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ABSTRACT. In this work we present a new Markov Random Field model for image binary
segmentation that computes the probability that each pixel belongs to a given class. We
show that if a real valued field is computed, instead of a binary one as in graph cuts based
methods, then the resultant cost function has noticeable computational and performance
advantages. The proposed energy function can be efficiently minimized with standard fast
linear order algorithms as Conjugate Gradient or multigrid Gauss-Seidel schemes. More-
over, our formulation accepts a good initial guess (starting point) and avoids to construct
from scratch the new solution accelerating the computational process. Then we naturally
implement computationally efficient multigrid algorithms. For applications with limited
computational time, a good partial solution can be obtained by stopping the iterations even
if the global optimum is not yet reached. We performed a meticulous comparison (with
state of the art methods: Graph Cut, Random Walker and GMMF) for the interactive im-
age segmentation (based on trimaps). We compare the algorithms using cross–validation
procedures and a simplex decent algorithm for learning the parameter set.
Keywords:Image binary segmentation, Segmentation comparison, Interactive
computer vision, Markov random fields, energy minimization, Image matting.

1. INTRODUCTION

Two–classes image segmentation [image binary segmentation (IBS) is an important is-
sue in image analysis and image editing tasks. There are many problems which the core
solution algorithm is an IBS method; for instance: interactive image segmentation (trimap)
Ruzon & Tomasi (27); Boykov & Jolly (5); Blake at al. (2); Rother et al. (26); Juan &
Keriven (13) organs segmentation in medical imaging (e.g. skull stripping) Boykov & Jolly
(6); Grady et al. (10), foreground extraction (image matting) Rother et al. (26); Wabg &
Cohen (28), motion computation Boykov etal. (4); Kolmogorov et al. (14), among others.
Multiclass image segmentation is also commonly implemented by the successive applica-
tions of IBS methods Bouman & Shapiro (3); Boykov etal. (4); Kolmogorov et al. (14).

In this paper we present a novel IBS method based on a new Markov Random Field
model and computes the probability of each pixel belongs to a given class. It is based
on the minimization of a quadratic energy function; such a minimization corresponds to
solve a linear system with standard iterative algorithms as Gauss-Seidel (GS) or Conjugate
Gradient (CG) Nocedal & Wright (22). As it is well known, the convergence ration of such
algorithms can be improved by providing a good initial guess (starting point). Moreover
gradient descent based algorithms (as GS or CG) produce a partial solutions sequence (a
new partial solution at each iteration) that reduces successively the energy function. Thus,
for applications with limited computational time, a good partial solution can be obtained by
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stopping the iterations even if the global optimum is not yet reached. These characteristics
lead us to, naturally, implement computationally efficient multigrid algorithms Brigg et al.
(7).

We organize this paper as follows. In section 2 we presents a new derivation of the
recently reported method by Rivera et al.(23) for soft (probabilistic) multiclass image seg-
mentation. Our derivation is more accord with the Bayesian regularization framework.
Such an algorithm is proposed as the minimization of a linearly constrained quadratic,
does not necessarily positive definite, energy function.In section 3 we particularize the
method in derived in section 2 for the IBS case. In our formulation the probabilities are
represented by a single Markov Random Field (MRF) and our positive definite quadratic
energy function incorporates effectively the constraints. MRF models are a well-accepted
and powerful approach for solving problems in early computer vision and image process-
ing Besag (1); Blake at al. (2); Bouman & Shapiro (3); Boykov & Jolly (5); Boykov etal.
(4); Geman & Geman (8); Juan & Keriven (13); Kolmogorov et al. (14); LI (16); Marro-
quin et al. (19); Rivera et al. (23); Rother et al. (26); Ruzon & Tomasi (27); Wabg & Cohen
(28). In subsection 3.2 we present a discussion about related formulation for multilabel
image segmentation. Then in section 3.3, we demonstrate (by numerical experiments in
both real and synthetic data) the method capability for the simultaneous estimation task of
the segmentation and the model parameters.

In section section 4 we evaluate the performance of the proposed IBS method in the
interactive color IBS task based on trimaps. For such purposes we follow the implemen-
tation by Boykov & Jolly (5) and then we only replace the IBS method. We used the
popular Lasso’s bench database, such database is used in Blake at al. (2) and available
online in Ref. (30). The experimental results demonstrate a superior performance of our
method compared with methods of the state of the art for IBS. We conducts a deeper evalu-
ation based on a cross-validation technique was used for such purposes and the algorithms
hyper-parameters were automatically adjusted. Finally, section 5 presents our conclusions.

