
QUADRATIC PROGRAMMING FOR PROBABILISTIC
                       IMAGE SEGMENTATION 

Mariano Rivera & Oscar Dalmau

Comunicación del CIMAT No I-10-06/25-06-2010 
(CC/CIMAT)



 
 

1

Quadratic Programming for Probabilistic Image
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Abstract

We present a general framework for image segmentation based on quadratic programing, i.e. by the minimization
of a quadratic regularized energy linearly constrained. In particular, we present a new and general derivation of the
Quadratic Makov Measure Field models (QMMFs) that can be understood as a procedure for regularizing the model
preferences (memberships or likelihood) as well as efficient optimization algorithms. In the QMMFs the uncertainty
in the computed regularized probability measure field is controlled by penalizing the Gini’s coefficient and hence
it affects the convexity of the QP problem. The convex case is reduced to the solution of a positive definite linear
system and, for that case, an efficient Gauss–Seidel scheme is presented. On the other hand, we present a efficient
projected Gauss-Seidel with a subspace minimization for optimizing the non–convex case. We demonstrate the
proposal capabilities by experiments and numerical comparisons with interactive two-class segmentation as well as
in the simultaneous estimation of segmentation and (parametric and non-parametric) generative models.

This paper has been submitted to IEEE TRANSACTIONS ON IMAGE PROCESSING, December 2009.
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I. INTRODUCTION

IMAGE SEGMENTATION is an active research topic in computer vision and is the core process in many
practical applications, see for instance the listed in [1]. Given that image segmentation is a ill–posed problem

that is task and user dependent, among many approaches, methods based on Markov Random Field (MRF) models
have become popular for designing segmentation algorithms because their flexibility for being adapted to very
different circumstances as: color, connected components, motion, stereo disparity, etc. [2], [3], [4], [5], [6], [7], [1].
See for instance the three posibble segmentation of a single scene in Fig. 1.

The MRF approach allows one to express the label assignment problem into an energy function that includes
spatial context information for each pixel and thus promotes smooth segmentations. The energy function codifies
the compromise of assigning a label to a pixel by depending on the value of the particular pixel and the value
of the surrounding pixels. Since the label space is discrete, frequently, the segmentation problem requires of the
solution of a combinatorial (integer) optimization problem. In that order, max–flow graph–cut based techniques [8],
[9], [10], [11], [12], [13], [14], [2], [15] and spectral methods for graph–cut [16], [17], [18] are among the most
successful solution algorithms. In particular, graph-cut based methods can solve the binary (two labels) segmentation
problem in polynomial time [6]. Recently some authors have reported advances in the solution of the multi-label
problem, their strategy consists on constructing an approximated problem by relaxing the integer constraint [18],
[19]. Additionally, two important issues in discrete MRF are: the reuse of solutions in the case of dynamic MRF
[10], [20] and the measurement of labeling uncertainty [20].

However, the combinatorial approach (hard segmentation) is neither the most computationally efficient, and, in
some cases, the most precise strategy for solving the segmentation problem. A different approach is to directly
estimate the uncertainties on the label assignment or memberships [5], [21], [7], [1], [22]. In the Bayesian framework,
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Fig. 1. Multi–class segmentation of a same scene according to different criteria (codified in the user scribbles). The columns correspond
to segmentations by color, semantic objects and planar regions, respectively.

such a memberships can be expressed in a natural way in terms of probabilities—leading to the named probabilistic
segmentation (PS) methods.

In this work we present new insights and extensions to the recent reported PS method named Quadratic Markov
Measure Field models (QMMFs) [1]. In particular we present a general framework for PS. We demonstrate that
the QMMF data term (potential) is a dissimilarity measure between discrete density distributions and satisfies the
requirements of the proposed PS framework. We presents efficient optimization algorithms, proper for the two-
classes (binary) and multi-classes segmentation. We demonstrate that the solution to a convex QMMFs is computed
by solving a linear system. Since the entropy control proposed in Ref. [1] affects the convexity of the quadratic
programing problem then we propose a projection strategy combined with a subspace minimization method for the
nonconvex QMMF case [23].

