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Abstract

We introduce a two-step iterative segmentation and registration method to find
coplanar surfaces among stereo images of a polyhedral environment. The novelties
of this paper are: (i) to propose a user-defined initialization easing the image match-
ing and segmentation, (ii) to incorporate color appearance and planar projection
information into a Bayesian segmentation scheme, and (iii) to add consistency to
the projective transformations related to the polyhedral structure of the scenes.
The method utilizes an assisted Bayesian color segmentation scheme. The initial
user-assisted segmentation is used to define search regions for planar homography
image registration. The two reliable methods cooperate to obtain probabilities for
coplanar regions with similar color information that are used to get a new segmen-
tation by means of Quadratic Markov Measure Fields (QMMF). We search for the
best regions by iterating both steps: registration and segmentation.

Key words: interactive computer vision, stereo, registration, segmentation,
coplanarity, color

1 Introduction

Planar surfaces are often found in artificial manmade environments: outdoor
scenes are commonly formed by polyhedral buildings (some examples are
shown in Figure 1); indoor scenes contain floors, walls, desks, etc. Planes have
a constrained representation and ease various computer vision tasks such as
camera calibration [10,33], camera localization [13,30], robot navigation [24],
and 3D reconstruction [7,36]. Plane-based algorithms are commonly stable
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but they may become ill-conditioned when they are applied to wrong copla-
nar features, and therefore it is very important to know which image regions
correspond to individual planes. By these reason, several works have been
conducted on plane detection and segmentation.

1.1 Review of state-of-the-art segmentation approaches

A more general problem than the one issued in this paper is to estimate
simultaneously the regions in the image corresponding to a given model (seg-
mentation) and the set of parameters for each region model. In our specific
case, each model corresponds to a planar surface.

If the model parameters are known, generic clustering algorithms as K-Means
or Isodata have been used with relative success [12]. Other algorithms con-
sider spatial interactions among pixel labels providing useful constraints on
the problem: region merging [8], active contour [5] approaches, eigendecompo-
sition [38] and variational methods [28]. Among these, Bayesian formulations
[16,18] have been successfully used for finding the solution to the segmentation
problem. In this framework, the solution is computed by Maximizing the A
Posterior probability distribution (MAP estimator).

In the general case, the model parameters are not known and some of these
methods are extended using two-step procedures, following that an initial
estimate is given and then the method: (1) estimates the model parameters
given the segmentation, (2) estimates the label map (segmentation) given the
model parameters, iterating these two steps until convergence [6,20,35].

However, the MAP estimator for the label field requires the solution of a com-
binatorial optimization problem. Graph-Cuts based algorithms [6] can be used
for computing the exact MAP estimator in the case of binary segmentation
or an approximation for problems with more than two classes, but make the
two-step algorithm prone to be trapped in local minima.

A better strategy is to compute, instead of binary label variables, the proba-
bility that the observed data at each pixel is generated by a particular model
(i.e., the posterior marginal distributions). Posterior marginal probabilities
can be estimated with Markov Chain Monte Carlo (MCMC) methods [16],
by Mean Field (MF) approximations [35], or using a Gauss-Markov Measure
Field (GMMF) model [19]. Nevertheless, MCMC approaches may be compu-
tationally expensive and the other two methods only guarantee convergence
to a local maximum of the posterior distribution: if the procedure starts from
a wrong initial set of parameters, the method may not converge to the global
maximum [20]. Recently, the Quadratic Markov Measure Field (QMMF) ap-
proach was proposed [26], a computationally efficient method based on a
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(a) (b) (c)

Fig. 1. Example of planar piecewise environments. Right images acquired by a stereo
pair of a: (a) tower scene, (b) roof scene and (c) house scene.

Bayesian framework, improving GMMF model, since the posterior marginal
probabilities are the global minimizer of a quadratic, linearly constrained en-
ergy function; hence, any standard linear algorithm will converge to the global
minimum.

1.2 Previous works on plane segmentation

Unsupervised plane detection and segmentation are commonly solved using
sparse image key-points (using structure from motion techniques [2,30,31]),
disparity maps [14,34], optical flow approaches [41], triangular surfaces [22] or
range images [37]. Nevertheless, many of these approaches require to perform
a 3D reconstruction; other methods assume that the plane is mostly textured
[2], that a single plane is dominant in the image, or the camera require a rough
calibration [1,34], constraining the range of application of those methods.

Matching sparse features often fails in cases like the tower (Figure 1-a) and
the roof (Figure 1-b) because both planes have mostly the same texture. Al-
though some heuristics (like RANSAC [9] or a contrario statistics
[21]) have demonstrated to be successful on improving matching for
a single surface having repeated structures (if a parametric model
relating two views is given); their success is widely related with the
ratio of inliers/outlier correspondences. However, when this heuris-
tics are applied to distinguish between two or more planes, this
ratio has a tendency to be very small and, as a result, the heuristics
performance is noticeably poor.

On the other hand, untextured surfaces (like the three walls in Figure 1-c)
are also difficult to distinguish as different planes for optical flow techniques,
disparity maps and feature-based methods, because image features are usually
mismatched.