2. ENTROPY–CONTROLLED QUADRATIC MARKOV MEASURE FIELD MODELS

Recently, Rivera et al. (23); Rivera at al. (25) proposed the Entropy Controlled Qua-
dratic Markov Measure Fields (EC-QMMF) models for image multiclass segmentation.
Such an algorithm is computationally efficient and produces “soft” segmentations of ex-
cellent quality. In subsection 2.1 we present a variant derivation EC-QMMF models for the
case of Gaussian noise (Gaussian Likelihoods). The presented variant can formally been
generalized to distinct noise models than Gaussian, see subsection 2.2.

2.1. Revised Gaussian EC-QMMF models derivation. We assume that the image g is
generated with the model

(1) g(x) = α(x)I1(x) + (1− α(x))I2(x) + η(x),

where x ∈ R ⊆ L denotes a pixel position in the region of interest (the pixel set R) into
the regular lattice L; I1 and I2 are two general images and α is a matting factor Rother et
al. (26); Wabg & Cohen (28) and η is a possible noise. We can generalize the model (1)
for the case of multiple regions as:

(2) g(x) =
∑

k

αk(x)g(x) + ηk(x),

for k = 1, 2, . . . ,K; where

(3) αk(x)g(x) = αk(x)(Ik(x) + ηk(x));
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(a) I1 (b) I2

(c) α (d) g = αI1 + (1− α)I2

FIGURE 1. Image model generation. I1 and I2 are the original data, α
is matting factor and g is the observed image.

ηk is a noise image with known distribution and the matting factors satisfy:

K∑

k=1

αk(x) = 1, x ∈ R;(4)

αk(x) ≥ 0, k = 1, . . . , K, x ∈ R;(5)
αi(x)αj(x) ≈ 0 if i 6= j,(6)

α(x) ≈ α(y), x ∈ R, y ∈ Nx.(7)

Nx denotes in (7) the set of first neighbors of x: Nx = {y ∈ R : |x − y| = 1}. Note
that, because (4) and (5), α can be interpreted as a probability measure field where αk(x)
is understood as the probability of the observed pixel g(x) is taken from the data Ik(x).
Additionally (6) introduces the constraint on the probability vectors α(x) to have a low
entropy: together with (4) and (5), constraint (6) indicates that only one α(x) vector entry
has a value close to one and the others entries are close to zero. The constraint (7) promotes
the probability measure α to be spatially smooth.

The segmentation of the composed image, g, can be seen as the solution to the ill–posed
inverse problem stated in (2) and (3) subject to the hard constraints (4) and (5) and to the
soft constraints (6) and (7). This is, to compute the matting factors αk and the original
images Ik, or at least the image fractions αkIk. In the BR framework, with MRF model
priors, one computes the solution (α∗, I∗) as an estimator of the posterior distribution
P (α, I|g). Then, by using the Bayes rule, the posterior distribution can be expressed as:

(8) P (α, I|g) =
1
Z

P (g|α, I)P (α, I);
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where P (g|α, I) is the conditional probability of the data by assuming given the unknowns
(α, I), P (α, I) is the prior distribution and Z = P (g) is a normalization constant (inde-
pendent on (α, I)).

For the general case illustrated in Fig. 1, a more realistic posterior distribution could
take the form P (α, {αkIk}|g) ∝ P (g|α, {αkIk})P (α, {αkIk}). Moreover, there are
cases in which one can recover the entire images {I} if such images can be represented by
parametric functions: Ik(x) = Φ(x, β), with parameters β. Thus the posterior distribution
is in terms of the parameters β instead of the images {I}. Parametric forms, although lim-
ited, have successfully been used for defining layered models for segmenting gray scale
images or optical flows Marroquin et al. (17, 20); Rivera et al. (23); Rivera at al. (25). In
this work, we will use the form (8) for simplicity.

In the BR framework, the conditional probability P (g|α, I) is derived from the noise
distribution; the observation model [(2) and (3)] and the prior P (α, I) expresses the pa-
rameters’ Markovian property. To derive P (g|α, I) we assume that ηk is i.i.d. Gaussian
noise with mean zero and variance σ2

k, i.e.:

(9) P (ηk(x)) = Gσk
(ηk(x))

where we define Gσ(z)
def
= 1/

√
2πσ exp

[−|z|2/2σ2
]
.