Preliminary results of this work were in [24], [25], [26]. We organize this paper as follows. Section III reports a
new derivation of the QMMF models based, the new derivation shows that the data term is an information measure
between density distributions that preserve model preferences. In section IV we presents optimization algorithms
for solving efficiently the QMMFs energies. Experiments that demonstrate the method performance are presented
in section V. Finally, our conclusions are given in section VI.

II. BRIEF REVIEW OF ENTROPY–CONTROLLED QUADRATIC MARKOV MEASURE FIELD MODELS

Let r be the pixel position in the image or the region of interest, R = {r} (in a regular lattice L). Then,
K = {1, . . . ,K} denotes the set of index classes and SK ⊂ RK denotes the simplex such that

z ∈ SK (1)

if and only if

1T z = 1, (2)

z � 0; (3)

where the vector 1 has all its entries equal one and its size is defined by the context; in our notation z � 0 with
z ∈ RK ⇐⇒ zk ≥ 0, for k = 1, 2, . . . ,K.

Recently, in Ref. [1] the Entropy Controlled Quadratic Markov Measure Fields (EC-QMMF) models for image
multiclass segmentation were proposed. Such models are computationally efficient and produce a PS of excellent
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(a) I1 (b) I2

(c) p1 (d) g = p1I1 + p2I2

Fig. 2. Image model generation. I1 and I2 are the original data, p1 is a matting factor vector (with p1 + p2 = 1 and p1, p2 ≥ 0) and g is
the observed image.

quality. Whereas hard segmentation procedures compute a hard label for each pixel, PS approaches, as QMMFs,
compute the confidence of assigning a particular label to each pixel. In the Bayesian framework, the amount of
confidence (or uncertainty) is represented in terms of probabilities. In this framework pk(r) denotes the unknown
probability of the pixel r to belong to the class k ∈ K. Hence the vector field p is a probability measure field, i.e.
p(r) ∈ SK .

The QMMF formulation is based on the generative model:

g(r) = p(r)T I(r) + η(r), (4)

where g is the observed image, the images vector I = [I1, I2, . . . , IK ]T is generated with a parametric model,
Ik(r) = Φθk

(r), with known (or estimated) parameters θ = {θk},∀k; η is a possible noise and p(r) ∈ SK is a
matting vector that can be understood as a probability measure [1], [22]. Fig. 2 illustrates the generation image
process assuming model (4). Based on this generational model, one can define the model preference as follows:

Definition The likelihood (model preference) vk(r) is the conditional probability of observing a particular pixel
value g(r) by assuming that such a pixel is taken from the image Ik:

vk(r)
def
= P (g(r)|p(r) = ek, I), (5)

where ek is the kth canonical basis vector.

In the particular case of i.i.d. Gaussian Noise and gray scale images:

vk(r) =
1√

2πσ2
exp

[
−‖g(r)− Ik(r)‖2

2σ2

]
. (6)

Then, according to [1], an effective PS of g can be computed solving the quadratic programing problem:

min
p
U(p) s.t. p(r) ∈ SK , for r ∈ R (7)
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with
U(p) =

1
2

∑
r∈R

{
p(r)TDrp(r) +

λ

2

∑
y∈Nr

‖p(r)− p(s)‖2wrs
}

(8)

where Dr = diag(d(r)) is a diagonal matrix, associated with the pixel r, with its k-th diagonal element computed
with

dk(r)=− log v̂k(r)− µ, (9)

v̂(r) ∈ SK is the pixelwise normalized likelihood, the parameter µ controls the entropy of the solution (i.e. the
amount of uncertainty in the PS), Nr = {s ∈ R : ‖r−s‖2 = 1} is the set of first order pixel neighbors, the positive
parameter λ controls the regularization (smoothness) process and the positive weights w lead the class border to
coincide with large image gradients. In [24] the weight function w is computed with

wrs =
γ

γ + ‖T{g(r)} − T{g(s)}‖2
(10)

where γ is a positive parameter that controls the edge sensibility and T is in general a nonlinear transformation
that depends on the task. For instance T can transform a color pixel value from the RGB space to the Lab space.

