision-based motion planning and

exploration algorithms for mobile robots. IEEE Transactions on

Robotics and Automation, 14(3):417–426, 1998.
37. S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT

Press, 2005.
38. B. Tovar and S. M. LaValle and R. Murrieta Optimal Navigation

and Object Finding without Geometric Maps or Localization. In

Proc. of IEEE Int. Conf. on Robotics and Automation, pages 464–

470, 2003.
39. B. Tovar, R. Murrieta-Cid, and S. M. LaValle. Distance-optimal

navigation in an unknown environment without sensing distances.

IEEE Transactions on Robotics, 23(3):506–518, 2007.
40. H. Wang, Y. Chen, and P. Soueres. A geometric algorithm to

compute time-optimal trajectories for a bidirectional steered robot.

IEEE Transactions on Robotics, 25(2):399–413, 2009.

A Local Reference Frames for Rotation in Place

For a rotation in place, two local reference frames are defined. One

reference frame is defined by point rp and a right vertex. The other ref-

erence frame is defined by point l p and a left vertex. The type of a gap

is relative to the location of the omnidirectional sensor. Therefore, the

omnidirectional sensor must be located at rp to observe right gaps and

at l p to observe left gaps. Consequently, the locations of right vertices

w.r.t. a local reference frame are computed with the omnidirectional

sensor placed at rp and the locations of left vertices are computed with

the omnidirectional sensor placed at l p.

u0

x

d du

y lt

rt

γL

(xuL, yuL)

(a) Location of a left vertex

(xuL,yuL) on a local reference

frame F defined by rp and u0.

u0

d du

lt

rt γRy

x

(xuR, yuR)

(b) Location of right vertex

(xuR,yuR) on a local reference

frame F defined by l p and u0.

Fig. 22 Locations of vertices over local reference frames.

������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������

�����
�����
�����

�����
�����
�����

Search domain for left vertices

du

u

(a) Search domain in a local reference frame

F defined by point rp and a right vertex

������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������

�����
�����
�����
�����

�����
�����
�����
�����

du

Search domain for right vertices

u

(b) Search domain in a local reference frame

F defined by point l p and a left vertex

Fig. 23 Regions in the local reference frames (called search domains)

for a rotation in place

u0

x

y
dL

t

θL

(xuL, yuL)

(xt, yt)

(a) dL
t and θL are depicted in the

figure.

u0

y

θR

dR
t

(xuR, yuR)

x

(xt, yt)

(b) dR
t and θR are depicted in

the figure.

Fig. 24 Robot rotation in place: Distances and angles of alignment.

A.1 Locations of vertices

Fig. 22(a) shows the location of a left vertex (xuL,yuL) on a local ref-

erence frame F defined by point rp and a right vertex u0. Fig. 22(b)

shows the location of a right vertex (xuR,yuR) on a local reference frame

F defined by point l p and a left vertex u0.

Equation 1 indicates the coordinates of left vertices in a reference

frame F defined by the point rp and the right vertex u0 based on dis-

tance du and angle γL, see Fig. 22(a). Equation 2 indicates the coor-

dinates in the same reference frame F of a right vertex to which the

robot is aligned.

xuL = du cosγL

yuL = d−du sinγL
(1)

xuR = dR
t

yuR = 0
(2)

where d denotes the robot diameter and dR
t is the distance from rp to

vertex u0 (rt is aligned with u0). When the reference frame F is de-

fined by l p and a left vertex (see Fig. 22(b)), there are other similar

equations to compute the coordinates of right vertices in these refer-

ence frames. In this case the robot is aligned to a left vertex.

A.2 Search domains

Fig. 23 shows the search domains for a rotation in place. The objective

of a search domain is to define a region in the local reference frame F

where a candidate vertex must lie. Fig. 23(a) shows the search domain

in a local reference F defined by point rp and a right vertex. It is

in this search domain, where the left vertices that might block a right

vertex can be located. This domain is delimited by directions rt and

lt assuming that the robot is aligned with the right vertex. Fig. 23(b)

shows the search domain in a local reference defined by point l p and a

left vertex. It is in this region where the right vertices that might block

a left vertex can be located.

A.3 Distances and angles of alignment

Here we provide equations to calculate distance dL
t and angle θL in a

local frame F defined by rp and a right vertex.

Fig. 24(a) illustrates the angle θL that the robot must rotate in

clockwise sense to align lt to a left vertex with coordinates (xuL,yuL).
θL is measured in clockwise sense with respect to the y axis in the lo-

cal reference frame F defined by rp and a right vertex. Equation 3

calculates θL.

