
Saving Time for Object Finding with a Mobile Manipulator Robot in
3-D Environment

Judith Espinoza1 and Rafael Murrieta-Cid1

1Centro de Investigación en Matemáticas, CIMAT, Guanajuato,
México

jespinoza@cimat.mx, murrieta@cimat.mx

Abstract. In this paper, we address the problem of

reducing the time for finding an object. We consider

both the time taken by our software to generate a search

plan and the expected time to find the object when

the plan is executed. The object is sought with a 7

degrees of freedom mobile manipulator robot with an

“eye-in-hand” sensor. The sensor is limited in both range

and field of view. We propose two main strategies: 1)

To coordinate the motion of robot’s degrees of freedom

optimizing only the most relevant for the task, and

2) to repair a previously computed plan whenever the

environment changes locally. We have implemented

all our algorithms, and we present simulation results in

realistic environments.

Keywords. Search, path planning, 3-D visibility, 3-D

coverage.

Reduciendo el tiempo para encontrar
un objeto con un robot manipulador

móvil en ambientes 3-D

Resumen. En este artı́culo, nosotros abordamos

el problema de reducir el tiempo para encontrar un

objeto. Reducimos tanto el tiempo de cómputo para

generar un plan de búsqueda, como el valor esperado

del tiempo para encontrar el objeto, cuando el plan

generado es ejecutado. El objeto se busca con un

robot manipulador móvil con 7 grados de libertad, el

robot está equipado con un sensor en el efector final

del brazo. El sensor está limitado en rango y campo

de vista. Proponemos dos principales estrategias: 1)

Coordinar el movimiento de los grados de libertad del

robot, optimizando únicamente los más relevantes a la

tarea, y 2) reparar un plan previamente calculado si

el ambiente cambia localmente. Todos los algoritmos

propuestos han sido implementados, y se presentan

simulaciones en ambientes realistas.

Palabras clave. Búsqueda, planificación de caminos,

visibilidad 3-D, covertura 3-D.

1 Introduction

In this paper, we address the problem of reducing
the time for finding an object. The object is sought

with a 7 degrees of freedom mobile manipulator

robot with an “eye-in-hand” sensor. The sensor
is limited in both range and field of view. A

search plan corresponds mainly to a set of sensing
configurations to be visited and the order for visiting

those configurations.

In [20], the authors investigated the problem of

finding an object in a 3-D environment for the case

of a point robot equipped with an omni-directional
sensor. In [20], the authors have also introduced

a probabilistic sampling method to decompose
the workspace into convex regions. In [3, 5]

the authors extended their work to a mobile

manipulator robot equipped with a sensor limited
in both field of view and range; a method to

approximate the visibility region in 3-D of the limited

sensor is proposed, convex regions are used to
facilitate this approximation.

We have found that the main disadvantage of

the approach presented in [5] is that for large and

complex 3-D environments, the time needed to
compute a plan might be excessively large, in the

order of several hours. We have found that the
task taking the longest computational running time,

corresponds to optimizing the motion of a large

number of robot’s degrees of freedom (DOF), for
generating paths that minimize the expected value

of the time to find an object. The computational

running time of our algorithm refers to the time
taken by our software to generate a plan to find the

object. The expected value of the time refers to the
average time in which the object will be found by

executing that plan. So the first time refers to the

generation of the plan, and the second one to the
performance in average of this plan when the plan

is executed.

In this paper, we propose two approaches

for reducing the computational running time to
generate a plan, while preserving the expected

value of the time to find the object reduced.

First, we propose the strategy of selecting the

most important DOF to be optimized. This strategy
significantly reduces the computational running

time to generate a plan. Furthermore, our motion

planner coordinates the translation of the robot
base and the rotations of the arm’s links, such that

the expected value of the time remains almost the

same compared with optimizing all robot’s DOF.

Second, we propose a method to repair a

previously computed plan, for dealing with local
changes in the 3-D environment. The algorithm

presented in [5] receives as input a 3-D map
of the environment and it returns as output a

search plan. Once, a plan is generated, whenever

the environment changes, a new plan should be
computed. In this paper, we present a technique

that allows us to avoid the generation of a new

plan from the beginning. For example, imagine
the following scenario: a plan has been generated

for finding some object inside a house, but after
the generation of the plan, some furniture inside

the house has changed location, however the

house building has not changed. In this kind of
situations, the method proposed in the paper is

applicable and useful. We base our approach on

a 3-D convex regions decomposition, in which the
environment is divided. The plan is repaired by

generating a new sub-set of sensing configurations
and a new order for visiting those configurations,

only considering the convex regions related to the

change in the map of the 3-D environment. The
important advantage of repairing a plan instead of

generating again the whole plan is that the time

needed to repair the plan is in general significantly
smaller than the time needed to generate again

the whole plan. Moreover, in our experiments, we
have found that this technique does not increase

considerably neither systematically, the expected

value of the time for finding the object.

The main distinguishing features of this work

compared with the research presented in [4] are:
1) we propose a method to coordinate the motion

of robot’s DOF optimizing only the most relevant
for the task. 2) We present a comparison between

optimizing all the robot’s DOF as in [5], versus

optimizing an appropriate subset of DOF, in terms
of both the computational running time needed to

generate a plan and the expected value of the time

to find an object. 3) For the strategy of repairing

plans, we present cases in which the percentage
of the modified environment varies and we also

compare the results.

Before proceeding to the description of the

proposed approach, several points are important
to keep in mind:

— The task that we are addressing requires to

deal with problems having high computational

complexity: e.g. generation of a minimum
convex cover [15], determination of an order

to visit sensing locations that minimizes the

expected value of the time for finding the
object [21] and computation of shortest paths

for a robot with 7 DOF [11, 13].

— We deal with geometric aspects often
neglected in order to find an object: e.g. 3-D

visibility computation, a robot with no trivial
geometry and a sensor limited in both range

and field of view.

— We propose an approach that requires only
some minutes to generate a search plan,

which diminishes the expected value of the

time to find the object when the plan is
executed. We also propose an approach

to repair a plan for a local change of the

environment.