Then the memberships (p) and the parameters (θ) can be estimated by alternating partial minimizations until
convergence:

1) minp U(p, θ) s.t. p ∈ SK , keeping fixed θ,
2) minθ U(p, θ) keeping fixed p.

These minimization can be partially achieved as in a generalized EM scheme [27].
In the original proposal, QMMF models were derived from the observed model (4), assuming Gaussian noise,

η, and measure vectors p(r) with neglected entropy, i.e. the product pi(r)pj(r) ≈ 0 for i 6= j at any pixel r [1].
Then the generalization to other distributions than the Gaussian is justified, again in the low entropy limit, by
the approach: −

∑
k p

2
k(r) log v̂k(r) ≈ − log

[
p(r)T v̂(r)

]
, a dissimilarity distance between vectors. However, as we

will prove, the low entropy constraint in p is not required to derive the QMMFs models and, according with our
experiments, there exist problems where the best segmentation is computed with high entropic p’s, experiments in
subsection V-B.

III. ON QMMF MODELS

A. Probabilistic segmentation

Likelihoods v are of particular interest in image PS approaches. We frame PS methods in the next definition.

Definition Consistence Condition Qualification (CCQ). The information measure M(p, q) preserves the CCQ if
given the measure vector q, then probability measure p∗ = argminp M(p, q) with p ∈ SK satisfies: argmaxk p∗k =
argmaxk qk.

Definition Let p ∈ SK a discrete density function, then an information measure D(p, q) is CCQ consistent iff
p∗ = arg minpD(p, q) s.t. p ∈ SK is CCQ.

If a vector p holds the CCQ we say that p is CCQ. The CCQ definition provides a framework for developing
probabilistic segmentation methods. In the case we are interested, Bayessian regularization, CCQ means that the
data term does not alter the model’s preference.

B. QMMF Data term

In this subsection we prove that the QMMF data term∑
r∈R

Q (p(r), v̂(r)) (11)

with
Q(p, q) = −

∑
k

p2
k log qk (12)
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is an information measure that promotes fidelity of the measure vector p(r) to the likelihood vector v̂(r) and holds
CCQ. First we note the follows.

Proposition 3.1: The information function (12) is a dissimilarity (or inaccuracy) measure between the discrete
distributions p and q.

To prove the last proposition we use the generalized (α, β, γ, δ)-information measure between two probability
density functions [28]:

I
(α,β)
(γ,δ) (p; q) =

∑
k p

α
k q

β−α
k − pγkq

γ−δ
k

exp(α− β)− exp(γ − δ)
with p, q ∈ SK . (13)

The we note that (13) reduces to the Q–dissimilarity (12) when α = γ = δ = 2 and in the limit as β → 2, a direct
result of of the L’Hospital’s rule.

The Q–dissimilarity can be written using the positive definite diagonal matrix A = diag(− log q) as pTAp. In
particular all positive definite diagonal matrix is a Stieltjes matrix, see Appendix A. Now we introduce a general
result for induced norms based on Stieltjes matrices.

Proposition 3.2: Let A is a Stieltjes matrix then the solution to

argminp
1
2
pTAp s.t. 1T p = 1 (14)

is given by p = πA−11; where the positive Largrange’s multiplier π = (1TA−11)−1 acts as a normalization
constant. Moreover p � 0 (is a probability measure vector) and holds CCQ.

The proof of proposition 3.2 is presented in the Appendix A. Then, from this proposition, we can conclude that
the QMMF data term preserve the order on the minimizer distributions (pi ≥ pj ⇐⇒ v̂i ≥ v̂j) and hence is CCQ.
Note that last result preserves for unnormalized likelihood (pi ≥ pj ⇐⇒ vi ≥ vj); i.e. the QMMF models can
directly use unnormalized v. Hence, in the case of Gaussian likelihood the model parameters (mean and covariance)
can be computed with standard formulas just weighting with p2

k(r) the contribution of the r-th pixel value to the
k-th class [1], [26].

C. Relationship with other information measures

For comparison purposes, we review three CCQ consistent information measures (the Kerridge’s inaccuracy, the
Q-disimilarity and the Euclidean distance) that guarantee CCQ, there are however important differences in the
properties of the computed solution and algorithmic implications. In [1] is remarked that the second power (α = 2)
in (11) is justified by its numerical advantage: it leads to a quadratic programming problem. However, here we
show that such a selection has beneficial implications on the solution p itself.