Image acquisition from a moving camera over a polyhedral scene imposes
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known constraints on matching information for every couple of views and
it is possible to extract planar segmentation from them without explicitly
performing a 3D reconstruction [40]. Few approaches have tried to conduct
segmentation on dense disparity models [32] but they often fail because several
ambiguities arise on considering disparity information alone.

1.3 Interactivity

Several automatic solutions [4,6,15,27,39] have been developed for the pla-
nar segmentation problem from stereo views. Nevertheless, correct results are
not reachable under some circumstances (described below in this paper), and
only few automatic approaches may attain satisfactory results but in an un-
manageable amount of time for some applications [17,29]. On the other hand,
humans are capable to distinguish correctly distinct planar surfaces from a
single image in a very short time. However, doing this task as a manual pro-
cedure could be unpractical. A completely user-assisted segmentation may be
tedious if the boundaries of planar surfaces are not clearly distinguished into
the image, when these boundaries have complex shapes, or when the interfaces
are not friendly enough.

Computational complexity is not the only problem to cope. Auto-
matic segmentation algorithms often have problems to make a de-
cision on the number of region models to employ, thus, the number
of planar surfaces observed in the images. Some approaches tend to
over-segment the image, while others tend to merge different planes
[17]. Interactive approaches are also very useful in this sense because
allow the user to designate by himself/herself the number of planes
in the images, or correct an over-segmented or under-segmented
partition by assistance.

It often happens also in stereo that a plane is visible in one im-
age but invisible in another view. Without an appropriate occlusion
management, the matching process certainly may not succeed or
may match to a wrong region in the second image; hence, the cor-
responding planar projective transformation (homography) may be
wrong due to the occlusion. This is one of the major problems to
cope with the automatic initialization processes. The interactive re-
gion selection has the advantage that the user may prevent such a
problem with his/her previous knowledge of the scene.
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1.4 Proposed approach

Several computer vision methods seem to be very sensitive to the initial esti-
mations required as input and, for many applications, choosing the adequate
initial values may become an important or a tedious problem by itself. Inter-
active approaches have allowed to separate clearly the initialization stage from
the automatic image processing, and improve the development of efficient com-
puter vision tools due to the inclusion of knowledge given by human experts.
We have chosen an assisted strategy to initialize our algorithm, al-
though automatic planar segmentation methods have been found in
the literature: interactivity may help to reduce computational time
and to correct wrong segmentations.

In order to cope with the problems stated in 1.2, we propose a user-assisted
segmentation method combining color information and motion matching of
observed coplanar features in a two-image set. The novelty of this paper is to
directly compute both homography parameters and dense region segmentation
by means of a brief interaction with the user, instead of using unsupervised
state-of-the-art methods that generally consider either case: (i) finding sparse
coplanar points and then fitting a planar surface (implying occlusion and
convexity problems), or (ii) computing general optical flow or disparity maps
and later trying to fit a planar surface.

Our approach is based on a rough solution given into an initial stage by the
user and an iterative two-step algorithm: (1) registering two views of the scene
in order to find the corresponding planar homographies for every plane and (2)
segmenting the image using a Bayesian segmentation approach. We refine the
homography models using the new marginal a posteriori probabilities obtained
from segmentation as a registration mask, and repeat the two-step procedure
until convergence. As input for the planar segmentation step, model likelihoods
are estimated by combining planar homographies fitting between the two views
and their corresponding color information.

For the algorithm proposed in this paper, we have selected the
Quadratic Markov Measure Field (QMMF) segmentation approach.
QMMF performance was already demonstrated by numerical ex-
periments that compare this approach [26] with other state-of-the-
art algorithms, such as Graph-Cut [6], Random Walker, Gaussian
Markov Measure Field [19] and Hidden Markov Measure Field meth-
ods [20].
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1.5 Outline of the paper

The paper is organized as follows: our scheme for simultaneous segmentation
and image registration for multi-planar environments is given in section 2.
Next sections present the theoretical framework for parametric image reg-
istration (section 3), likelihood computation (section 4) and the Quadratic
Markov Measure Fields (QMMF) approach for Bayesian segmentation (sec-
tion 5). Section 6 presents a framework for computing homographies with
polyhedral consistency. Section 7 exhibit results for some examples. Finally, a
discussion on the method is summarized in section 8.

2 Overview

The particular problem issued in this paper may be formulated as follows:
given some user-defined samples of coplanar regions taken from uncalibrated
stereo views of a scene, we aim to estimate the corresponding planar projective
transformations (homographies) and to extend the coplanar regions by seg-
menting the 2D stereo images. The vision system is modeled using the classical
pin-hole camera model, which intrinsic parameters are supposed unknown and
not necessarily constant.

Our approach has two different stages:

(1) A user-assisted initialization step: The main objective of this ini-
tialization step is to include human knowledge about the regions
in the image corresponding to planar surfaces. The human-
machine interaction was designed in a very simple way: in one of
both images to register, the user should either click once inside
each planar region (and the system will automatically take a
circular sample around the clicked position, see Figures 3-a and
8-a) or draw a complex detailed hull (see Figure 8-c), in order
to define the sample region associated to a planar surface.