— Any computer vision algorithm used to detect

the object sought needs first to have that

object inside the robot’s field of view. It is to
this end that this paper focuses on, to put the

object within the robot field of view.

The remaining of this paper is organized as
follows: In Section 2, we present related works. In

Section 3, we briefly describe the general method

for a plan generation. In Section 4, we present
an approach for coordinating the motions of robot’s

DOF and for optimizing only the most relevant for

the task. A comparison of the results in terms
of both the computational running time needed to

generate a plan and the expected value of the time
to find an object is also presented. In Section 5, we

present a method to repair a previously computed

plan. In Section 6, results for repairing a plan are
presented. Finally, in Section 7, we present the

conclusion and future work.

2 Related Work

Our search problem is related to robot motion

planning, coverage and art gallery problems.

In robot motion planning [11, 13] the typical

goal is to find a collision free path to move a
robot (a mechanical system, which may have

many degrees of freedom) from an initial to

a final configuration. Efficient algorithms have
been proposed to solve this problem. These

algorithms use sampling to capture connectivity of

high dimensional configuration or state spaces, for
example, [9, 8, 14, 23], just to name some classical

works. In our work we also want to connect sensing
configurations, but we have an additional goal. We

are interested in representing the free space inside

the 3-D workspace for searching for an object and
not only in representing the configuration space for

avoiding robot collision. Nevertheless, we need to

find collision-free paths to move the robot between
sensing configurations. Our main interest is to

address the problem of finding a static object. This
adds a new aspect to our planning problem.

In coverage problems (e.g., [7, 1]), the goal
is usually to sweep a known environment with

the robot or with the viewing region of a sensor.
In this problem, it is often desirable to minimize

sensing overlap so as not to cover the same region

more than once. Our problem is related to the
coverage problem in the sense that any strategy

guaranteeing to find an object must sense the

whole environment.

The traditional art gallery problem is to find
a minimal placement of guards such that their

respective visibility regions completely cover a

polygon [16, 22, 6]. As we will see below in Section
3, a set of sensing configurations that collectively

see the environment could be used as part of
a solution to our search problem. Notice that

differently to the works presented in [16, 22] and [6]

we consider a 3-D environment and not a polygon.

In [24], the authors propose an approach for
adaptive motion planning of robots with many

degrees of freedom such as mobile manipulators,

in dynamic environments with moving obstacles.
In [10], an approach is proposed that enables

a robotic system to react to unforeseen and
unpredictable events. In particular, a method is

proposed to switch from sensor-guided motions

to trajectory-following motions. However, in [24]
and [10] the authors do not propose a method

for approximating 3-D visibility computation and

search for an object, this paper addresses these

problems.

There has been a considerable amount of

research on search problems in robotics. Several

authors have proposed methods for looking for
one or several objects with robots, e.g [2,

12, 17]. In [12], a method is proposed for

looking for multiple objects with several robots,
the method is based on dynamic programming,

and the authors’ objective is to minimize the
expected time to find the objects. The

proposed method only addressed the case of 2-D

environments and robots have simple geometry.
In [2], the authors describe an interesting

decentralized Bayesian approach to coordinating

multiple autonomous sensor platforms searching
for a single non-evading object. The approach

is applied to a team of airborne search vehicles
looking for a stationary target lost at sea. However,

the proposed approach does not deal at all with

obstacles in the environment that produce motion
and visibility obstructions. In [17], an approach

for visual search of a given target is proposed.

This approach optimizes the probability of finding
the target given a fixed cost limit in terms of total

number of robotic actions the robot requires to
find a visual target. A robotic realization in a 3-D

environment is presented. However, a collision free

path for the robot to move is calculated considering
only a 2-D environment, and the authors propose

as future work a more advanced path planning

capability.

3 Original Plan Generation

In our formulation, we assume that the environment

is known, but that we do not have information about

the location of the static object being searched.
This is equivalent to defining an uniform probability

density function (pdf) modeling the object location.

We believe that this reasoning is general given that
we do not need to assume a relation between a

particular type (class) of object and its possible
location (for instance, balloons are floating but

shoes lie on the ground), which could reduce the

scope of the applications.

The robot senses the environment at discrete

configurations qi (also known as guards, from the

art gallery problem [16]). Let’s call V (qi) the
visibility region associated to the limited sensor.

Our searching strategy is as follows: first, the whole

environment is divided into a set of convex regions.

To split the environment into convex regions we
use the probabilistic convex cover proposed in [20].

That method divides the environment into a set

called {Cr}, so that the union of all Cr covers the
whole environment, that is

⋃

r Cr = int(W). The

interior of the workspace int(W) is the free space
inside the 3-D environment, Cr denotes a convex

region in a 3-D environment, and r indexes the

region label. Note that all points inside Cr can be
connected by a clear line of sight from any point

p(x, y, z) inside Cr. Second, each convex region is

covered with the sensor frustum denoted by F .

We establish a route to cover the whole

environment by decomposing the problem also into
two parts: First an order to visit convex regions

Cr is established. Second, sensing configurations

in a configuration space C of 7 dimensions are
generated to collectively cover each convex region.

These sensing configurations are linked in a graph

and perform a graph search to establish the order
to visit the configurations associated to a single

convex region.

In [21] it has been shown that the problem of

determining the global order for visiting sensing

locations, which minimizes the expected value of
the time to find an object is NP-hard, even in a 2-D

polygonal workspace with a point robot. Hence,

in [21], an efficient algorithm has been proposed,
which aims just to diminish the expected value of

the time. In this paper, we use that algorithm to
establish the orders for visiting convex regions and

for visiting sensing configurations inside a single

convex region. Below, we briefly describe the main
concepts that found the algorithm proposed in [21].

The route followed by the robot corresponds

to an order of visiting sensing configurations qi,k
that starts with the robot’s initial configuration and

includes every other configuration. While qi refers
to a configuration, qi,k refers to the order in which

configurations are visited. That is, the robot always

starts at qi,0, and the kth configuration that the
robot visits is referred to as qi,k.