First we review the Kerridge’s inaccuracy

K(p, q) = −
∑
k

pk log qk (15)

is derived from (13) with α = γ = δ = 1 and β → 1[29] [30].
Proposition 3.3: The solution to

argminp K(p, q) s.t. 1T p = 1, p � 0 (16)

is given by

pi =

{
1 qi ≥ qj , i 6= j,
0 otherwise.

(17)

Hence p is a indicator vector and holds CCQ.
The proof is presented in the Appendix A. This result can be contrasted with the corresponding for the Q–

disimilarity: the Kerridge’s inaccuracy results in a hard labeling (entropy zero), this is a disadvantage of the
measure given the lack of information on the solution’s confidence. In addition, the Euclidean distance

d(p, q) =
1
2
‖p− q‖2, (18)
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TABLE I
DISSIMILARITIES BETWEEN THE DISTRIBUTIONS p AND q.

Name Information Minimizer p Preserve Gaussian model Optimization
Measure given q order parameters Problem

Kerridge −
∑

i
pi log qi pi =

{
1 qi ≥ qj , i 6= j,
0 otherwise. No Easily computable Combinatorial optimization

Inner product 1−
∑

i
piqi pi =

{
1 qi ≥ qj , i 6= j,
0 otherwise. No Easily computable Combinatorial optimization

Q-dissimilarity − 1
2

∑
i
p2

i log qi pi = (log qi)
−1∑

j
(log qj)−1

Yes Easily computable Quadratic Programming

Euclidean 1
2

∑
i
(pi − qi)

2 pi = qi Yes No appropriate Quadratic minimization

base of the Gaussian Markov Measure Models (GMMFs), has the straightforward solution:

p = q. (19)

Table I presents a resume of the discussed information measures. —we have included the Inner Product (second
row) which solution, easily to verify, is also an indicator vector. We can see that both the the Q-dissimililarity
and the Euclidean distance lead to Quadratic optimization problems. However, the Q-disimilarity is preferred over
the Euclidean distance because experimentally has been demonstrated that produces results with lower entropy
[1]. Moreover, in the case of the joint estimation of segmentation and distribution parameters, the parameters of
Gaussian distributions can be computed with simple formulas: the mean corresponds to the mean of the p2-weighted
data. Differently, the use of the Euclidean distance results in a collapse to a single model [1], [26]..

IV. MINIMIZATION ALGORITHMS

We develop two efficient minimization algorithms for solving the QMMF’s optimization problem. First, we
presents a memory efficient algorithm that update the measure field p position–wise and vector–component–wise.
Second we presents a faster algorithm with a vector-wise update scheme. Although both schemes are initially
developed for the QMMFs convex case, we show that they can be adapted to the non-convex case using a subspace
minimization strategy.

A. Memory Limited Gauss Seidel Scheme

If µ is chosen such that the energy (8) is kept convex then the computation of p consists in solving a linear
system. This is stated in next proposition.

Proposition 4.1: (Convex QMMF) Let U(p) be the energy function defined in (8) and assume dr � 0, then the
solution to

min
p
U(p) s.t. 1T p(r) = 1, for r ∈ Ω

is a probability measure field: it holds pr � 0.
Proof: We present an algorithmic proof to this Proposition. The optimal solution satisfies the Karush-Kuhn-

Tucker (KKT) conditions:
pk(r)dk(r) + λ

∑
s∈Nr

(pk(r)− pk(s))wrs = π(r) (20)

1T p(r) = 1 (21)

where π is the vector of Lagrange’s multipliers. Note that the KKT conditions are a symmetric and positive definite
linear system that can be solved with very efficient algorithms as Conjugate Gradient or Multigrid Gauss-Seidel
(GS). In particular, a simple GS scheme results from integrating (20) w.r.t. k (i.e. by summing over k) and using
(21):

π(r) =
1
K
p(r)Td(r). (22)
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Thus, from (20):
pk(r) = bk(r) [p̄k(r) + π(r)] (23)

where we define:
p̄k(r)

def
= λ

∑
s∈Nr

wrspk(s) (24)

and
bk(r)

def
=

1
dk(r) + λ

∑
y∈Nr

wrs
. (25)

Eqs. (22) and (23) define a two steps iterative algorithm. Moreover, if (22) is substituted into (23), we can note
that if an initial positive p is chosen, then the GS scheme (23) will produce a convergent nonnegative sequence.