From (3) we have: αk(x)ηk(x) = αk(x)(g(x) − Ik(x)). As αk is almost binary [be-
cause (6)], then for αk(x) ≈ 1 one can expect a similar distribution for both αk(x)ηk(x)
and ηk(x). Therefore (by defining rk(x) = g(x)− Ik(x)):

(10) P (αkg|αkIk, σ2
k) =

∏
x

Gσk

(
αk(x)rk(x)

)
=

∏
x

Gσk

(
rk(x)

)α2
k(x)

.

If independency between αiIi and αjIj (for i 6= j) is assumed, then the likelihood of
the observed (composed) image g is given by

(11) P (g|α, I, σ) =
∏

k

P (αkg|αkIk, σk).

In particular, such an independency occurs if (6) is satisfied.
In order to impose an explicit entropy control we introduce the Gini’s potential µ

(
1−∑

k α2
k(x)

)
,

with µ > 0 we promotes low entropy Hastie et al. (12). Additionally the region smooth-
ness is promoted using a Gibbsian distribution based on MRF models. We finally obtain
the prior:

(12) P (α) =
1
Z

exp
[∑

x∈R

(
µ‖α(x)‖2 − λ

2

∑

y∈Nx

‖α(x)− α(y)‖2
)]

;

where Z is a constant. If a uniform prior distribution on I and independence among I and α
are assumed (P (α, I) ∝ P (α)) then the posterior distribution takes the form P (α, θ|g) ∝
exp [−U(α, θ)] and the MAP estimator is computed by minimizing the energy function:

(13) U(α, θ) =
∑

x∈R

{ K∑

k=1

α2
k(x)

[− log Gσk

(
rk(x)

)− µ
]
+

λ

2

∑

y∈Nx

‖α(x)− α(y)‖2
}

,

subject to the constraints (4) and (5). This quadratic programming problem can efficiently
be solved by incorporating the equality constraints (4) in a Lagrangian (in the Lagrange
multipliers method) and using a projection strategy for the non-negativity constraint (5):

min
x

max
π
L(x, π) = U(α, θ)−

∑

x∈R
π(x)

(
(1−

∑

k

αk(x)

)
(14)
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subject to αk(x) ≥ 0. The convergence of the algorithm is guaranteed to a local minima,
see Rivera et al. (23).

2.2. General EC-QMMF models derivation. For removing the Gaussian noise assump-
tion, we first consider that any smooth density distribution vk can be expressed with a
Gaussian mixture model Hastie et al. (12):

(15) vk(x, θk) =
M∑

i=1

πkiGσk
(rk(x)−mki) ,

with θk = (σk, πk,mk); where πki ≥ 0 are the mixture coefficients (with
∑

i πki = 1);
where the mixture parameters are assumed known: the Gaussians centers mk = (mk1,mk2, . . . , mkI),
the variances σk and the number (maybe large) of Gaussians M . Then we have

P (αkg|αkIk, θk) =
∏
x

[ M∑

i=1

πkiGσ (rk(x)−mki)
α2

k(x)

]

and in the low entropy limit we can approximate :

(16) P (αkg|αkIk, θk) ≈
∏
x

[ M∑

i=1

πkiGσ (rk(x)−mki)
]α2

k(x)

=
∏
x

vk(x, θk)α2
k(x).

Following the reasoning in previous subsection, the likelihood of the observed (com-
posed) image g is given by

(17) P (g|α, I, θ) =
∏

k

P (αkg|αkIk, θk)

and we have the general posterior energy form:

(18) U(α, θ) =
∑

x∈R

{ K∑

k=1

α2
k(x) [− log vk(x, θk)− µ] +

λ

2

∑

y∈Nx

‖α(x)− α(y)‖2
}

.

subject to the constraints (4) and (5).

3. QUADRATIC MARKOV PROBABILITY FILED MODELS

3.1. Mathematical Development. For the particular case of IBS [i.e. for the case in
model (1)], the resultant energy function has remarkable computational and performance
advantages over standard IBS methods. Let be the normalized likelihoods corresponding
to the first and second classes:

(19) v̂k(x, θ) =
vk(x, θk)
s(x, θ)

,

for k = 1, 2; with

(20) s(x, θ)
def
=

∑

k

vk(x, θk),

then we define the distances:

(21) dk(x)
def
= − log v̂k(x, θk).

5



Then our IBS method can be formulated as the minimization of the unconstrained quadratic
cost function:
(22)

Q(α) =
∑

x∈R

{
α2(x) [d1(x)− µ] + (1− α(x))2 [d2(x)− µ] + λ

∑

y∈Nx

(α(x)− α(y))2
}

.

The minimization convergence properties of (22) are established in the following theorem.