(2) When the region samples are already defined, the system searches
automatically the planar projective transformation that match
such a sample region with its corresponding region at the second
image. An iterative registration-segmentation algorithm (de-
scribed in Table 1) is performed. This two-step stage is iter-
ative and completely automatic after the user has initialized
the region samples. The algorithm is based in a region-growing
approach and works independently to the initialization step.

In our approach, the only required interaction is the user marking some sam-
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ples of coplanar regions over one of the images at the procedure’s beginning.
Such a simple interaction provides very important information: the numbers of
planes in the scene and small regions that undoubtedly belongs to each plane.
Then, a Bayesian approach based on QMMF (see section 5) is applied in order
to estimate the marginal probabilities based on color information around the
user-defined sample regions. Once the coplanar regions were defined and the
color probability fields were obtained, fully automated image registration and
segmentation are iteratively done.

The core of our algorithm is an energy function relating the model regions and
the respective homographies, an iterated minimization allows us:

(1) to compute the planar projective transformation (homography) coeffi-
cients corresponding to each identified region, and thus matching region
intensities between both images;

(2) to compute new marginal probabilities that take into account spatial co-
herence. At the end of this stage, new a posteriori probabilities involving
color and planar information are used to redefine registration masks for
step 1.

The main steps of this algorithm are described in table 1.

3 Image registration

3.1 Parametric registration models

Camera model. In this paper, we consider that the camera model is the
pinhole (perspective projection) model, which associates a point X in the
scene to a point x in the image by x̃ ∼ PX̃, where P is a 3× 4 matrix called
the projection matrix, x̃ and X̃ are 2D and 3D points, respectively, expressed
in homogeneous coordinates: x̃ = (x, 1)T and X̃ = (X, 1)T . a ∼ b means that
a and b are equivalent up to a scale factor, thus, there exists a non-zero scalar
λ such that a = λb.

Planar projective transformations (homographies). Let us now con-
strain X to lie on a plane π (see Figure 2). If xi = (xi, yi, 1) and x′

i = (x′i, y
′
i, 1)

are two projections of the same 3D point X on the space for the first and the
second image respectively, the projections are related by x′

i ∼ Hxi, then, the
transformation modeling the 2D movement of coplanar points under perspec-
tive projection is given by a 3× 3 homography matrix H = {hij|i, j = 1, 2, 3}.

For each observed plane, a homography is implicitly related to the cameras
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(1) Acquire two images of a planar piecewise environment.

(2) At one image, the user selects samples of the coplanar regions (see
Figures 3-a, 8-a and 8-c) to be used in the registration process.

(3) Estimate the marginal probabilities (by QMMF, section 5) corre-
sponding to the color information at user-defined regions (section 4.1).

(4) Step loop computation of the registration parameters (homography)
and the segmented regions:

(a) Registration from coarse scale to finer scales:
• Establish the energy function for every defined region (Equa-

tion (2) for independent homographies and Equation (13) for
the consistent approach).

• Compute the coefficients of each planar homography by min-
imizing the corresponding energy function.

• Update parameters for the multi-scale scheme.
(b) Segmentation:

• Compute likelihoods for planar homographies (section 4.2).
• Compute the composed likelihoods by the product of planar

likelihoods and color probabilities (section 4.3).
• Estimate the composed marginal probabilities by QMMF

Bayesian segmentation (section 5).
• For each model, select the biggest connected region with

marginal probabilities greater than 0.5 (using a fill method).
These regions will be used at the registration step instead of
the initial color probability samples.

(5) (Optional) Refine region boundaries by using intersections between
planes (section 6.3).

Table 1
Overview of the method.

Fig. 2. Homography induced by a plane.

relative position, the plane position and the cameras projective properties
[11]. Nevertheless, the coefficients of H may be directly estimated from image
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correspondences and it is not necessary to know explicitly the camera and
plane parameters.

Affine model. Another very common transformation used for image regis-
tration is the affine model (h31 = h32 = 0, h33 = 1), although this model is not
always capable to describe the correspondences due to perspective projections.
The affine model may be used when the image planes for both cameras lie on
the same plane; it also represents a good approximation if both cameras have
large focal lengths and the distance between the scene and the cameras is very
large.

3.2 Energy function for parametric registration

Standard intensity-based approaches are founded on the luminance (chro-
mance) constancy condition given as I2 (T (x, Θ)) = I1 (x) + η (x) where I1

and I2 are the gray-level (color) intensities for the first and the second views,
respectively, at a given image location x in the image lattice L, T is the para-
metric transformation (with parameters Θ) describing the displacement of a
2D point in the first image to its corresponding projection at the second image,
and η is identically distributed image noise for gray-level intensities.