One can see that the GS scheme, here proposed [Eqs. (22) and (23)], is simpler than the originally reported in
[1]. In the non-convex QMMF case we can use the projection strategy for enforcing the non-negativity constraint.
Then at each iteration, the projected p can be computed with

pk(r) = max {0, bk(r)[p̄(r) + π(r)]} . (26)

In Addition, the GS scheme for the binary (two classes) segmentation can be simplified with the elimination of
the variable p2 (using p2 = 1− p1). In such a case, the GS update formula is given by

p1(r) =
d2(r) + λ

∑
s∈Nr

wrsp1(s)
d1(r) + d2(r) + λ

∑
s∈Nr

wrs
. (27)

Once more a projection can be applied in the the non-convex case.

B. Vector-wise Gauss Seidel Scheme

Since the iterative update formula (23) [and its projected version(26)] requires of a reduced amount of memory,
its is proper for processing large data, as video or tomographic images (MRI or TC volumes). On the other hand,
we can improve the computational performance (convergence rate) with a extra memory requirement if, instead
of update p(r) component by component, we update the entire vector in a single step. First we write the KKT
conditions (20) for the full vector p(r):

Drp(r) + λ
∑
s∈Nr

(p(r)− p(s))wrs = π(r)1 (28)

Note that the KKT conditions (28) and (21) are yet a symmetric and positive definite linear system that can be
solved with very efficient algorithms as Conjugate Gradient or Multigrid Gauss-Seidel (GS). Following a similar
algebraic procedure than that the used in section IV-A we have the positive definite and diagonal dominant system:

Hrp(r) = p̄r (29)

where Hr = Dr + Λr − 1̂dTr , 1̂ = 1/K, we define the diagonal matrix Λr
def
=
(
λ
∑
y∈Nr

wrs
)
I and the kth

component of the vector p̄(r) is computed with (24). Since Hr is a Stieltjes matrix, then H−1 � 0 (has only
positive elements). Thus, the iteration of

p(r) = H−1
r p̄(r),∀r (30)

keeps p � 0 if an initial p is positive. Moreover the inverse matrix H−1
r can efficiently be computed with the

Sherman-Morrison formula:

H−1
r = Br +

Br1̂d(r)TBr
1− 1̂TBrd(r)

(31)

where we define the diagonal matrix Br = diag[ b(r)] with the elements of b(r) computed with (25). Then by
using Br1̂ = b(r)/K and the vector:

d̃(r)T =
1

K − b(r)Td(r)
d(r)TBr. (32)
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Algorithm 1 Convex QMMF
1: {Initialization}

i. Let K be the number of classes, λ ≥ 0 the regularization parameter, v the normalized likelihoods and
w the intra-pixel affinity;

ii. Set dk(r) = − log v̂k(r);
iii. Compute bk(r) with (25) ;
iv. Compute d̃(r)T with (32);
v. Initialize p � 0; {e.g. p = v̂}

2: repeat
3: for all r do
4: Compute the elements of p̄(r) with (24);
5: Compute c = d̃(r)T p̄(r);
6: Update pk(r) = bk(r) [p̄k(r) + c] for k = 1, 2, . . . ,K.
7: end for
8: until convergence

Thus, the kth component of p(r) in (30) is computed the simple formula:

pk(r) = bk(r)
[
p̄k(r) + d̃(r)T p̄(r)