For any route R, we define the time to find the

object T as the time it takes to go through the
configurations – in order – until the object is first

seen. The expected value of the time to find an
object depends on two main factors: 1) the cost

of moving the robot between two configurations,

which is the elapsed time, and 2) the probability
mass of seeing the object, which is equivalent to

the gain.

The expected value of the time that a route takes

to find the object is defined as follows:

E [T |R] =
∑

j

tjP (T = tj) , (1)

where

P (T = tj) =
V olume

(

V (qi,j) \
⋃

k<j V (qi,k)
)

V olume(int(W))
.

(2)

Here, tj is the time it takes the robot to go
from its initial configuration – through all sensing

configurations along the route – until it reaches the

jth visited configuration qi,j , i refers to the label
(identifier) of the configuration. Since the robot only

senses at specific configurations, P (T = tj) is the
probability of seeing the object for the first time

from configuration qi,j . The probability of seeing

the object for the first time from configuration qi,j
is proportional to the volume visible from qi,j minus

the volume already seen from configurations qi,k,

∀k < j as stated in Eq. 2.

We use the utility function defined below to

measure how convenient it is to visit a determined

configuration from another:

U (qk, qj) =
P (qj)

T ime (qk, qj)
. (3)

This means that if a robot is currently in qk,

the utility of going to configuration qj is directly

proportional to the probability of finding the object
there and inversely proportional to the time it must

invest in traveling. A robot using this function to

determine its next destination will tend to prefer
configurations that are close and/or configurations

where the probability of seeing the object is high.

P (qj) is equal to P (T = tj) defined in Eq. 2.

The utility function in Eq. 3 is sufficient to

define a 1-step greedy algorithm. At each step,

simply evaluate the utility function for all available
configurations and choose the one with the highest

value. This algorithm has a running time of O
(

n2
)

,
for n configurations.

However, it might be convenient to explore

several steps ahead instead of just one to try
to “escape local minima” and improve the quality

of the solution found. So, we use this utility

function to drive a partially greedy algorithm. This
algorithm is able to explore several steps ahead

without incurring a too high computational cost.

In the worst case, this algorithm has a running

time complexity of O
(

n3 logn
)

. A description of
this algorithm can be found in [21], together with

a comparison between the performance of the

algorithm (in terms of the expected value of the
time to find the object) vs. the optimal path.

We stress that this algorithm often reduces in 3
orders of magnitude the computational running

time compared with the algorithm needed to find

the optimal solution, which is exponential since the
optimization problem to be solved is NP-hard.

3.1 Paths to Move Between Convex Regions

Since the expected value of the time depends

on the cost (time) of moving the robot between
sensing configurations, we need to find shortest

paths to move the robot between convex regions.

The actual paths depend on the metric used
to measure cost to move between convex

regions. One way to define the cost between

two configurations X and Y in a D-dimensional
configuration space is

‖X − Y ‖Λ ≡ (X − Y)TΛ(X − Y), (4)

where Λ is a diagonal matrix with positive weights

λ1,λ2, . . . λD assigned to the different DOF. By

weighting each d.o.f. differently, we can assign
different priorities to the two main components of

our system: the mobile base and the robotic arm.

To find the shortest path between one given
convex region and all the others, we use the

wavefront expansion (called NF1) proposed in [11].
We use the method proposed in [11] to compute

the shortest path for the mobile robotic base, the

degrees of freedom related to the robotic arm are
planned using a sampling method, such that the

robot does not collide with the obstacle. Optimizing

only a sub-set of all robot’s degrees of freedom
greatly reduces the computational running time to

generate a global path to explore the environment
(see Section 4). Furthermore, we also coordinate

the motion of the robot’s base and the robot’s arm,

such that the expected value of the time to find a
object does not increase even if only some DOF

are optimized (see also Section 4).

3.2 Selecting and Connecting Sensing
Configurations Inside a Single Convex
Region

The method proposed in [3, 5] to cover each

convex region with a limited sensor is based on
sampling.

Sensing configurations q(i,r) are generated with
a uniform probability distribution in a configuration

space C of 7 dimensions: A sensing configuration

q(i,r) is associated to a given region Cr. Each
convex region has associated a set Sr of point

samples sr ∈ Sr. Each point sample sr lies in

the 3-D space, and is defined by a 3-dimensional
vector p(x, y, z). Sr is used to cover the convex

region Cr with a limited sensor.

The algorithm for selecting sensing
configurations has been inspired from the

algorithm presented in [6], that method was
designed to cover the boundary ∂P of a polygon

P , we have extended the method to cover the

interior of the polyhedral representation of a 3-D
environment int(W).

In the proposed method, the point samples

lying inside the frustum associated to a sensing
configuration q(i,r) are used to approximate the

actual visibility region V (q(i,r)). The robot’s
configurations used to cover a convex region have

the property that all of them place the sensor inside

the convex region being sensed. This property
allows us to approximate the visibility region of

the limited sensor without complex 3-D visibility

computations. The visibility region of the limited
sensor at configuration q(i,r) is approximated by:

V (q(i,r)) =
⋃

s

sr ∈ int(F ∩Cr). (5)

Where s indicates sample points.

While covering region Cr, we also mark as
sensed and logically remove, all samples sv
belonging to region Cv, v 6= r, if sv ∈ int(F ∩ Cr ∩
Cv). It is guaranteed, that these samples are not
occluded from configuration q(i,r). In Figure 1, dark

(magenta) dots are used to show the set Sv, and

light gray (yellow) dots represent the set of point
samples Sr belonging to the region in which the

sensor resides and inside the frustum. A convex
region Cr is totally covered if:

⋃

s

sr ∈ int(Cr) = Sr. (6)

Fig. 1. Sets {sr} and {sv)}.

Sensing configurations are selected based on

the cardinality of its point samples. Iteratively, we
select the configurations with the largest cardinality

of point samples sr until all the set Sr is sensed.

Redundant sensing configurations, with low point
samples cardinality are avoided, yielding a reduced

set containing only sensing configurations with high
cardinality of point samples and a small number of

redundant point samples.