θL = arctan

(

xt

yt − r

)

(3)

where r denotes the robot radius. The points xt and yt are obtained

using the Thales’s Theorem [34].

Fig. 24(a) shows distance dL
t , which is computed assuming that

particular direction lt is pointing to a left vertex with coordinates (xuL,yuL).
Equation 4 calculates distance dL

t .

dL
t =

√

(xuL− xt)2 +(yuL− yt)2 (4)

When the reference frame F is defined by l p and a left vertex (see

Fig. 24(b)). There are similar equations to compute the angle θR and

distance dR
t . Angle θR is calculated assuming that the angle increases

from y to x (in clockwise sense). Distance dR
t is computed assuming

that particular direction rt is pointing to a right vertex.

B Local Reference Frames for Robot Rotating w.r.t.

Point rp or l p

u1

lt

y

x

rp

βL
du

rt

Omnidirectional
sensor (xuL, yuL)

(a) Location of a left vertex w.r.t. a local reference frame F

defined by point rp and direction rt .

u1

lt

y

x

u0

(xuR, yuR)
rt

du

βR

rpOmnidirectional
sensor

(b) Location of a right vertex over a local reference frame F

defined by point rp and direction rt .

u1

y

x
du

sensor
Omnidirectional

rt

lt

βR
(xuR, yuR)

lp

(c) Location of a right vertex over a local reference frame

F defined by point l p and direction lt .

u1

y

x

u0

dusensor
Omnidirectional

rt

lt

βL

lp

(xuL, yuL)

(d) Location of a left vertex over a local reference frame F

defined by point l p and direction lt

Fig. 25 Location of right and left vertices over local reference frames

for robot touching ∂ E.

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

Search domain for left vertices

Search domain for right vertices

du

Touching
at rp

y′

x′

(a) Search domain

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

du

y′

x′

Touching

Search domain for right vertices

Search domain for left vertices

at lp

(b) Search domain

Fig. 26 Regions in the local reference frames (called search domains)

For a rotation w.r.t. point rp or l p, two local reference frames are

also defined. One reference frame is defined by point rp and direction

rt . The other reference frame is defined by point l p and direction lt .

B.1 Locations of vertices

Fig. 25(a) shows, the location of left vertex, coordinates (xuL,yuL), over

a local reference frame F defined by point rp and direction rt . The

location of the vertex is computed based on distance du, and an angle

βL measured in clockwise sense starting from particular direction lt .

Equation 5 indicates the coordinates of left vertices in a reference

frame F defined by the point rp and direction rt . See Fig. 25(a).

xuL = du cos(βL)
yuL = 2r−du sin(βL)

(5)

The coordinates of right vertices are given by Equation 6 (see

Fig. 25(b)).

xuR = du cos(βR)
yuR =−du sin(βR)

(6)

Angle βL is measured in clockwise sense starting from particular

direction lt . The omnidirectional sensor is located at point l p to calcu-

late the locations of left vertices and it is located at point rp to calculate

the locations of right vertices. This is done to correctly measure angles

βR and βL. There are equivalent equations to indicate the coordinates

of right and left vertices over a reference frame defined by point l p and

direction lt , see Figs. 25(c) and 25(d).

B.2 Search domains

Fig. 26 shows the search domains for a rotation w.r.t. point rp or l p.

The objective of a search domain is to define a region in the local ref-

erence frame where a candidate vertex must lie. Fig. 26(a) shows the

u1

y

x

rp

(xuL, yuL)

rt

dL
t

θL

lt

(xt, yt)

(a) Robot rotation angle θL (this is the rotation angle to

align lt with a left vertex) and distance dL
t .

(xt, yt)

u1

y

x

(xuR, yuR)

rp

θRrt

lt

θR

dR
t

(b) Robot rotation angle θR (this is the rotation angle to align

rt with a right vertex) and distance dR
t .

(xt, yt)

u1

y

x

θR

lp lt

rt

dR
t

(xuR, yuR)

(c) Robot rotation angle θR (this is the rotation angle to

align rt with a right vertex) and distance dR
t .

(xt, yt)

u1

y

x

θL

rt

lt

lp

θL

dL
t

(xuL, yuL)

(d) Robot rotation angle θL (this is the rotation angle to align

lt with a left vertex) and distance dL
t .