]
(33)

where the vectors b and d̃ can be pre–computed. This procedure is resumed in Algorithm 1.
The entropy of the solution p can be controlled be means of the µ parameter that penalize the Gini’s (entropy)

coefficient. A positive µ reduce the entropy but can result in a negative value of dk(r), see (9), and hence leads
us to a nonconvex quadratic programing problem. In such a case, the solution to (7) can be computed by using
the minimization strategy in Algorithm 1 combined with a subspace minimization strategy. First we solve for p(r)
the problem (7) neglecting the nonnegative constraints. The active set Ar at each pixel is estimated from the non-
positive coefficients in p(r). Then we refine the previous solution by fixing pi(r) = 0 for i ∈ Ar and solve (7)
for the remanning pi(r) with i /∈ Ar. If a new negative coefficient is computed, the active set Ar is updated and
a new solution is computed. The partial solution after few subspace minimization (we used 2 recursions in our
experiments) is used as starting point for a new Gauss-Seidel iteration. We present the procedure details in the
Algorithm 2. Note that the subspace minimization, line 10, can be computed with the same algorithm, in a recursive
procedure.

Algorithm 2 Non–Convex QMMF with subspace minimization
1: {Initialize as Algorithm 1.}
2: repeat
3: for all r do
4: Compute the elements of p̄(r) with (24);
5: Compute c = d̃(r)T p̄(r);
6: Update pk(r) = bk(r) [p̄k(r) + c] for k = 1, 2, . . . ,K.
7: Compute an estimate of the active set for p(r): A = {i : p̃i ≤ 0};
8: Solve approximatelly (7) for p̃r fixing p̃ir = 0 for i ∈ A and p(s) for s 6= r.
9: Set p(r) = p̃r.

10: end for
11: until convergence

V. EXPERIMENTS

In this paper, we have mainly presented theoretical aspects of the QMMFs. However, we have also presented
practical implication of the QMMFs. In following experiments we focus on demonstrate the method capabilities
for:
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Fig. 3. Interactive multi–class segmentations.

a) Multi–class interactive image segmentation;
b) Efficient binary segmentation;
c) Simultaneous segmentation and parameter estimation.

A. Multiclass interactive segmentation

The image segmentation task is obviously a very ill-posed problem, i.e. there exists multiple“valid” segmentations
for a particular image. User interaction is a popular form of introducing prior (high level) knowledge for segmenting
images with complex scenes. In this paradigm the user labels by hand a subset of pixels and then the unknown
labels are estimated with a segmentation algorithm that takes into account the distribution of the labelled pixels and
the smoothness of the spatial segmentation. Interactive segmentation is a powerful technique that allows to develop
general purpose tools. To illustrate this we can see three possible segmentations of the image in Fig. 1. The first
column shows scribbles given by the user and the second column the corresponding segmentations computed with
the method here presented. The rows correspond to segmentation by color, semantical objects (house, vegetation,
fence, etc.) and planar regions, respectively.

In our multi-class interactive segmentation implementation, we assume that some pixels in the region of interest,
R, are correctly labelled by hand, thus we have a partially labelled field (multimap):

A(r) ∈ {0} ∪ K, ∀r ∈ Ω (34)

where A(r) = k > 0 indicates that the pixel r was assigned to the class k and A(r) = 0 indicates that such a pixel
class is unknown and needs to be estimated. Hence, by assuming that the user’s labels are correct, then, in the data
term in (8), the sum over all the pixels in the region of interest, r ∈ R, is replaced by sum only over the unlabeled
pixels: i.e. for {r : A(r) = 0}. Alternatively, by leaving the sum for all pixels r ∈ R we assume uncertainty in the
hand labeled data.

Let g an image such that g(r) ∈ t, with t = {t1, t2, . . . , tT } the pixel values (maybe vectorial values as in the
case of color images), then the density distribution for the classes are empirically estimated by using a histogram
technique. That is, if Hki is the number of hand labelled pixels with value ti for the class k [24] then h is the
smoothed histogram version. We implement the smoothing operator by a homogeneous diffusion process. Thus the
normalized histograms are computed with ĥki = hki/

∑
l hkl and the likelihood of the pixel r belonging to a given

class k (likelihood function, LF) is computed with:

LFki =
ĥki + ε∑
j(ĥji + ε)

, ∀k; (35)

with ε = 1 × 10−8, a small constant. The ε constant introduces introduces an uniform distribution that avoids
a possible division by zero and guarantee positive likelihoods. Thus the likelihood of an observed pixel value
is computed with vk(r) = LFki such that i = arg minj ‖g(r) − tj‖2. Figure 3 shows multi–class interactive
segmentations computed with the proposed algorithm implemented in Matlab (in .m and .mex files). Given the
inter–pixel affinity wrs can be understood as the likelihood that the pixels r and s belong to the same class, then
we used T{g(r)} = v̂(r) in (10).
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(a) Original (b) Trimap (c) GraphCut (d) QMMF+EC

Fig. 4. Segmentation example from the Lasso’s data set.