Additionally, in our sensing configuration
sampling scheme, we reject candidate sensing

configurations in whose view frustum is in

collision with the robot itself, thus, avoiding
occlusions generated by the robot body. We

also reject sensing configurations, that produce a

collision of the robot with the obstacles and robot
self-collisions.

Since we want to have options to move the

robot between sensing configurations, and thus
further reduce the expected value of the time to find

the object, we connect the sensing configurations
of each set {q(i,r)} into a fully connected graph.

For reducing the computational time to cover the

environment with a limited sensor, we estimate the
cost to move between sensing configurations as a

straight line in the configuration space C.

In the motion planning problem of generating
collision free paths to move between

configurations, we use a lazy collision checking
scheme [18, 19]. Since we proceed visiting convex

regions one by one, it is likely to find collision

free paths among configurations to cover the
same convex region. Often a small region can be

covered with small robot motions, and big regions

offer large open space to move the robot. We

postpone the collision checking until an order of
sensing configurations is established. Evidently,

sometimes the fully connected graph splits into

two connected components, if so, we use an RRT
[14] to find a collision-free path between the two

components. We stress that we have found in our
experiments that only 1

10 of the total number of

paths to sense convex regions are computed with

an RRT. All other times, a straight line in C was
enough to find collision free paths.

To cover a single convex region the robot travels

a tour, the first sensing configuration and the last

one is the same, this allows to preserve the path
and its cost of moving between convex regions,

and consequently the order to visit them, which has
been previously planned.

4 Coordinating the Motion of Degrees
of Freedom

The coordination of the motion of the DOF is

general in the sense that it is possible to coordinate

the motion of the different degrees of freedom
optimizing only a subset of them. However,

the determination of the cost of moving each

degree of freedom depends on the specifics of the
application. In large environments and having as

goal to reduce the expected value of the time to find
an object, it is typically more convenient to optimize

the motion of the robot base. Consequently, we

consider that the coordinates (x, y) defining the
position of the robot’s base are the most important

DOF for our problem. Hence, we optimize

only these two DOF. The shortest path between
one given convex region and all the others, is

found using the wavefront expansion (called NF1)

proposed in [11]. We plan the motion of the
other DOF using a sampling procedure. Thus,

a robot path to move between convex regions
is a sequence of robot’s configurations, in which

some DOF are planned optimally and the others

do not produce collisions between the robot and
the obstacles.

Furthermore, our motion planner coordinates the

translation of the robot base and the rotations of
base and the arm’s links, such that both translation

and rotations happen at once. If the maximal

rotational speed for the DOF of the robot arm is
large enough, the arm can move to their destination

within the time that the base moves. In this specific

case the cost of moving the arm is zero. In other

words, when the robot finishes a translation motion,
the degrees of freedom of the robotic arm are

already in their desired final configuration. The

translation time is divided in several intervals, each
of them has a time stamp, such that there is a

limited number of iterations for the DOF of the
robotic arm to reach their desired final value.

Finally, it is important to clarify, that the trajectory
of the robotic base might be different, when the

motion of all the DOF are computed using the
wavefront expansion, compared with the trajectory,

in which the motion of robotic arm DOF are

computed based on a sampling procedure. Our
sampling procedure might not find a collision free

configuration needed to obtain the true shortest

path for the base (for a given resolution of the
wavefront). Consequently, the expect value of

the time to find the object will also be different.
In our experiments, (see next section), we have

found that using our coordination approach, the

expected value of the time to find the object does
not increase considerably, while the computational

running time to generate a plan is drastically

reduced from several hours to some minutes.

4.1 Simulation Results

All the results presented in this paper were

obtained with a regular PC running Linux OS,

the processing speed of the CPU is 2.2 GHz.
The programming language used to obtain our

simulation results was C++.

In Figures 2 a) and b) an example of a global

path to visit convex regions is shown, in this
example only the DOF related to the position of

the robotic base are optimized. In Figures 2 c) and

d) another example is shown. In this case all the
DOF of the robot are computed using a wavefront

expansion. Figures 2 b) and d) show a view taken

from “under the ground” in order to better see the
motion of the robot’s base. Notice that the paths of

the robot’s base are a bit different.

In Figures 3 and 4 a more complex environment

is shown. This environment was divided in 23
convex regions. Figures 3 a) and b) show some

of these convex regions with a (red) mesh. Notice
for instance, the convex regions under the chair

and the table. In this environment, we have run

20 different simulations, in 10 of them we have
optimized only the motion of the robot’s base and

in the other 10 we have optimized all robot’s DOF.

(a) Optimizing the motion of the robot’s base.

(b) Robotic base’s motion.

(c) Optimizing all robot’s DOF.

(d) Robotic base’s motion.

Fig. 2. Optimizing some degrees of freedom.

Table 1. Statistics of experiment shown in Figure 4.

Number of DOF Number of convex regions Computational running time E[t]

2 DOF 23 11 min 40 sec. 41.20 units

7 DOF 23 10 hrs 51 min. 36.43 units

(a)

(b)

Fig. 3. Some of the convex regions.

(a) Optimizing the motion of the robot’s base.

(b) Optimizing all robot’s DOF.

Fig. 4. A more complex environment.

In Table 1, we present the mean of both the

computational running time needed to compute
the paths to visit all the convex regions and the

mean of the expected value of the time to find the

object E[t]. These results clearly show that using
our coordination approach, the expected value

of the time to find the object does not increase
considerably, while the computational running time

to generate a plan is drastically reduced. In

these experiments, the expected value of the time
has increased only 13%, while the computational

running time to computed the global path was

reduced almost 60 times.

Figure 4 a) shows an example of the global path

to visit all convex regions, in which only the motion
of the robot’s base is optimized. Figure 4 b) shows

an example of the global path to visit all convex
regions, in which all robot’s DOF are optimized.