Energy-based registration methods are based on the principle that
two image regions are related by a given transformation T and that
it is possible to compose an energy functional E in terms of the
parameters Θ and the image data. These approaches rephrase the
registration problem into an optimization problem where the ex-
pected set of parameters Θ̂ corresponds to the global minimum of
the function E. Our registration is based on a cost function written as a
weighted sum of squared differences of the above intensities given as follows:

E(Θ) =
∑
x∈L

[
w(x) ‖I2 (T (x, Θ))− I1 (x)‖2

]
, (1)

where w(x) ∈ [0, 1] acts as a membership variable for each x in L.

3.3 Retrieving the homographies

To retrieve the homographies, for each point xi in the first image, a cor-
responding point x′

i is needed in the other image. The energy-based ap-
proaches founded on luminance (or color) constancy do not need ex-
plicitly such image correspondences. Coordinates {x′

i} are expressed
in terms of points {xi} and the transformation parameters Θ: x′

i =
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T (xi, Θ). These approaches assume that the energy function (1) de-
creases when reprojection errors ‖I2 (T (xi, Θ))− I1 (xi)‖ are close to
zero as a consequence of a correct registration, and rises for wrong
transformation parameters.

By combining the cost function given by Equation (1) and the parametric
transformation models (section 3.1), we get:

E (Hk) =
∑
x∈L

[
wk(x) ‖I2 (x′)− I1 (x)‖2

]
(2)

where

x′ = z (Hk, x, y)

h
(k)
11 x + h

(k)
12 y + h

(k)
13

h
(k)
21 x + h

(k)
22 y + h

(k)
23


N is the number of calibration planes, Hk is the transformation matrix for
model k, wk(x) ∈ [0, 1] acts as a membership variable for the k − th planar
region (the computation of such memberships is addressed in Section 5.2).

The perspective division quotient is z (Hk, x, y) =
(
h

(k)
31 x + h

(k)
32 y + h

(k)
33

)−1
for

the homography model and z (Hk, x, y) = 1 for the affine model.

The homography induced by each plane is computed by minimizing each
energy function E (Hk). A non-linear optimization method (e.g. Levenberg-
Marquardt) should be used to minimize these functions. Cost functions (2)
will be useful for defining the QMMF energy in Equation (9).

4 Likelihood estimation

4.1 Likelihood associated to color information

Let I be an image such that I(x) ∈ t1 ∪ t2 ∪ · · · ∪ tT , where {t1, t2, . . . , tT} are
the pixel values (represented by T disjoint subsets). In our examples, pixel
values are RGB-color for sawtooth and venus images in Figure 3 and
for Figures 1 and 8, and gray-scale values for the cheerios pair in
Figure 3. Then, the density distribution for the color (gray-scale) classes are
empirically estimated by using a histogram technique. That is, by smoothing
the histograms such that gki is the number of hand labeled pixels with value
ti for the k-th class, then the normalized histogram is computed with:

ĝki =
gki∑T

j=1 gkj

. (3)
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The likelihood function associated to color for each class k is then computed
with:

vC
k (x) =

ĝki + ε∑N
j=1(ĝji + ε)

only if I(x) ∈ ti, (4)

where ε is a small positive constant (e.g. 1 × 10−8) introduced to avoid the
undefined computation of vC

k when
∑N

j=1 ĝji becomes zero. This sum equals
zero if a given color (or gray level) is not present in any of the hand labeled
regions; then, ε stabilizes the likelihoods forcing them to follow a discrete
uniform distribution.

4.2 Likelihood associated to coplanarity

In order to compute the likelihood of a pixel image associated to a homography
matching model between two images, it is necessary to establish a probabilistic
measure to compare two pixels information. The likelihood of a pixel associ-
ated to a homography transformation can be estimated as the probability that
the given pixel is translated, at the second image, to another pixel with similar
color information.

We assume that the probability distribution for noise η(C) on every color chan-
nel A ∈ {R, G,B} is Gaussian with mean zero and standard deviation σ:

P (η(A)(z)) =
1√
2πσ

exp

(
− z2

2σ2

)

Then, taken into account only one-to-one pixel correspondences, the likelihood
is stated as:

vP
k (x) =

∏
a∈{R,G,B}

P
(
η(a)

(
I

(a)
1 (x)− I

(a)
2 (T (x,Hk))

))
(5)

Likelihoods considering neighborhood texture information around x can be
computed over a window of a given size (Wx, e.g. 3× 3 pixels) by:

vH
k (x) =

∏
y∈Wx

vP
k (y) . (6)

4.3 Composed likelihood: coplanarity and color

Trying to distinguish coplanar regions only through the planarity likelihood
is not always a solvable problem, because a pixel projected by a homography
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into the second image may fall into a region with a uniform color (e.g. the sky,
untextured walls) and, in this case, the coplanarity score could be high even
if the planar model is not correct. It means that the coplanarity likelihood is
only informative at non-flat regions, mainly in high-gradient regions.