Fig. 27 Robot rotation touching ∂ E at point rp or l p: Distances and

angles of alignment used to find a candidate vertex.

search domain for the case in which the robot is touching ∂ E at point

rp. Fig. 26(b) shows the search domain when the robot is touching ∂ E

at point l p. Note that in Fig. 25(a) direction rt defining the local refer-

ence frame F (see Subsection B.1) is not aligned with the goal vertex.

Hence, a rotation of the reference frame defined by point rp and direc-

tion rt is needed. This is done to locate the vertices in a new reference

frame F ′ defined by x′ and y′, in which the x′ axis is aligned with the

goal vertex. Note that, the robot is actually oriented as according to

reference frame F as shown in Fig. 25, but a virtual rotation over F

is done to obtain F ′. This is to establish the search domain as if the

robot would be aligned to the goal vertex. Indeed, the search domain

is drawn over the reference frame F ′ defined by x′ and y′. All this is

done to determine the vertices that might block the goal vertex.

B.3 Distances and angles of alignment

Equation 7 calculates the robot rotation angle with respect to the y axis

of the local reference frame F equivalent to the angle needed to align

particular direction lt to a left vertex, by executing a robot clockwise

rotation w.r.t. point rp (see Fig. 27(a)).

θL = arctan

(

xt

yt

)

(7)

Again, the points xt and yt are obtained based on the Thales’s The-

orem [34].

Equation 8 calculates distance dL
t . Fig. 27(a) shows distance dL

t .

To compute this distance, it is assumed that direction lt points to a left

vertex associated with dL
t .

dL
t =

√

(xuL− xt))
2 +(yuL− yt)

2
(8)

dR
t is measured directly by the omnidirectional sensor (see Fig. 27(b)).

θR is also measured directly by the omnidirectional sensor (see Fig. 27(b)).

There are totally analogous equations to compute angles θR θL, dR
t and

dL
t over a local reference frame defined by point l p and direction lt .

Refer to Figs. 27(c) and 27(d).

C Cases in the Finite State Machine

The cases in the FSM are devided in two, the cases in procedure ALIGN

and the cases in procedure RPALIGN.

C.1 Cases in procedure ALIGN

Case 1-R: alignment to a right goal vertex

The robot executes a rotation in place to get aligned with the goal

vertex, if the path is not blocked then the robot decides that an optimal

path toward the goal vertex is a straight line. Else, a detour is needed

and the machine transits to Case 3-L.

This case is shown in blue in Fig. 9. In this case there are 4 states:

1. RV1 indicates that the task of the robot is to align rt to a right goal

vertex.

2. TCW1 places the omnidirectional sensor at point rp.

3. RCCW1 makes the robot to rotate to align rt to a right goal vertex.

4. T1B1 decides whether or not the right goal vertex is blocked (block-

age detection of type 1).

The input observation vectors that trigger a transition between two

states in Case 1-R are shown in Table 7.

Case 2-R: alignment to rpΛ

The robot executes a rotation in place to get aligned with the land-

mark. If during the rotation in place motion the landmark is at least

partially occluded by a vertex then the machine transits to Case 1-R.

Else, once the robot is aligned with the landmark, the turret moves the

omnidirectional sensor to the opposite side of the robot. If during the

turret’s motion the landmark is at least partially occluded by a ver-

tex then the machine transits to Case 1-L. Otherwise the landmark is

reachable by a straight line motion.

Case 2-R is shown in green in Fig. 9. There are 3 states in this

case:

1. RL1 indicates that the task given to the robot is to align rt to rpΛ .

2. RCCW2 makes the robot to rotate to align rt to rpΛ .

3. TCCW1 places the omnidirectional sensor at point l p.

Table 7 Observation vectors Case 1-R

FI LV FR RP LP VR VL AL BL UN GT CT O1 O2

yn4 x x x x x x x x x x x x x 1

yn5 x 0 x x x x x x x x x x 1 0

yn6 x x x x x x x 0 x x x x 1 x

yn7 x x x x x x x 0 x x x x 0 x

yn8 x x x x x x x 1 x x x x 1 x

yn9 x x x x x x x 0 x x x x x x

yn10 x x x x x x x 1 x x x x x x

yn11 x x x x x x x x 0 x x x x x

yn12 x x x x x x x x 1 x x x x x

Table 8 Observation vectors Case 2-R

FI LV FR RP LP VR VL AL BL UN GT CT O1 O2

yn0 x 0 x x x x x x x x 0 x x x

yn1 x 0 x x x x x x x x 1 x x x

yn13 x x x x x x x 0 1 x x x x x

yn14 x x x x x x x 1 1 x x x x x

yn15 x 1 x x x x x 0 x x x x x x

yn16 x 1 x x x x x 1 x x x x x x

yn17 x 1 x x x x x x x x x x 1 1

yn18 x 1 x x x x x 1 x x x x 0 0

Table 9 Observation vectors Case 3-L

FI LV FR RP LP VR VL AL BL UN GT CT O1 O2

yn19 x x x x x 1 0 0 0 x x 0 1 1

yn20 x x x x x x 1 x x x x 0 0 0

yn9 x x x x x x x 0 x x x x x x

yn10 x x x x x x x 1 x x x x x x

yn11 x x x x x x x x 0 x x x x x

yn12 x x x x x x x x 1 x x x x x

The inputs observation vectors in Case 2-R are shown in Table 8.

Case 3-L: alignment to a left candidate vertex

The main objective of this case is to find a left candidate vertex and

to decide whether or not that vertex is a sub-goal vertex. The locations

of the vertices depends on a given local reference frame. For a robot

rotation in place, the vertices are located in the local reference frame F

defined in Appendix A. Based on the locations of the vertices on F , the

distance dL
t is computed. dL

t is obtained assuming that the particular

direction lt is pointing to a left vertex. The angle θL that the robot needs

to rotate (clockwise) to align lt to a left vertex is also computed. Based

on distances dL
t and angles θL to each left vertex on the region (search

domain) presented in Appendix A, a candidate vertex is found using

definition 6.

In this Case 3-L, first, a candidate vertex is found and the robot

rotates in place to get align with this candidate vertex. Once the robot is

aligned to this vertex, if the vertex is blocked then the robot searches a

new candidate vertex (Case 3-R). The past two steps are repeated until

the candidate vertex is not blocked, this no blocked candidate vertex

becomes the sub-goal vertex.

Case 3-L is shown in red in Fig. 9. There are 3 states in this case:

1. TCCW2 places the omnidirectional sensor at point l p, locates left

vertices and find a candidate vertex.
2. RCW1 makes the robot to rotate to align lt to the left candidate

vertex.
3. T1B2 decides whether or not the left candidate vertex is blocked

(blockage detection of type 1)).

The input observation vectors in Case 3-L are shown in Table 9.

C.2 Cases in procedure RPALIGN

The state START2 is the initial state of the procedure RPALIGN, it

decides whether the robot must get aligned with a left goal vertex, a

right goal vertex or to rpΛ . The observation vectors that make this state

to transit to other state are shown in Table 10.

Case I-RP: align the robot to a right goal vertex

The robot decides whether or not it can get aligned with a right

goal vertex without losing path optimality. This decision is made us-

ing the angle between the particular direction rt and the goal vertex.

This angle is measured from rt to the direction of the goal vertex in

clockwise sense. If that angle is smaller than π then the alignment is

possible. If the alignment is possible the robot rotates to get aligned

with the goal vertex. Once, the robot is aligned with the goal vertex,

the robot decides whether or not the path to the goal vertex is blocked.

This decision is made using distances dR
t and dL. If dR

t ≤ dL then the

path is not blocked. If the alignment is not possible (blockage detection

of type 2) or dR
t
> dL (blockage detection of type 1) the FSM transits

to case IV, else the goal vertex is not blocked and is reachable by a

straight line robot motion.

This case is shown in blue in Fig. 11. In this case there are 3 states:

1. RV2 indicates that the task of the robot is to align rt to a right goal

vertex, and decides whether or not there is a blockage (detection

of type 2).

2. RPCW1 makes the robot rotate w.r.t point rp to align rt to the

right goal vertex.

3. T1B5 decides whether or not the right goal vertex is blocked (de-

tection of type 1).

The input observation vectors that triggers a transition between

two states in Case I-RP are shown in Table 11.