Theorem 1. QMPF global convergence conditions.
Let be µ choose such that µ < mink,x dk(x), then (22) has a unique global minimum

that satisfies α(x) ≥ 0, ∀x ∈ R.

Proof. Assuming µ < mink,x dk(x):

(a) Q(α) a convex quadratic potential with a unique global minima. Thus the linear
system that results of equaling to zero the gradient of (22) w.r.t. α can be solved
with the Gauss-Seidel (GS) scheme

(23) α(x) =
a(x)
b(x)

with

a(x)
def
= d2(x)− µ + λ

∑

y∈Nx

α(y),(24)

b(x)
def
= d1(x) + d2(x)− 2µ + λ]Nx;(25)

where ]Nx denotes the cardinality of Nx.
(b) If α0(x) ∈ [0, 1], ∀x, is provided as initial guess then the sequence generated by

the GS scheme (23) satisfies {αt(x)}t=1,...,T ∈ [0, 1], for any iteration number t
(given that b(x) ≥ a(x) ≥ 0). Therefore the unique global minimizer is also in
the interval [0, 1].

(c) Finally, from (a) and (b), any minimization algorithm converge to the unique
global minima, α∗(x) ∈ [0, 1], independently of the initial point α0.

¤
Otherwise (if the condition in Theorem 1 is not satisfied) converge to, at least, a local

minima can be guaranted if the non-negativity constraint αk(x) ≥ 0 is enforced. That can
be implemented in a gradient projection kind algorithm that produces a feasible sequence,
{αt}t=1,...,T , for solving an indefinite quadratic (linearly constrained) problem Nocedal &
Wright (22).

The formulation of the IBS problem as the minimization of an unconstrained posi-
tive definite quadratic energy function has the advantage of being achieved by compu-
tational efficient algorithms, as CG or a multigrid implementation of the GS scheme in
(23). Although an initial guess does not determine the convergence to the global min-
ima, a good starting point can accelerate the convergence rate. For instance, we initial-
ize α(x) = v̂1(x, θ1) in this work. Moreover, descend algorithms produce sequences
{αt}t=1,...,T such that: Q(α0) ≥ . . . ≥ Q(αi) ≥ Q(αi+1) ≥ . . . ≥ Q(α∗) ≥ 0; where
the superscripts i and i + 1 indicate consecutive iteration numbers (GS can be seen as a
particular case of a coordinate descent that converges if b(xt) ≥ a(xt) ≥ 0, ∀t). The fea-
sibility of providing initial guesses and having partial solutions (by stopping the algorithm
iterations before convergence) allow us to implement fast multigrid algorithms.
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3.2. Relationship with other Markov Measure Fields Models. A Markov measure field
(MMF), α, is a random vectorial field that satisfies (4) and (5) with a Gibbsian prior distri-
bution P (α) in terms of MRF models LI (16). In its original formulation, the image seg-
mentation task is a combinatorial problem: to assign a class label to each pixel. Differently
to hard segmentation schemes that directly compute the label map, the MMF paradigm
propose to compute the probability (posterior marginals) that a pixel can be generated with
a particular intensity model. In this study we discuses relationships between MMF models.
Such algorithms are implemented by the minimization of posterior energies of the form:

(26) U(α) = D(α, g) + λR(α).

The potential D corresponds to the negative log-likelihood of the data given the labels and
it is determined by the observation model and the noise distribution. The potential R is
the negative log-prior, also known as the regularization term. We focus our discussion in
variants for the potential D for MMF models:

Gaussian MMF (GMMF) Marroquin et al. (19). In this framework the posterior mar-
ginals are directly modelled and estimated. Such framework constructs on fact that if not
prior knowledge is provided then Maximized of the Posterior Marginal, or MPM estimator,
of a posterior distribution coincides with the Maximum Likelihood (ML) estimator Marro-
quin et al. (18) [P (α|g) = P (g|α) ⇐⇒ P (α) is the uniform distribution]. In particular
the GMMF potential,

(27)
∑

k

∑
x

(αk(x)− v̂k(x, θk))2 + λR(α),

is chosen such that, for λ = 0, the posterior marginals are equal to the likelihoods, i.e. the
consistence condition:

(28) αk(x) = v̂k(x, θk)
def
=

vk(x, θk)
s(x)

is satisfied, see (19).
Random Walker (RW) Grady et al. (11); Grady (9). Although introduced in terms of

random walks of particles, RW is a variant of the GMMF formulation (see the diffusion
process in Marroquin et al. (19)). In that framework, the consistence condition is reformu-
lated as:

(29) s(x)αk(x) = vk(x, θk).