In order to propose a more informative criterion, we estimate a joint likelihood
between planar and color information for each plane, such that the composed
likelihood is computed as the product of Equation (4) and Equation (6):

vk(x) = vC
k (x)vH

k (x) (7)

5 Quadratic Markov Measure Fields (QMMF)

5.1 Computation of the Measure Probability Field

Given a set of likelihoods containing information about plane and color sim-
ilarity to a given model, the goal is to find a probability field p indicating
which model is supported for every pixel in the image. In particular proba-
bility pk(x) for pixel x will be the highest among p = {pi(x) : i = 1, · · · , N}
if x ∈ Rk, where Rk is the region in the image that corresponds to model k,
and N is the number of models. As p is a probability measure field, it has to
satisfy the constraints:

N∑
k=1

pk(x) = 1 and pk(x) ≥ 0 ∀k, x (8)

According to the QMMF framework proposed in [26], the optimal estimator
for the probability measure field is the minimum of the function:

U(p) =
∑
x∈L


N∑

k=1

[− log (vk(x))− µ] p2
k(x) + λ

∑
y∈Nx

‖p(x)− p(y)‖2

 (9)

subject to the constraints (8). In Equation (9), v(x) = (v1(x), · · · , vN(x)) is
the likelihood vector with:

vk(x) = P (I(x)|x ∈ Rk, θk)

θk are the parameters for model k, λ is a non-negative parameter controlling
spatial coherence between all the neighbors pixels 〈x, y〉, and the parameter µ
is added to control the entropy of the probability field.
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Gauss-Seidel method may be used for the minimization of the function given
by Equation (9) using the iterative rule [26]:

pk(x) =
nk(x)

mk(x)
+

1−∑N
i=1

ni(x)
mi(x)

mk(x)
∑N

i=1
1

mi(x)

where:

nk(x) = λ
∑

y∈Nx

pk(y)

mk(x) =− log vk(x)− µ + λ#(Nx)

To satisfy the constraints (8), all negative values should be set to zero and
renormalization must be done if needed.

Relation with HMMF. Hidden Markov Measure Fields is a Bayesian seg-
mentation scheme strongly related to QMMF. In [26], it is shown that for
vectors p(x) with low entropy, the optimal HMMF estimator is approximated
by the QMMF solution.

Binary QMMF. The general QMMF approach should satisfy the constraints
(8). Nevertheless, the sum of probabilities is one only if every pixel at the image
corresponds to an observation model. In the planar case, it means that all the
observed surfaces should be planar (or approximated by planes) and that there
would be a plane-color model corresponding to it. In other case, some pixels
may be misclassified.

In the cases where just a few planes were required or the image is not com-
pletely formed by plane surfaces, we use a QMMF approach for binary clas-
sification [25]. Instead of computing simultaneously the probability field for
N models, for each given model, we segment the image in two regions: one
belonging to this model and another one for pixels that do not correspond.
This approach will conduct N binary QMMF segmentation procedures and is
faster than the general QMMF method:

U ′(pk) =
∑

x∈L {[− log (v̂k(x))− µ] p2
k(x)

+ [− log (ûk(x))− µ] (1− pk(x))2

+ λ
∑

y∈Nx
(pk(x)− pk(y))2

} (10)

where the input likelihoods for each binary segmentation are computed as
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follows:

v̂k(x) = vk(x)+ε∑N

j=1
(vj(x)+ε)

ûk(x) = max {v̂i(x)|i 6= k}
∀k = 1, · · · , N . (11)

5.2 Model parameter computation

The QMMF model allows to estimate the likelihood function (11) parame-
ters [26]. To make explicit the parameter dependency of the QMMF energy
functional (9), the first term is expressed as:

∑
x∈L

N∑
k=1

p2
k(x)

 ∑
y∈Wx

‖I2(T(y, Θ))− I1(y)‖2 − log
(
vC

k (x)
)
− µ


by neglecting independent terms in Θ:

U(Θ) =
∑
x∈L

N∑
k=1

{
wk(x) ‖I2(T(x, Θ))− I1(x)‖2

}

where wk(x) =
∑

y∈Wx
p2

k(y). This energy (12) is similar to E(Hk) in (2).

6 Our approach of projective representation for polyhedral struc-
tures

6.1 Dependency between homographies

In section 3, we have proposed a registration method based on the minimiza-
tion of a function expressed in terms of the coefficients of each homogra-
phy transformation Hk. Nevertheless, like most of the multiplanar techniques
found in the literature [1,2,17,24,32,34,40,41], this basic method does not take
into account yet the fact that the set of homographies associated to different
planes observed in both views are not independent and the results may be not
consistent with the epipolar geometry of the camera array.

Each planar homography is associated to the cameras intrinsic parameters,
relative motion between both views, and plane equations, as follows [11]:

Hk ∼ K2

(
R− tvT

k

)
K−1

1
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where K1 and K2 are the intrinsic parameter matrices for the first and the
second cameras, respectively; R and t are the relative rotation and the relative
translation between both views, resp.; and vk is a vector associated to the k−th
plane, such that the plane equation is vk ·x+1 = 0. The motion and intrinsic
parameters are common for all the possible planar homographies and the only
different terms between these homographies are related with vectors vk.