TABLE II
CROSS-VALIDATION RESULTS: PARAMETERS, AKAIKE INFORMATION CRITERION, TRAINING AND TESTING ERROR.

Algorithm Params. AIC Training Testing
Graph Cut λ, γ 8.58 6.82% 6.93%
Rand. Walk. λ, γ 6.50 5.46% 5.50%
GMMF λ, γ 6.49 5.46% 5.49%
QMMF λ, γ 6.04 5.02% 5.15%
QMMF+EC λ, γ, µ 3.58 3.13% 3.13%

B. Quantitative Comparisson: Image Binary Interactive Segmentation

Next we resume our results of a quantitative study on the performance of the segmentation algorithms: the
proposed Binary variant of QMMF, the maximum flow (minimum graph cut, GC), GMMF and Random Walker
(RW). The reader can find more details about this study in our technical report [25]. The task is to segment
color images into background and foreground allowing interactive data labeling. The generalization capabilities of
the methods are compared with a cross-validation procedure [31]. The comparison was conducted on the Lasso
benchmark database [8]; a set of 50 images available online [32]. Such a database contains a natural image set
with their corresponding trimaps and the ground truth segmentations. Actually, a Lasso trimap is an image of
class labels: no–process mask (M = L\R), background, foreground and unknown; where no error is assumed
in the initial labelled pixels. First column in Fig. 4 shows an image form the Lasso database and second column
the corresponding trimap; the gray scale corresponds with the above class enumeration. In this case, the region
to process is labeled as “unknown” and the boundary conditions are imposed by the foreground and background
labeled regions.

We opted to compute the weights using the standard formula (10) (i.e. T{g(r)} = g(r) in (10) ), in order to
focus our comparison on the data term of the different algorithms: QMMF, GC, GMMF and RW. In this task,
empirical likelihoods are computed from the histogram of the hand labeled [10], the potential minimized was the
inner product (see Table I) for both the data and regularization parameter.

The hyper parameters (λ, µ, γ) were trained by minimizing the mean of the segmentation error in the image set
by using the Nelder and Mead simplex descent [33]. We implement a cross–validation procedure following the
recommendation in Ref. [31] and split the data set into 5 groups, 10 images per set. Figure 4 shows an example
of the segmented images. Table II shows the resume of the training and testing error and the Akaike information
criterion (AIC) [31]. The AIC was computed for the optimized (trained) parameters with the 50 image in the
database. Note that the AIC is consistent with the cross-validation results: the order of the method performance is
preserved. Moreover the QMMF algorithm has the best performance in the group.

This automatic learning parameter process confirm that GMMF and RW as close variants have similar performance
[25]. However, it produces two unexpected results:

i. Our GC based segmentation improves significantly the reported results in [8]. Indeed, our basic GC imple-
mentation of the method in [10] overcomes, significantly, the reported results with Likelihood Functions based
on Gaussian Mixtures [8].

ii. Contra–intuitively the learned parameter µ (QMMF+EC) promotes large entropy. We believe that such results
are because of: the lasso data set have a narrow band of unknown pixels, the trimaps are correct (they have
not miss-labeled pixels) and the hand–segmentations (ground truth) favor smooth boundaries.
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(a) QMMF µ=10. (b) µ=0. (c) µ=−123.

(d) GMMF. (e) Rand. Walk. (f) GraphCut.

Fig. 5. First row, results computed with the proposed method with a) low-entropy, b) without entropy control and c) high entropy. Second
row, results computed with state of the art methods .

Fig. 6. Label maps corresponding to Fig. 5, same order.