Then the corresponding potential is a quadratic one such that the minimum for λ = 0
results in (29) and consequently satisfies the GMMF consistence condition (28). The image
coloring procedure proposed by (15) is close related with the GMMF diffusion process with
space-varying weights Marroquin et al. (19).

Quadratic MMF [This work]. Differently to GMMF models, the minimum of the
QMPF potential (18) for the case of λ = 0 corresponds to:

(30) αk(x) =
1
K

H(d(x))
dk(x)

;

where H(d)
def
= K(

∑K
i=1 d−1)−1 is the harmonic mean of d. As the GMMF–consistence

condition is not satisfied by (18), it does not corresponds to a GMMF model.
7



I1 σ1 I2 σ2

Real values 1.000 0.500 0.000 0.300
Initial condition 2.760 0.100 -1.013 0.100
λ = 4, µ = 0.0 1.002 0.477 0.005 0.325
λ = 4, µ = 0.3 0.999 0.488 0.002 0.308

TABLE 1. Computed parameters for Fig. 3.

3.3. Model parameters estimation. In the QMPF model, if Gaussian likelihoods are as-
sumed, the parameters θk = [mk, σk] (mean and standard deviation, respectively) can been
efficiently estimated by using an alternated minimization scheme of the cost function (22)
w.r.t. the MMF, α, and the parameters, θ. In such case

(31) − log vk(x, θ) =
1

2σ2
k

|g(x)− Ik|2 + log
√

2πσk.

Then, by assuming a uniform distribution as prior for θ, from the partial derivatives w.r.t.
the parameters, we have:

(32) Ik =
∑

x α2
k(x)g(x)∑

x α2
k(x)

and

(33) σ2
k =

∑
x α2

k(x)|g(x)− Ik|2∑
x α2

k(x)
.

Such formulas, (32) and (33), are similar to the ones obtained in an Expectation-Maximization
(EM) procedure; except by the α2(x) weighting factor instead of α(x). Such a factor is
also changed for estimating the covariance matrix of multivariated Gaussian models, see
experiments in Rivera & Mayorga (24), Section 6.

For illustrating this capability, we consider the task of computing a binarization of a
synthetic image (Fig. 2a) generated with model (1); where Ik are constant values for all
x (actually white and black in gray values), and ηk(x) ∼ N (0, σ2

k) (i.i.d. Gaussian noise.
Such a segmentation task (i.e. the estimation of the indicator variables bk(x) ∈ {0, 1} with
αk(x) ≈ bk(x)) requires of the simultaneously estimation of α and θk =

[
Ik, σ2

k

]T for
k = 1, 2.

Figure 2 shows the pair of images used this experiment. The synthetic binary image,
in Fig. 2(a), was precluded with Gaussian noise with zero mean and σ1 = 0.5 and σ2 =
0.3 for the white and black regions, respectively. Fig 2(b) shows a metallic real piece
illuminated with laser (coherent) light and thus corrupted with speckle (multiplicative)
noise. The effect of the entropy control parameter, µ, is showed in Fig. 3. The computed
α field with µ = 0 (without entropy control) and the corresponding binarization are shown
in Figs. 3(a) and 3(b). Figs. 3(c) and 3(d) show the results computed with µ = 0.5.
Table I summarizes the experiment results. We noted that, for the IBS case, the results
(segmentation and the estimated parameters) are robust to the exact value of the entropy
control. The models (I1 and I2) where initialized with the maximum and minimum image
gray values, respectively.

Fig. 4 shows the results corresponding to the speckle image. In Fig. 4(a) we show the
computed α field with the proposed QMPF method (with µ = 0 and λ = 1 × 103) and
Fig. 4(b) the corresponding segmentation. Second row shows the computed results with
GMMF. The computed α field with the GMMF algorithm has, evidently, larger entropy
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(a) Synthetic. (b) Speckle.

FIGURE 2. Test Images.

(a) α field with µ = 0.0. (b) Segmentation.

(c) α field with µ = 0.5. (d) Segmentation.

FIGURE 3. Entropy control.

than the QMPF solution. This is consistent with the results reported by Marroquin et al.
(17); Rivera et al. (23); Rivera at al. (25). If such a high–entropy α field were used in an
EM kind scheme for estimating the model parameters then the algorithm may converge to
a single value. Such a limitation of the GMMF model is discussed in Marroquin et al. (17).
As it is expected, we observed a similar behavior for the Random Walker algorithm than
for GMMF.
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(a) QMPF α field. (b) QMPF Segmentation.