Although there exist techniques to recover the whole set of parameters (in-
trinsic, motion and plane equations), these methods require a large number
of either planes or views of the scene in order to obtain stable results. Nev-
ertheless, self-calibration and structure from motion are not necessary to es-
tablish coherence for the homography set. In Ref. [3], the authors proposed
a framework relating two planar homographies associated to a given epipolar
geometry.

By using a similar approach, but avoiding the fundamental matrix compu-
tation and the stability problems associated to its estimation, we define a
set of matrices Mij such that Mij = H−1

i Hj for every couple of observed
planes. Using the Sherman-Morrison formula, we obtain Mij = I+esT

ij, where

sij = K−T
1 (vi − vj) and e = K1R

−1t is the right epipole of the given two-
view geometry [11]. Consequently, we may express every planar homography
in terms of a reference homography Href , the epipole e and a 3D vector sref,j

associated to the relative position between the reference plane and plane j:

Hj ∼ HrefMref,j = Href

(
I + esT

ref,j

)
. (12)

The reference homography can be any plane homography and the consistent
homography estimation combines every independent function optimization
(Equation 2) into the minimization of a unique function:

E (Href , e, sref,1, · · · , sref,N) =
N∑

k=1

∑
x∈L

[
wk(x) ‖I2 (x′

k)− I1 (x)‖2
]

(13)

where x′
k ∼ Href

(
I + esT

ref,k

)
x = Href (x + (sref,k · x) e). The minimization

step can be conducted by means of the Levenberg-Marquardt method that
seems to be very stable for these functions.

Our method has two main advantages respect to the approach presented in
Ref. [3]: (i) it is not necessary to explicitly estimate the epipolar geometry
(fundamental matrix) for the camera array, which may be very unstable for
some scene structures or camera movements; (ii) the parameterization does
not depend on the finite or infinite nature of the epipoles, that actually changes
the mathematical form of the homography dependency.
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6.2 Intersections between planes

Once the homographies have been consistently computed as shown in the
previous section, intersections between planes can be computed in a very easy
way: intersection between planes i and j implies that a given point x belonging
to their intersection at the first image satisfies Hix ∼ Hjx; thus x ∼ H−1

i Hjx,
being x an eigenvector of Mij. The eigenvectors of Mij are:

• the epipole e, which is common for all the possible couples of planes:(
I + esT

ij

)
e = (1 + sij · e) e

• every vector a orthogonal to sij:
(
I + esT

ij

)
a = a + (sij · a) e = a

The intersection between planes i and j is the set of all such vectors a. Fur-
thermore, by orthogonality we know that sij · a = 0, then the intersection
(line) equation is straight given by the vector sij.

Our approach does not require the explicit computation of the eigenvectors of
matrix Mij, which may be unstable for several cases. Using the parameters
obtained from the minimization of Equation (13):

• the intersection between the reference plane and a given plane i, observed
at the first image, is directly given by sref,i · x = 0;

• the intersection between any other planes i and j are given by the eigenvec-
tors of Mij:

Mij = M−1
ref,iMref,j =

(
I + esT

ref,i

)−1 (
I + esT

ref,j

)
= I +

e (sref,j − sref,i)
T

1 + sref,i · e

Thus, the intersection line is defined by Equation (sref,j − sref,i) · x = 0.

6.3 Improving boundary detection

In order to get a better segmentation for scenes containing polyhedral struc-
tures, we also propose an improvement to the original QMMF method. The
approach consists on avoiding probability propagation through the plane in-
tersections and delaying the propagation if there is not enough information
to decide to which region a pixel belongs. We reach this goal by changing the
spatial coherence term in Equations (9) and (10) to:

λ
∑
〈x,y〉

z(x, y) ‖p(x)− p(y)‖2
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where 〈x, y〉 represents two neighbor pixels x and y (left, right, up and down
neighbors), and z(x, y) is a function controlling the probability propagation
between these two pixel positions.

The approach is divided into two stages:

(1) For every iteration at the segmentation step, z(x, y) is computed by
z(x, y) = v̂(x) · v̂(y), where v̂T (x) = (v̂1(x), · · · , v̂N(x)) is the vector
of normalized likelihoods at pixel x.
• Normalization means that

∑N
k=1 v̂k(x) = 1, thus the maximum value for

z(x, y) is reached only when max{v̂k(x)} = max{v̂k(y)} = 1; it means
that the propagation will be bigger when both likelihoods associated to
the same segmentation model are close to 1.

• If two or more segmentation models have similar likelihoods for neighbor
pixels x and y, z(x, y) will reduce the propagation between them. For

example, if v̂T
k (x) ≈ v̂T

k (y) ≈
(

1
2
, 1

2
, 0, · · · , 0

)
, then z(x, y) ≈ 2(1

2
)2 = 1

2
.

• If likelihood vectors indicate that pixel x is assigned to a given model
and pixel y is assigned to a different one, z(x, y) will approximate to
zero, retarding the propagation between two different regions.