Case II-RP: align the robot to a landmark

The robot decides whether or not it can get aligned with the land-

mark without losing path optimality. This decision is made using the

angle between the particular direction rt and the point rpΛ on the land-

mark. The angle is measured from rt to the direction of point rpΛ

in clockwise sense. If that angle is smaller than π then the alignment

is possible, otherwise there is a blockage (detection of type 2). If the

alignment is not possible the FSM transits to Case III-RP. Else, once

the robot is aligned with the landmark, the turret moves the omnidi-

rectional sensor to the opposite side of the robot. If during the turret’s

Table 10 Observation vectors for state START2

FI LV FR RP LP VR VL AL BL UN GT CT O1 O2

yn28 x 0 x x x 0 0 x 0 x 0 0 x x

yn29 x 0 x x x 0 0 x x x 1 0 x x

yn30 x 1 x x x 0 0 x x x 0 0 x x

Table 11 Observation vectors Case I-RP

FI LV FR RP LP VR VL AL BL UN GT CT O1 O2

yn11 x x x x x x x x 0 x x x x x

yn12 x x x x x x x x 1 x x x x x

yn9 x x x x x x x 0 x x x x x x

yn10 x x x x x x x 1 x x x x x x

Table 12 Observation vectors Case II-RP

FI LV FR RP LP VR VL AL BL UN GT CT O1 O2

yn31 x x x x x 1 x x 0 x x x x x

yn32 x x x x x 1 x x 1 x x x x x

yn9 x x x x x x x 0 x x x x x x

yn14 x x x x x x x 1 1 x x x x x

yn33 x x x x x x x x 0 x x x 1 1

yn34 x 0 x x x x x x 0 x 0 x x x

yn35 x 1 x x x x x 1 0 x x x 0 0

motion the landmark is at least partially occluded by a vertex (detec-

tion of type 4) then the machine transits to Case III-RP. Otherwise the

landmark is reachable by a straight line motion, there is not blockage.

Case II-RP is shown in green in Fig. 11. There are 3 states in this

case:

1. RL2 indicates that the task given to the robot is to align rt to rpΛ ,

and decides whether or not there is a blockage (detection of type

2).

2. RPCW2 makes the robot to rotate w.r.t. point rp to align rt to rpΛ .

3. TCCW4 places the omnidirectional sensor at point l p, the motion

is done to detect a blockage (detection of type 4).

The inputs observation vectors in Case II-RP are presented in Ta-

ble 12.

Case III-RP: align the robot to a left goal vertex

The robot decides whether or not the left goal vertex is blocked

(detection of type 3). To make this decision the vertices are located

in the local reference frame F presented in Appendix B. Using the

vertices’ locations, the distances and angles of alignments dR
t , dL

t , θR

and θL are computed. Based on those distances and angles the decision

is made.

A right vertex blocks the left goal vertex if it has a θR angle smaller

than the angle θL related to the left goal vertex, and a distance dR
t

smaller than distance dL
t related to that vertex. If the vertex is not

blocked the robot rotates w.r.t. rp to get aligned with the vertex. Else,

the FSM transits to Case IV-RP.

This case also considers the next complication. It might happen

that during the turret motion (state TCCW5), the left goal gap merges

with a right gap, this union yields a right gap. See Fig. 28. The vertex

that generates this right gap is the vertex that the robot is touching. To

consider this issue the robot rotates w.r.t rp until the right gap splits.

Case III-RP is shown in yellow in Fig. 11. There are 8 states in this

case:

1. LV2 indicates that the task of the robot is to align lt to left goal

vertex, and in this state the right vertices are located in the local

reference frame F presented in Appendix B.

2. TCCW5 places the omnidirectional sensor at point l p.

3. RPCW3 makes the robot to rotate w.r.t. point rp until the right

gap splits.

4. D in this state the left vertices are located in the local reference

frame F presented in Appendix B.

5. T2B1 this state decides whether or not there is a blockage (detec-

tion of type 3) to the goal vertex.

Omni−directional
sensor (O)

u2

u1

gR0

Fig. 28 A left goal gap merges with a right gap

6. RPCW4 makes the robot rotate w.r.t. point rp to align lt to left

goal vertex.

7. TCW4 places the omnidirectional sensor at point rp, and in this

state the right vertices are located in the local reference frame F

presented in Appendix B.

8. TCCW6 places the omnidirectional sensor at point l p.

The input observation vectors in Case III-RP are presented in Table

13.

Case IV-RP: align the robot to a sub-goal vertex

In this case the path toward a goal vertex or landmark is blocked.

To solve this case, first the robot finds a sub-goal vertex, it rotates to

get aligned with this vertex and then it travels in a straight line toward

a sub-goal vertex.

First, the locations of right and left vertices are computed, using

the local reference frame F presented in Appendix B. Algorithm 1 is

used to find a sub-goal vertex.

If the sub-goal vertex is a left one then the robot rotates w.r.t. rp to

align lt to the left sub-goal vertex. If the gap generated by that vertex

merges with other gap (generated by a hidden vertex) then the sub-goal

vertex is re-calculated using Algorithm 1.

If the sub-goal vertex is a right one then the robot rotates w.r.t.

rp to align rt to the right sub-goal vertex. The robot is always able to

align rt with the right sub-goal vertex, without losing global optimality.