(c) GMMF (RW) α field . (d) GMMF Segmentation.

FIGURE 4. Effect of the data term.

4. IMAGE BINARY INTERACTIVE SEGMENTATION

User interaction is a popular form for introducing prior (high level) knowledge for seg-
menting images with complex scenes. In that paradigm the user labels by hand a subset
of pixels and then the unknown labels are estimated with a segmentation algorithm that
takes into account the distribution of the labelled pixels and the smoothness of the spatial
segmentation. Fig. 5 illustrate the interactive IBS process. These results were computed
with the proposed algorithm.

In this section we compare the performance of the proposed probabilistic method (based
on QMPF models) with of popular IBS segmentations methods: maximum flow (minimum
graph cut), GMMF and Random Walker. The task is the binary interactive segmentation of
color images (segmentation by trimaps). A cross-validation procedure was implemented
for comparing the methods generalization capabilities Hastie et al. (12). The benchmark
data is the set of 50 images in the Lasso’s database used by Blake at al. (2) and available
online in Ref. (30). Such a database contains a natural images set with their corresponding
trimaps and the ground truth segmentations. Actually, a Lasso’s trimap is an image of class
labels: no–process mask (M), definitively background (B), unknown (R) and definitively
foreground (F). Note that each pixel x ∈ L has a unique label. First column in Fig. 6
shows images in the Lasso’s database and second column the corresponding trimaps; the
gray scale corresponds with the above class enumeration. In this case, the region to process
is labeled as “unknown” and the boundary conditions are imposed by the foreground and
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(a) (b) (c) (d) (e)

FIGURE 5. Interactive binary segmentation process illustration: (a) Pix-
els labelled by hand (scribbles), (b) Likelihoods computed from the em-
pirical class distributions, (c) computed α map, (d) label map (maximum
α) and (e) segmented image.

(a) Original (b) Trimap (c) GraphCut (d) QMPF+EC

FIGURE 6. Segmentation example from the Lasso’s data set (image file 153077).

background labeled regions. The regularization term in (22) is replaced by:

(34) λ
∑

y∈Ñx

[α(x)− α(y)]2 lxy,

where Ñx = {y ∈ R ∪ B ∪ F : |x− y| = 1} and

(35) lxy =
γ

γ + ‖g(x)− g(y)‖2
is an affinity measure that takes a value close to one if the neighbor pixels x and y have
similar colors and close to zero otherwise. This affinity measure leads the border regions
(classes) to follow the color edges and γ is a method’s hyper–parameter that controls the
edge sensibility. We noted that the color image, g, is previously transformed to the CIE–
Lab color space with the Ruzon’s C-code library in Ref. (29). Recent reported matting
computation methods have focused in variants of the intra–pixel affinity measure with
improved results w.r.t. the basic one in (35) (26; 10). However, in our experiments, we use
the simple form (35) for comparing directly the methods performance.

Table 2: Comparative performance on the Lasso’s data set. Adjusting the
best parameters to the entire data set.

Algorithms’ MSE
Filename Group GraphCut GMMF RW QMPF QMPF+EC
21077 1 7.82% 3.84% 3.77% 3.84% 4.01%

Continued on next page
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Table 2 – continued from previous page
Algorithms MSE