(2) At a final stage, we use the boundary information as given in Section 6.2
in order to refine the segmentation obtained at the iterative process. We
assign a very small value ε to z(x, y) when the pixels x and y are separated
by the intersection of planes i and j, only if x and y were assigned to
one of these planes (both assigned to the same plane, or x assigned to a
plane, and y assigned to the other one).

7 Experimental results

In this section, we present the results of segmenting stereo-pair images with
the proposed method. The images present on classical benchmarks are mostly
textured, and then most of the methods are not allowed to cope with problems
like segmenting: single-color surfaces, different coplanar models with similar
texture, or single surfaces containing several textures or colors. In our experi-
ments, we selected stereo pair views showing special difficulties (like (i) a single
plane containing different textures or colors, or (ii) different planes having the
same texture, e.g the roof) that do not appear in classical benchmarks.

In our implementation, all the routines were written in Turbo C++
6.0 based on the numerical library in ”Numerical Recipes”. We opted
for using the Levenberg-Marquardt method [23] to minimize the Equation (2).
We propose each Hk equal to the identity to initialize the optimiza-
tion process, although the energy function optimization seems to be
very sensitive to the initial set of parameters. In order to avoid converg-
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ing to local minima, we propose to use a multi-scale approach on matching
both images, as it has already been used in optical flow estimation. Firstly,
the image is sub-sampled four levels (each dividing the image size by two) and
a homography is estimated for a coarse scale; the coarse scale solution should
be then used as initial parameters for solving the registration problem at a
finer scale.

7.1 Results on the Middlebury database

Firstly, we tested our approach on a set of three stereo pairs provided at the
Middlebury dataset [29] (available online at http://www.middlebury.edu/stereo/).

For these three stereo pairs, the user has defined manually some sample regions
(color circles at Figures 3-a) lying in some planar surfaces. The interface is
very easy: the user click on a given point and a circular region is drawn around
the point with a fixed diameter (25 pixels in these experiments). The standard
deviation used to compute the registration likelihood (Equation 5) is fixed to
σ = 10, and the binary QMMF parameters are λ = 10 and µ = 4.

Step 3, Step 4,

Stereo Resolution Data # of # of color iterative Total

pair space regions iterations likelihood process time

(sec) (sec) (sec)

cheerios 320× 240 gray 5 10 43 686 729

sawtooth 434× 380 RGB 3 10 51 668 719

venus 434× 383 RGB 5 10 89 1174 1263
Table 2
Time of computation for results on Figure 3-d.

The stereo pairs show several slanted planes with varying amounts of tex-
ture (even with no texture as in some regions of the venus scene). For these
three pairs, we computed the input likelihoods using uniquely coplanarity
information (no color information has been added). The results obtained after
10 iterations of our approach are shown in Figure 3-d and the times for the
automatic stage are shown in Table 2.

Region boundaries are better defined for the Lin’s technique, be-
cause it has included a term for boundary smoothness that favors
the developing of rectilinear boundaries. Nevertheless, real acute-
angled or non-straight boundaries are straightened by the method
because of this term, as we can see for the sawtooth and venus
examples (Figure 3-g): acute-angled ends are truncated.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 3. Images of the Middlebury database: cheerios, sawtooth and venus (from
left to right). (a) Right images and (b) user-defined sample regions at left images
(circles with diameter = 25). Segmentation: (c) ground-truth, (d) after ten registra-
tion-segmentation iterations of our method, (e) for Lin’s method. Difference images
(mismatched pixels shown in black): (f) for our approach and (g) for Lin’s approach.

Lin’s method did not distinguish that pink and green regions correspond to
different planes in the cheerios scene, as blue and yellow regions in the venus
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pair are also different. The same problem has been found for both images in
all the fully automatic methods [4,6,15,27] reported in [29]. Interactivity offers
the advantage to indicate the procedure that these regions are different (as
our method does, Figure 3-d) and the possibility to correct wrong tagging.

(a) (b) (c)

Fig. 4. Results for the venus scene using QMMF with µ = 0.4λ and different coher-
ence parameters: (a) λ = 10, (b) λ = 102, and (c) λ = 103.

At the venus sequence, we see that the segmented planes for our method are
hollow regions (Figure 3-d), mainly in image zones where there is no texture.
Our method offers the option to force the pixels to be assigned to a given
planar model, by changing the segmentation method from binary QMMF to
several-models QMMF (Figure 4-a). Observed gaps are due to occlusions
or to not connected regions (because the algorithm just keeps the
biggest connected regions with marginal probabilities greater than
0.5). Our interface gives to the user also the facility to control the
coherence parameter λ and the entropy parameter µ interactively
(allowing to repeat step 4(b) of the algorithm), if he/she considers
that the segmentation is too granular or smoothed. In Figure 4, we
observed the results for different coherence values. We can see the advantage
of an interactive segmentation in order to choose easily the best segmentation
method (binary QMMF or multi-class QMMF) or to control the spatial co-
herence of the regions for a given stereo pair. Furthermore, it is not necessary
to perform again the registration step when the user changes the segmenta-
tion strategy or the parameters, because the QMMF segmentation step is only
related to the second stage of the iterative procedure.