5 Repairing a Plan

In [20], the authors have proposed an algorithm
for a convex cover. That algorithm is based

on sampling and divides the environment into

overlapping convex regions. Roughly, the algorithm
works as follows: first, to capture the size and

shape of the workspace W one generates a set

of independent, uniformly distributed samples S
in the interior of W . Among these samples, one

chooses a hidden guard set G. A set is called
a hidden guard set if it covers the environment

and individual members of the set are not visible

to each other. There will be a set of sample
points that only one particular guard can see. This

set of points is called the kernel of the guard

g ∈ G. Second, guard kernels are divided into
convex regions by using convex hulls. The resulting

convex regions are expanded by adding sample
points as long as doing so does not generate a

collision with the obstacles. The main idea behind

this convex cover algorithm is that by “growing”
convex regions around the guard kernels, one can

generate a low cardinality convex cover (a detailed

description of this algorithm can be found in [20]).
Note that, it has been proved that a minimum

convex cover even in a polygon is also an NP-hard
problem [15]; therefore, the aim is just to obtain

an efficient algorithm that tries to generate as few

convex regions as possible. It has been found
that in practice this algorithm does find a minimal

cardinality set in some instances [5].

5.1 Modifying the Convex Cover to Deal with
Changes in the Environment

The changes in the environment are detected using

the original convex cover. Indeed, the change

of location of an obstacle in the environment
will produce the following modifications over the

convex regions originally generated. 1) The

regions related to the original location of the
obstacle must be modified 2) the regions related

to the new position of the obstacle must also be
modified. Let us call the first set of regions {C}t
and the second set {C}t+1.

Note that, we use the word obstacle, to refer

to an element of the environment, which is

moved to modify the original environment. This
element, the so called obstacle is not the sought

object. The sought object location is not known

deterministically.

To define which regions are members of {C}t,
it is necessary to detect the regions which are
adjacent to the original obstacle position. A way

of detecting these regions is by measuring the

distance between the convex regions and the
obstacle. All regions which are closer than a given

small ǫ to the obstacle are members of {C}t. The
set of regions {C}t has associated a set of point

samples called St. The point samples in the interior

of the union of all the regions in {C}t forms the set
St, that is St =

⋃

s s ∈ int({C}t).

Defining which regions are members of {C}t+1

is simple. Merely all original convex regions

are tested for collision with the obstacle at its

new location, those regions in collision belong
to {C}t+1. The set of regions {C}t+1 has also

associated a set of point samples called St+1,
which is defined by St+1 =

⋃

s s ∈ int({C}t+1)
It is also needed to determine the point samples

in collision with the original and new obstacle
locations. Let’s call the set of point samples in

collision with the obstacle at its original location

Obst, and the set of samples in collision with the
obstacle at its new location Obst+1.

The key idea to compute the new convex regions
needed to take into account of the change of the

map is the following: only a subset of the samples
used to compute the original convex cover are

given as input to the algorithm that generates the

local convex cover decomposition considering the
change in the map. Let’s call this subset S∆, S∆ is

the union of the point samples belonging to the sets

St, St+1 and Obst minus the samples belonging to

set Obst+1, that is:

S∆ =
⋃

s

s ∈
(

St

⋃

St+1

⋃

Obst

)

\Obst+1. (7)

The polyhedral representation of the
environment considering the new obstacle

location, and the set of point samples S∆ are
given as inputs to the convex cover algorithm

proposed in [20]. The algorithm returns as outputs

the new set of convex regions needed to take into
account the change in the environment. This set is

denoted {C}∆.

Let’s call {F} the set of all the original convex

regions, and {N} the set of all convex regions

after having modified the environment. This new
set of convex regions is composed by the original

regions that have not been eliminated (i.e. {F} \
({C}t

⋃

{C}t+1) plus the set {C}∆, that is:

{N} = ({F} \ ({C}t
⋃

{C}t+1))
⋃

{C}∆; {N}
totally covers the modified environment.

5.2 Modifying the Orders to Visit Convex
Regions and Sensing Configurations

As it was mentioned above, the problem of

generating an order to visit sensing configurations
was planned in two steps: first an order to visit

convex regions is computed (we call it the global

plan). Second, for every convex region an order
to visit sensing configurations is established. We

will show now that this heuristic of dividing the

large problem into several smaller sub-problems
facilitates to repair a previously computed plan.

To repair a previously computed search path
and under the assumption that the change in

the environment is local, it makes sense to
modify the global plan only locally, preserving

as much as possible the order to visit convex

regions. This approach has the advantage that
the computational running time to repair the plan is

typically smaller than the one needed to recompute

the whole global plan, adding reactivity to the
re-planning process.

For repairing the plan, the spatial location of

the new convex regions is taken into account.

Furthermore, the new convex regions will appear
at spatial locations related to the site occupied by

the regions belonging to {C}t and {C}t+1.

The goal of algorithm 1 is to compute a new

order for visiting regions, preserving as much as
possible the original global plan. Let’s call {O}F the

ordered set of original convex regions, and {O}N
the new ordered set of convex regions.

Algorithm 1 Computing the new order to visit
convex regions.

Input: Sets: {F}, ({C}t
⋃

{C}t+1), {C}∆.

Output:{O}N new ordered set of convex
regions.

1. {O}F ← Order{F};
2. k = 1, e = a = 0;
for j = 1 to |{O}F | do

3. Cr,j ← {O}F ;
if Cr,j ∈ ({C}t

⋃

{C}t+1) then
4. {C}aux ← ∅;
5. e = e+ 1;
for n = 1 to |{C}∆| do

6. Cv ← {C}∆;

if (Cr,j

⋂

Cv 6= ∅) then
7. {C}aux ← Cv;

8. a = a+ 1;
end if

end for
9.{C}∆ ← {C}∆ \ {C}aux;
10. Local-Order({C}aux,qrobot ∈ Cr,k);
11. {O}N ← {C}aux;

else if Cr,j /∈ ({C}t
⋃

{C}t+1) then
if e = 0 then

12. {O}N ← Cr,j ;
13. k = j;

else if e 6= 0 then
14. k = j + a− e;
15. Cr,k = Cr,j ;

16. {O}N ← Cr,k;

end if
end if

end for

First, the set {F} is ordered according to which

region is visited earlier (by the robot) in the original

global plan (line 1 in algorithm 1).