Once, the robot is aligned with the sub-goal vertex, the robot decides

whether or not the path to the sub-goal vertex is blocked. This decision

is made using distances dR
t and dL. If dR

t
< dL then the path is not

blocked. It is important to note that the only manner that Algorithm 1

does not detect that a left vertex blocks the path toward the right goal

Table 13 Observation vectors Case III-RP

FI LV FR RP LP VR VL AL BL UN GT CT O1 O2

yn36 x x x x x 1 x x x x x x x x

yn37 x x x x x x x x x x 0 x 1 1

yn38 x x x x x x x x x x 0 x 0 0

yn39 x x x x x x x x x 1 1 x 1 1

yn40 x x x x x x x x x 1 1 x 0 0

yn41 x x x x x 0 0 x x x 1 0 x x

yn42 x x x x x 0 0 x x x 0 0 x x

yn21 x x x x x x x x x x x x 1 1

yn43 x x x x x x x x x x x x 0 0

yn44 x x x x x x x x x x x x 0 1

yn45 x x x x x 1 x x x x x x 1 0

yn46 x x x x x 0 0 0 x 0 x 0 x x

yn47 x x x x x 0 0 1 x 0 x 0 x x

yn48 x x x x x 0 0 0 x 1 x 0 x x

yn49 x x x x x x 1 x x x x x x x

yn50 x x x x x x x x 0 0 x 0 x x

yn51 x x x x x x x x 0 0 x 1 x x

Table 14 Observation vectors Case IV-RP

FI LV FR RP LP VR VL AL BL UN GT CT O1 O2

yn50 x x x x x x x x 0 0 x 0 x x

yn51 x x x x x x x x 0 0 x 1 x x

yn52 x x x x x 1 x 0 x x x x 1 1

yn53 x x x x x x 1 x x x x x 0 0

yn21 x x x x x x x x x x x x 1 1

yn54 x x x x x 0 0 x x x x 0 0 1

yn45 x x x x x 1 x x x x x x 1 0

yn55 x x x x x x x 0 x 0 x x x x

yn56 x x x x x x x 1 x 0 x x x x

yn57 x x x x x x x 0 x 1 x x x x

yn58 x x x x x 1 0 0 x x x 0 1 1

yn44 x x x x x x x x x x x x 0 1

yn59 x x x x x x x x x x x x 1 0

yn9 x x x x x x x 0 x x x x x x

yn10 x x x x x x x 1 x x x x x x

yn11 x x x x x x x x 0 x x x x x

yn12 x x x x x x x x 1 x x x x x

vertex is that the left vertex does not generate a gap when Algorithm

1 was invoked (that left vertex is a hidden vertex). However, once the

robot is aligned with the right sub-goal vertex a left vertex that blocks

the path toward the sub-goal vertex must generate a left gap (see sub-

section 6.2, Lemma 4), so if the path toward the right sub-goal vertex

is blocked then the sub-goal vertex is re-calculated using Algorithm 1.

If the path toward the right sub-goal vertex is blocked then the robot is

always able to keep rotating in the same sense to get aligned with the

vertex generating the blockage.

Case IV-RP is shown in red in Fig. 11. There are 9 states in this

case:

1. TCCW9 in this state, first, right vertices are located in the local

reference frame F presented in Appendix B. Second, the omnidi-

rectional sensor is placed at point l p, and finally the left vertices

are located in the same local reference frame presented F in Ap-

pendix B.

2. A1 this state executes Algorithm 1 and selects a sub-goal vertex.

3. RPCW5 makes the robot to rotate w.r.t to point rp to align lt to

left sub-goal vertex.

4. TCW5 places the omnidirectional sensor at point rp, and in this

state the right vertices are located in the local reference frame F

presented in Appendix B.

5. TCCW7 places the omnidirectional sensor at point l p, and in this

state the left vertices are located in the local reference frame F

presented in Appendix B.

6. TCW6 places the omnidirectional sensor at point rp.

7. RPCW6 makes the robot to rotate w.r.t. point rp to align rt to a

right sub-goal vertex.

8. T1B6 This state decides whether or not there is a blockage (detec-

tion of type 1) to the right sub-goal vertex.

9. TCCW8 in this state, first, right vertices are located in the local

reference frame F presented in Appendix B. Second, the omnidi-

rectional sensor is placed at point l p, and finally the left vertices

are located in the same local reference frame F presented in Ap-

pendix B.

The input observation vectors in Case IV-RP are presented in Table

14.