Filename Group GraphCut GMMF RW QMPF QMPF+EC
24077 2 16.68% 10.44% 10.48% 11.00% 4.21%
37073 3 8.84% 5.40% 5.43% 5.06% 1.44%
65019 4 6.49% 2.32% 2.20% 3.68% 0.27%
69020 5 7.99% 6.29% 6.28% 5.80% 2.95%
86016 1 7.49% 3.39% 3.37% 3.01% 1.99%
106024 2 10.05% 8.89% 8.93% 8.20% 7.55%
124080 3 3.57% 5.14% 5.22% 3.40% 3.43%
153077 4 13.04% 3.99% 3.97% 6.32% 1.65%
153093 5 4.75% 4.30% 4.35% 3.70% 4.08%
181079 1 13.42% 13.16% 13.14% 12.19% 7.41%
189080 2 11.66% 10.79% 10.77% 10.44% 6.22%
208001 3 3.53% 3.21% 3.23% 2.27% 1.50%
209070 4 5.98% 3.86% 3.85% 3.82% 2.25%
227092 5 3.99% 2.40% 2.37% 3.90% 3.46%
271008 1 4.68% 3.43% 3.48% 3.47% 2.33%
304074 2 16.69% 6.10% 6.12% 8.29% 10.90%
326038 3 11.30% 14.73% 14.87% 9.00% 7.53%
376043 4 15.95% 11.06% 11.05% 11.47% 6.14%
388016 5 1.64% 3.45% 3.51% 2.39% 1.50%
banana1 1 12.21% 10.45% 10.44% 10.31% 3.91%
banana2 2 2.81% 5.08% 5.06% 3.41% 1.49%
banana3 3 5.69% 8.04% 8.10% 5.53% 1.91%
book 4 8.24% 9.99% 10.01% 7.99% 3.52%
bool 5 4.01% 2.00% 2.00% 2.17% 1.74%
bush 1 13.02% 9.12% 9.04% 11.28% 7.86%
ceramic 2 4.92% 6.18% 6.18% 4.97% 1.73%
cross 3 3.30% 2.35% 2.35% 2.36% 1.75%
doll 4 2.53% 2.92% 2.91% 2.28% 1.03%
elefant 5 8.51% 6.19% 6.13% 5.83% 2.05%
flower 1 1.23% 0.71% 0.71% 0.58% 0.61%
fullmoon 2 0.95% 0.88% 0.88% 0.80% 0.27%
grave 3 1.84% 1.86% 1.89% 1.44% 1.27%
llama 4 18.30% 14.65% 14.69% 13.86% 4.32%
memorial 5 9.93% 4.75% 4.75% 5.72% 1.49%
music 1 3.43% 2.21% 2.19% 2.70% 2.26%
person1 2 3.06% 4.55% 4.69% 2.33% 1.16%
person2 3 1.35% 4.48% 4.54% 1.24% 0.71%
person3 4 6.62% 4.81% 4.81% 3.63% 0.87%
person4 5 8.46% 6.27% 6.23% 5.88% 3.27%
person5 1 7.51% 4.62% 4.62% 4.77% 2.48%
person6 2 9.87% 7.91% 7.88% 8.37% 5.19%
person7 3 1.41% 2.21% 2.26% 1.31% 0.96%
person8 4 6.15% 3.92% 3.88% 3.92% 0.93%
scissors 5 5.89% 6.38% 6.32% 6.52% 2.87%

Continued on next page
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Table 2 – continued from previous page
Algorithms MSE

Filename Group GraphCut GMMF RW QMPF QMPF+EC
sheep 1 2.48% 3.08% 3.14% 1.83% 4.53%
stone1 2 1.08% 0.72% 0.72% 0.79% 0.73%
stone2 3 0.56% 0.33% 0.32% 0.49% 0.78%
teddy 4 2.19% 2.91% 2.95% 2.23% 1.91%
tennis 5 8.69% 7.55% 7.61% 8.34% 7.31%

mean – 6.84% 5.47% 5.47% 5.08% 3.03%
median – 6.07% 4.59% 4.66% 3.87% 2.15%
stddev – 4.66% 3.57% 3.58% 3.46% 2.40%

In this task, empirical likelihoods are computed from the histogram of the labeled by
hand pixels. Following Boykov & Jolly (5), the empirical likelihoods are computed from
the smoothed (with 10 iterations of a homogeneous diffusion filter) color histograms of the
foreground, h1, and background, h2, labeled pixels. Then the normalized likelihoods are
computed with:

(36) v̂k(x) =
hk(g(x)) + ε

h1(g(x)) + h2(g(x)) + 2ε
,

for k = 1, 2; where ε = 10−4 is a small positive constant that introduces a contaminant
uniform distribution that stabilizes the likelihoods and it avoids the undefined computation
of log 0. We initialize α with (30). The normalized histograms can be seen as 3D Look-Up-
Table with 50×100×100 dimensions for the Lab coordinate space. The hard segmentation
is computed by labeling each pixel x with the class 1 if α(x) > 0.5, otherwise with the
class 2.

The parameters set were trained by minimizing the mean of the segmentation error in
the image set by using the Nelder and Mead simplex descent Nelder & Mead (21). In
Table 2 we show the means square error (in percents) by automatically fitting the best
value parameters to the whole data set. For our implementation, the learned parameters are
reported in Table 3. Additionally, we implement a cross–validation procedure following
the recommendation by Hastie et al. (12) and part the data set in 5 groups of 10 images.
Figure 6 shows an example of the segmented images. Table 4 shows the resume of the
training (Table 5) and testing (Table6) error and the Akaike information criterion (AIC).
The AIC was computed for the optimized (trained) parameters with the 50 image in the
database Hastie et al. (12), Table 1. Note that the AIC is consistent with the cross-validation
results: the order in the methods performance is preserved. Note that the QMPF algorithm
has the best performance in the group. We note that the learned parameter µ for QMPF+EC
promotes large entropy, such parameter was appropriated for the trimap segmentation task
and should not produce the expected results in other tasks. However the entropy control

Parameter QMPF QMPF+EC
λ 4.7× 103 2.28× 105

γ 9.14× 10−6 5.75× 10−3

µ 0.0 −5.75× 105

TABLE 3. Adjusted parameters for the results in table 2.