Regions Cr,j index the elements of this set; r
refers to the region’s label (region’s identifier), and

j refers to the jth visited region. Regions Cv ∈
{C}∆ are the new generated regions, v refers to

the region’s label.

Regions Cr,k index the elements of {O}N (k
refers to the kth visited region in the new set {O}N).

Second, all regions Cr,j ∈ ({C}t
⋃

{C}t+1) are

eliminated in the new plan.
Every region Cr,j ∈ ({C}t

⋃

{C}t+1) is checked for

collision with every region Cv ∈ {C}∆. Notice that

more than one region Cv might intersect the same
region Cr,j . All regions in {C}∆, which intersect

the same Cr,j are stored in the set {C}aux (line 7
in algorithm 1). Let’s call aj the cardinality of the

set {C}aux, for each region Cr,j.

In algorithm 1 (line 10), the method Local-Order

is used to establish the order for visiting regions in

{C}aux; qrobot ∈ Cr,k denotes the first visited robot
configuration in convex region Cr,k. Local-Order

does the following. Assuming that the robot is
located at qrobot ∈ Cr,k, 1-step ahead evaluation

of the utility function in Eq. 3 is used to establish

the region Cv,k+1. The region which maximizes Eq.
3 is chosen to be the k+1 region to be visited in the

new order. Assuming now, that the robot is located

at qrobot ∈ Cv,k+1 and again using 1-step ahead
utility function evaluation, the remaining (aj − 1)
regions in {C}aux are evaluated to determine the
visited region Cv,k+2 ∈ {O}N , and so forth until all

aj regions are ordered. For establishing an order

for visiting regions in {C}aux, the case in which the
robot is already located at region Cv,k ∈ {C}aux
must be considered. This means that the cost to

travel to this region is zero, and therefore there is
no need to evaluate the Eq. 3.

Third, the regions Cr,j /∈ ({C}t
⋃

{C}t+1) are
included in the new order with the following simple

rules: If no region Cr,j has been eliminated then
k = j, and region Cr,k has the same place in the

order as region Cr,j (line 12 in algorithm 1). If at

least one region Cr,j has been eliminated from the
original plan then k = j + a − e, in which a is the

number of new regions added to the new plan until

ordered element j, and e is the number of regions
which have been eliminated also until j (lines 14,

15 and 16 in algorithm 1).

Note that each region Cv ∈ {C}∆ is included

only once in the new plan. The location of the
first region Cr,j which intersect region Cv is taken

into account to establish the order of region Cv in

the new plan. Once a region Cv is included in
the new plan, it is eliminated from {C}∆ (line 9 in

algorithm 1). This procedure avoids redundancy in
the new plan. Since regions Cv ∈ {C}∆ replace

regions Cr,j ∈ ({C}t
⋃

{C}t+1), there is not need

of including a region Cv more than once. The new
order is complete when all original Cr,j regions

have been considered.

The collision free paths to move the robot

between new convex regions in {C}∆, and
between a region in {F} and a region in {C}∆ are

computed using the approach described in Section

4. Finally, new local plans are computed for visiting
sensing configurations associated to every new

region in {C}∆. These local plans are computed
with the approach described in Section 3.2.

Given that, in our original global plan for covering

the environment with the limited sensor, while
covering region Cr, all samples sp belonging to

region Cp (p 6= r) are marked and logically removed
(whenever sp ∈ int(F ∩ Cr ∩ Cp)), then it is

necessary to recompute new local plans for regions

Cr,j /∈ ({C}t
⋃

{C}t+1), which intersected regions
that have been eliminated, and which were ordered

ahead, in the original order of visiting convex

regions. Those new local plans are also computed
with the approach described in Section 3.2.

6 Simulation Results for Repairing a
Plan

In this section, we present two representative
experiments, called 1 and 2, in which the portion of

the modified environment is different. In the figures
a (cyan) mesh is used to show the convex regions.

In experiment 1, initially the environment

was divided in 11 convex regions, 44 sensing
configurations were needed to cover the

environment with the limited sensor. The original
order to visit convex regions was the following:

Cid9,1 → Cid7,2 → Cid6,3 → Cid11,4 → Cid1,5 →
Cid2,6 → Cid3,7 → Cid8,8 → Cid5,9 → Cid10,10

→ Cid4,11.

Figure 5 (a) shows the initial robot configuration
and the convex region Cid9,1. Figure 5 (b) shows

the robot having the sensor inside region Cid7,2.

Figure 5 (c) shows the path to move between
regions Cid1,5 and Cid2,6.

Figure 6 (a) shows the global path to visit convex
regions. Figure 6 (b) shows with light gray (yellow)

the point samples used to approximate the visibility

region of the limited sensor.

The original plan was modified as follows:

({C}t
⋃

{C}t+1)={Cid4,11,Cid5,9,Cid6,3,Cid7,2,Cid8,8,
Cid9,1,Cid10,10,Cid11,4}.
C∆ = {Cid12,Cid13,Cid14,Cid15,Cid16,Cid17,Cid18,
Cid19}. Thus, 8 regions were removed of the
original plan and 8 new regions were generated.

The new order for visiting convex regions is:

(a) Region Cid9,1.

(b Region Cid7,2.

(c) Path Cid1,5 → Cid2,6.

Fig. 5. Finding an object.

(a) Global path.

(b) Covering region Cid2,6 with the limited sensor.

Fig. 6. (a) Global path and (b) covering region Cid2,6.

(a) New obstacle location and region Cid18,2.

(b) Path Cid18,2 → Cid16,3.

(c) Path Cid12,8 → Cid1,9.

Fig. 7. New order.

Cid17,1 → Cid18,2 → Cid16,3 → Cid14,4 → Cid13,5 →
Cid19,6 → Cid15,,7 → Cid12,8 → Cid1,9 → Cid2,10 →
Cid3,11. 43 sensing configurations were needed to

cover the modified environment.