An advantage of the entropy control is that allows one to adapt the algorithm for different tasks, for instance for
the case of simultaneously estimation of segmentation and model parameters low entropy produces better results.
The effect of the entropy control is illustrated in Figs. 5 and 6. The QMMF method algorithm produces, in all
the cases, better segmentation with smooth boundaries than GMMF, RW and GC. In particular the matting factor
shown Fig. 2 is computed with QMMF using µ = 0.
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Fig. 7. Simultaneous segmentation and parameter estimation. From left to right: Noisy image (160 × 128 pixels) , computed p field and
segmentation.

C. Robust model parameter estimation

Fig. 7 shows the segmentation of a corrupted binary image with white gaussian noise (means zero and std. dev
equals 0.9 of the image dynamic range). These results were computed by estimating simultaneously the distribution
parameters and the p field. Eight iterations of the two–steps scheme were required and the computation time was
0.2 sec., compare with results in [18]. On the other hand, our implementations based on Gauss Markov Measure
Fields (GMMF, an early variant of Random Walker [7]) collapsed to a single model [5]. This limitation of the
GMMF model is discussed in [34], see also [25]. Finally, Fig. 8 demonstrates generalization of the QMMFs for
computing LF based on histogram techniques. The histograms are computed by p2–weighting the pixel values, we
initially set pk(r) = vk(r),∀k, r. The erroneous segmentation at the first iteration is product of inaccurate scribbles
and thus inaccurate initial LF (class histograms). The segmentation after two iteration demonstrates the ability of
the QMMFs for estimating nonparametric class distributions.

VI. CONCLUSIONS AND DISCUSSION

We presented a derivation of the QMMF model independent of the minimal entropy constraint. Therefore, based
on prior knowledge, we can control the amount of entropy increment, or decrement, in the computed probability
measures. We demonstrated that the QMMF models are general and accept any marginal probability functions. As
demonstration of such a generalization we presented experiments with iterative estimation of likelihood functions
based on histogram techniques. We proposed robust likelihoods that improve the method performance for segmenting
textured regions.

Our contributions in this work are mainly a more general derivation of the QMMF models and more efficient
optimization algorithms. Along the paper we present a series of experiments for demonstrating our proposals.
Additionally, we present an experimental comparison with respect algorithms of the state of the art. We selected
the task of binary interactive segmentation for conducting our comparison, first because it demonstrates the use of
the entropy control in the case of generic likelihood functions. Second, a benchmark database is online available, and
finally our hyper–parameter training scheme demonstrates to be objective by, significantly, improving the previously
reported results with a graph cut based method.

APPENDIX A

Definition (Stieltjes matrices [35]). A K ×K Stieltjes matrix A = (aij) with i, j = 1, 2, . . . ,K satisfies:
• is symmetric and positive definite;
• has positive diagonal elements, aii > 0;
• has nonpositive off-diagonal elements, aij ≤ 0, i 6= j;
• its inverse B = (bij) is nonnegative, bij > 0,∀i, j = 1, 2, . . . ,K.

Proof of Proposition 3.2: The KKT conditions of (14) are

Ap− π1 = 0 (36)

1T p− 1 = 0, (37)
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Fig. 8. Iterative estimation of empirical likelihood functions by histograms of p2–weighted data. Binary segmentation: initial scribbles, first
iteration and second iteration; respective columns.

where π is the Lagrange’s multiplier. Then from (36):

p = πA−11. (38)

Substituting this result in (37), we have π1TQ−11 = 1, thus

π =
1

1TA−11
. (39)

We can conclude that p � 0, since, A is a Stieltjes matrix, A−1 is positive and thus A−11 > 0 and 1TA−11 > 0.

Proof of Proposition 3.3: The KKT conditions of (16) are

d− π1 = s, (40)

1T p− 1 = 0, (41)

pT s = 0, (42)

p, s � 0. (43)

where dk
def
= − log qk, π is the Lagrange’s multiplier of the equality constraint and s is the vector of Lagrange’s

multiplier of the nonnegativity constraints. Then from (40) and (42): pT (d− π1) = 0. Then it can be seen that the
KKTs are fullfil with: p = ek∗ with k∗ = argmin

k
dk, π = dk∗ and s given by (40).
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