13



Algorithm Params. AIC Training Testing

Graph cut λ, γ 8.58 6.82% 6.93%
Rand. Walk. λ, γ 6.50 5.46% 5.50%
GMMF λ, γ 6.49 5.46% 5.49%
QMPF λ, γ 6.04 5.02% 5.15%
QMPF+EC λ, γ, µ 3.58 3.13% 3.13%

TABLE 4. Cross-validation results. Parameters, Akaike information criterion,
training and testing error.

Training Training Error
Set Graph cuts RW GMMF QMPF QMPF+EC
1 6.71% 5.49% 5.48% 4.96% 2.96%
2 6.55% 5.29% 5.29% 4.83% 2.92%
3 7.51% 5.62% 5.61% 5.39% 3.30%
4 6.37% 5.32% 5.32% 4.86% 3.33%
5 6.95% 5.60% 5.59% 5.06% 3.12%

mean 6.82% 5.46% 5.46% 5.02% 3.13%
TABLE 5. MSE of the training stage. The kth training set correspond to Lasso’s
data set when the files in the kth group are removed (see table 2).

Testing Testing Error
Set Graph cuts RW GMMF QMPF QMPF+EC
1 7.35% 5.41% 5.41% 5.33% 3.80%
2 7.96% 6.17% 6.16% 5.85% 3.96%
3 4.15% 4.89% 4.88% 3.79% 2.44%
4 8.78% 6.07% 6.07% 5.87% 2.30%
5 6.39% 4.95% 4.95% 4.94% 3.14%

mean 6.93% 5.50% 5.49% 5.15% 3.13%
TABLE 6. The kth testing set corresponds to Lasso’s files in the kth group (see
table 2).

allows one to adapt the algorithm for different tasks, for instance, we compute the matting
factors for the example illustrated in Fig. 1 and the results are shown in Fig. 7. In particular
the matting factor shown Fig. 1 was computed with QMPF with µ = 0.

5. CONCLUSIONS

We have generalized the Quadratic Markov Measure Filed models Rivera et al. (23);
Rivera at al. (25) for any data smooth probability distribution, in particular the empirical
distributions estimated by histogram techniques or kernel methods.

We have presented a new quadratic energy function for Image Binary Segmentation.
Let be problem of labelling a pixel x as belonging to the classes set {C0, C1} then the
algorithm computes a low entropy (almost binaries) and regularized (smooth) field, α.
Such that α(x) ∈ [0, 1] that can be interpreted as the probability of the pixel x were
generated with the distribution C0.
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(a) QMPF µ = 10. (b) µ = 0. (c) µ = −123.

(d) GMMF. (e) Rand. Walk. (f) GraphCut.

FIGURE 7. First row, results computed with the proposed method with
a) low-entropy, b) without entropy control and c) high entropy. Second
row, results computed with methods of the state of the art.

FIGURE 8. Label maps corresponding to Fig. 7, same order. The QMPF
method algorithm produces, in all the cases, better segmentation with
smooth boundaries than GMMF, Rand. Walk. and GraphCut.

For evaluating the proposed model performance, we implemented an interactive binary
segmentation tool (segmentation by trimaps) and compare the results by substituting our
algorithm with state of the art methods: Graph Cut, Random Walker and GMMF. The
remaining implementations details were unaltered. As test data set we used the Lasso’s
trimap set of 50 natural images. We have achieved the meticulous algorithms comparison
by using a cross–validation procedures and a simplex decent algorithm for learning the
parameter set. Such a comparison showed that our proposal have a superior performance
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than the compared methods and illustrate the importance of the entropy control introduced
by Rivera et al. (23); Rivera at al. (25). According with our experiments the interactive IBS
task is better achieved with high entropy probabilities, however, the matting computation
(as the simultaneous estimation of the segmentation and parameter) requires of low-entropy
fields.

In the interactive IBS task is common that once a solution is computed then the user
refine such a solution by retouching the initial trimap. Our method can use as initial guess
for a subsequent refining the previous final solution (a feasible point for the next problem).
That accelerate the interactive process by avoiding to construct from scratch a new solution.
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