Figure 7 (a) shows the new obstacle (a
bookshelf) location and the robot having the sensor

inside region Cid18,2. Figure 7 (b) shows the path
between regions Cid18,2 and region Cid16,3. Figure

7 (c) shows the path between region Cid12,8 and

region Cid1,9.

Figure 8 (a) shows the 4 sensing configuration

that collectively covers with the limited sensor the

convex region Cid18,2. Figure 8 (b) shows the new
global path to visit all convex regions.

(a) Sensing configurations, region Cid18,2.

(b) New global path.

Fig. 8. (a) Sensing configurations, Cid18,2, and (b) new

global path.

The sub-order, sensing configurations and paths

to cover the room in which the obstacle has

changed location were modified. However, the

sub-order, the paths and sensing configurations to
cover the other two rooms were preserved.

Now, we present experiment 2, in which the
obstacle (again a bookshelf) has been moved from

the first to the last room. See figures 9 a) and

b). Figure 10 a) shows, the original global path for
searching for the object, and Figure 10 b) shows

the modified path.

(a) Initial obstacle location.

(b) Final Obstacle location.

Fig. 9. (a) Initial obstacle location and (b) final obstacle

location.

In Tables 2 and 3, the two experiment are

summarized and compared in terms of: number of
convex regions, number of sensing configurations

to cover the whole environment, computational

running time to generate the original search plan,
computational running time to repair the plan,

and expected value of the time to find the object
E[t]. Table 2 presents results for the original plan

generation, while Table 3 presents results for the

plan reparation. Notice that, in experiment 1, the
expected value of the time was actually improved

with the new plan.

Comparing the experiment 1 with 2, we can

observe that the computational running time to

(a) Original search path.

(b) Modified search path.

Fig. 10. (a) Original search path and (b) modified search

path.

Table 2. Parameters of original search plan.

Experiment # of convex # of sensing computational E[t]

regions configurations running time to

generate the plan

1 11 44 1 min 58 sec. 796 units

2 10 49 2 min. 31 sec. 776.3 units

Table 3. Parameters of repaired plan .

Experiment # of convex # of sensing computational E[t]

regions configurations running time to

repair the plan

1 11 43 21.5 sec. 771.68 units

2 10 42 1 min. 12 sec. 793.7 units

repair the plan is larger in experiment 2 compared

with experiment 1. In experiment 1 only one of
the three rooms has suffered a change due to the

obstacle’s change of location, while in experiment

2, two of the three rooms have changed, because
of the obstacle’s change of location. In other words,

the change of the environment in experiment 1 is

more local while in experiment 2 the change of the
environment is larger; this explains why the time

to repair the plan is bigger. However, we stress

the fact that even in experiment 2, in which the
change of the environment is more considerable,

the time to repair the plan is still smaller than the
time to generate the original search plan. These

two experiments are representative examples of

other simulations that we have run, in general, we
have found that the expected value of the time for

finding the object is almost the same after having

update the plan. In contrast, systematically the
computational running time needed to repair the

plan is smaller than the time needed to generate
again the whole plan.

The time saved by repairing a plan vs.

generating a new one depends on the change of
the environment. A practical way to estimate this

change can be computed as follows: Compute

the volume of the convex regions that have been
modified minus the volume of their intersections.

Subtracting the volume of the intersections avoids
to count the same volume more than once.

Second, divide this volume by the total volume

of free space in the environment. This total
volume corresponds to the sum of the volume of

all the convex regions minus their intersection. The

resulting value is normalized between zero and

one. The smaller this value is, the more convenient
is to repair a plan instead of generating a new

one. In our experiments, we have also observed,

that for almost empty environments, the expected
time to find the object is often larger than for

environments with many obstacles. Notice that

in an almost empty environment; there is more
empty space to be covered with the limited sensor,

and consequently more sensing configurations are

required to cover the whole environment. However,
in a clutter environment, the computational running

time to generate robot’s paths to visit sensing
configurations is larger than in an almost empty

environment.

7 Conclusion and Future Work

In this paper, we have addressed the problem
of reducing the time for finding an object in a

3-D environment. The object is sought with a 7
degrees of freedom mobile manipulator robot with

an “eye-in-hand” sensor. The sensor is limited

in both range and field of view. First, we have
proposed a strategy for coordinating the motion

of robot’s degrees of freedom optimizing only the

most relevant for the task. Second, we have
proposed an approach for repairing previously

computed plans. We have shown that whenever
the environment changes locally our plan can also

be repaired locally. We base our approach on

a 3-D convex regions decomposition dividing the
environment. The plan is repaired by generating

a new sub-set of sensing configurations and a

new order for visiting those configurations, only

considering the convex regions related to the
change in the map of the 3-D environment.

The two proposed strategies are significant,
because they considerably reduce the

computational running time to generate a plan

while the expected value of the time remains
almost the same. The coordination of the robot

degrees of freedom, optimizing only a subset of
them, allows one to generate search plans in a

reasonable amount of time for large environments.

In the statistics made over our experiments, when
this first extension is applied, the expected value

of the time has increased only 13%, while the

computational running time to computed the global
search path was reduced almost 60 times. For

the extension of repairing the original search plan,
the reduction of the computational running time

depends on how large is the modification of the

environment. In our experiments, the processing
time to repair a plan was always smaller than

the time needed to generate the original plan.

We have implemented all our algorithms, and
we have presented simulation results in realistic

environments.

We believe that the potential applications of our

current approach are many, from finding a specific

piece of art in a museum to search and detection
of injured people inside a building. As a future

work we want to test our approach in a real robot
together with a computer vision algorithm to detect

the object.

Acknowledgements

This work was funded in part by CONACYT
Project 106475 and by the NSF-CONACYT Project

J110.534/2006.

References

1. Acar, E., Choset, H., & Atkar, P. N.
(2001). Complete sensor-based coverage

with extended-range detectors: A hierarchical

decomposition in terms of critical points and voronoi

diagrams. In Proc. IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems, IEEE/RSJ-IROS 2001. IEEE,

1305–1311.

2. Bourgault, F., Goktogan, A., Furukawa, T., &
Durrant-White, H. (2004). Coordinated search for a

lost target in a bayesian world. Advanced Robotics,

18(10), 979–1000.

3. Espinoza, J. & Murrieta-Cid, R. (2010). A motion

planner for finding an object in 3d environments with

a mobile manipulator robot equipped with a limited

sensor. In Morales, Á. F. K. & Simari, G. R., editors,

IBERAMIA-2010. Springer-Verlag, Berlin, 532–541.

Lecture Notes in Computer Science, 6433.

4. Espinoza, J. & Murrieta-Cid, R. (2011). Repairing

plans for object finding in 3-d environments. In

Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems, IROS 2011. IEEE, 4528–4535.

5. Espinoza, J., Sarmiento, A., Murrieta-Cid, R., &
Hutchinson, S. (2011). Motion planning strategy

for finding an object with a mobile manipulator in

3-d environments. Advanced Robotics, 25(13-14),

1627–1650.

6. González, H. & Latombe, J.-C. (2001). A

randomized art-gallery algorithm for sensor

placement. In Proc. 17th ACM Symp. on

Computational Geometry (SoCG’01). ACM,

232–240.

7. Hert, S., Tiwari, S., & Lumelsky, V. (1996). A

terrain-covering algorithm for an auv. Autonomous

Robots, 3(2-3), 91–119.

8. Hsu, D., Latombe, J., & Motwani, R. (1997).

Path planning in expansive configuration spaces. In

Proc. IEEE Int. Conf. on Robotics and Automation,

IEEE-ICRA 1997. IEEE, 2719–2726.

9. Kavraki, L. E., Svestka, P., Latombe, J., &
Overmars, M. H. (1996). Probabilistic roadmaps

for path planning in high-dimensional configuration

spaces. IEEE Transactions on Robotics and

Automation, 12(4), 566–580.

10. Kroger, T. & Wahl, F. M. (2010). Online trajectory

generation: Basic concepts for instantaneous

reactions to unforeseen events. IEEE Transactions

on Robotics, 26(1), 94–111.

11. Latombe, J. C. (1991). Robot motion planning.

Kluwer.

12. Lau, H., Huang, S., & Dissanayake, G. (2005).

Optimal search for multiple targets in a built

environment. In Proc. IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems, IEEE/RSJ-IROS

2005. IEEE, 3740–3745.

13. LaValle, S. (2006). Planning Algorithms. Cambridge

University Press.

14. LaValle, S. M. & Kuffner, J. J. (2001). Randomized

kinodynamic planning. International Journal of

Robotics Research, 20(5), 378–400.

15. O’Rourke, J. (1982). The complexity of computing

minimum convex covers for polygons. In 20th

Annu. Allerton Conf. on Communication, Control,

and Computing. 75–84.

16. O’Rourke, J. (1987). Art Gallery Theorems and

Algorithms. Oxford University Press.

17. Rodriguez-Sanchez, A. J., Simine, E., & Tsotsos,
J. K. (2007). Attention and visual search. Int. J.

Neural Syst, 17(4), 277–288.

18. Sanchez, G. & Latombe, J. (2002). On the delaying

collision cheching in prm planning. International

Journal of Robotics Research, 21(1), 5–26.

19. Sanchez, G. & Latombe, J. (2003). A single-query

bi-directional probabilistic roadmap planner with lazy

collision checking. In Jarvis, R. & Zelinsky, A.,
editors, ISRR’01. STAR, Springer-Verlag, Berlin,

403–417.

20. Sarmiento, A., Murrieta-Cid, R., & Hutchinson, S.
(2005). A sample-based convex cover for rapidly

finding an object in a 3-d environment. In Proc. IEEE

Int. Conf. on Robotics and Automation, IEEE-ICRA

2005. IEEE, 3486–3491.

21. Sarmiento, A., Murrieta-Cid, R., & Hutchinson,
S. A. (2009). An efficient motion strategy to

compute expected-time locally optimal continuous

search paths in known environments. Advanced

Robotics, 23(12-13), 1533–1569.

22. Shemer, T. (1992). Recent results in art galleries.

Proc. IEEE, 80(9), 1384–1399.

23. Simeon, T., Laumond, J. P., & Nissoux, C. (2000).

Visibility based probabilistic roadmaps. Advanced

Robotics, 14(6), 477–493.

24. Vannoy, J. & Xiao, J. (2008). Real-time adaptive

motion planning (ramp) of mobile manipulators in

dynamic environments with unforeseen changes.

IEEE Transactions on Robotics, 24(5), 1199–1212.

Judith Espinoza obtained a B.E. in Computer

Science, in 2004, and a M.S. in Computer Science,
in 2006, both from Beneménerita Universidad

Autónoma de Puebla. In August 2012, she

received the Ph.D. degree in computer science
from the Centro de Investigación en Matemáticas

(CIMAT), Guanajuato, México. She is currently
a professor in the Universidad Autónoma de

Aguascalientes and is mainly interested in robot

motion planning.

Rafael Murrieta-Cid received the B.S degree in

physics engineering from the Monterrey Institute
of Technology and Higher Education, Monterrey,

México, in 1990 and the Ph.D. degree from the
Institut National Polytechnique, Toulouse, France,

in 1998. His Ph.D. research was done with

the Robotics and Artificial Intelligence Group
of the LAAS-CNRS. In 1998–1999, he was a

Postdoctoral Researcher with the Department

of Computer Science, Stanford University
Stanford, CA, USA. During 2002–2004, he

was a Postdoctoral Research Associate with
the Beckman Institute and the Department of

Electrical and Computer Engineering, University

of Illinois at Urbana-Champaign, Urbana, IL,
USA. From August 2004 to January 2006, he

was a Professor and Director of the Mechatronics

Research Center in Tec de Monterrey, Campus
Estado de México. Since March 2006, he has been

with the Mathematical Computing Group, Centro
de Investigación en Matemáticas, Guanajuato,

México. His research interests include robotics

and robot motion planning. He has published
more than 50 papers in journals and international

conferences on these topics.

Article received on 12/11/2013