Finally, we tested two different registration strategies: (i) considering that
planar homographies are completely independent, (ii) taken into account ho-
mography dependency by using the projective framework presented in section
6. For the first registration approach, tests require several hundred of itera-
tions, taking several hours before to converge to a stationary solution. On the
other hand, homography consistency allows converging in very few iterations,
as it is shown in Figures 3-d and 4 after 10 iterations. When convergence is
reached, the solutions for both approaches are almost the same, such that
differences are difficult to visualize; hence, the main advantage on considering
homography consistency is on improving the computational time.
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7.2 Refining the planar image segmentation

(a) (b) (c)

Fig. 5. Segmentation of the cheerios scene, (a) for ten iterations of our approach,
(b) the map of plane intersections, (c) the image segmentation taking into account
plane intersections.

In Figure 5-a, we appreciate that the obtained regions seem to be qualitatively
similar to the ones stated in the ground truth. Nevertheless, the boundaries of
the regions are not well defined. In order to improve the final segmentation, we
add the refining step that takes into account the intersection between planes
as it is indicated in Section 6.3. Figure 5-b shows the lines corresponding to
plane intersections that are visible in the first image. At Figure 5-c, it is shown
that the region growing is controlled in order to avoid propagation through
the regions boundaries and it helps to improve the segmentation quality for
polyhedral scenes.

7.3 Including color and texture to planar models

The tests were also conducted on another set of stereo views of real outdoor
scenes. The experiment shown in Figure 6 is designed to demonstrate the im-
portance of incorporating context information related with texture in the like-
lihood computation. Experiment shown in Figure 7 illustrates the importance
of taking into account both color and coplanarity for computing likelihoods. In
this section, we intend to show step by step how informative are coplanarity,
texture and color likelihoods as inputs for the segmentation process.

Firstly, we compute the homographies corresponding to both observed planes
at the tower scene by means of the procedure described at section 3. The nor-
malized likelihoods obtained for these registration models, considering pixel-
to-pixel similarities, are shown in Figure 6-a. White pixels represents highest
similarities, while darker pixels correspond to lower planarity fitting to that
model. Most of the pixels corresponding to the correct plane are shown in
white; nevertheless, the regions are too granular and not connected. When
using 3× 3 regions (as it is shown in Figure 6-b), the coplanarity likelihoods
are improved and well defined, such that they can easily be distinguished by
very simple methods, like thresholding the images.
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(a) (b)

Fig. 6. Normalized coplanarity likelihoods computed (a) pixel-to-pixel and (b) for
3× 3 windows, for both planes of the tower, left and right.

(a)

(b)

Fig. 7. Likelihoods computed for (a) planar similarity and (b) coplanarity and color.

Nevertheless, normalized planarity likelihoods may be less informative if the
regions are untextured or if there are different coplanar models with the similar
texture. This is the case of the left and right sides of the roof (shown in Figure
1). In the images at Figure 7-a, only the pixels corresponding to high gradient
points at the original images have high likelihood. Flat-color regions have
almost the same likelihood for the different models, as it is observed for the
sky pixels and the facade. Moreover, intersections between planes are not well
defined, because the boundary regions may correspond to either plane at the
junction. When color information is included, highest likelihoods distinguish
better the complete planar surfaces and not only the high gradient elements,
as it is shown in Figure 7-b.
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(a)

(b)

(c)

(d)

Fig. 8. Experiments for the: tower scene (first column), roof scene (second column)
and house scene (third column). (a) Small user-defined sample regions at the left
images and (b) their corresponding segmentations (after 10 binary QMMF iter-
ations); (c) large user-defined sample regions and (d) the resulting segmentations
(after just one binary QMMF iteration for each model). Note the segmented regions
correspond to class membership larger than 0.5.

7.4 Results on outdoor images

At this step, maximum likelihood estimator (MLE) is good enough to distin-
guish most of the coplanar pixels with similar texture and color properties,
but the detected regions are granular and not necessarily connected. In order
to solve this problem, we apply the QMMF segmentation method (described
in section 5). Once the a posteriori probabilities were obtained, we select the
planar regions by selecting the pixels whose probability is greater or equal
than 0.5 and then, the biggest connected region for each planar model.
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If the results are not satisfactory at the end of the complete registration-
segmentation process, the user can be capable to make corrections online of
the segmentation, manually extend the sample regions, fill the gaps, etc. (e.g.
compare user-defined samples in Figures 8-a and 8-c). This is one of the main
advantages of interactivity.

For the final experiment, the user defined some image samples, shown in Fig-
ure 8-a, and the obtained results after ten binary QMMF iterations are shown
in Figure 8-b. In the three sets of images, the planar regions were correctly ex-
tended, but there are still misclassifications if there are two concurrent planes
or regions with similar texture or color. In Figure 8-c, the user extends the
sample regions such that the results shown in Figure 8-d were obtained after
only one binary QMMF iteration. Our results also show that the algorithm can
distinguish planar surfaces from non-planar elements (e.g in the roof stereo
pair, the tree leaves are correctly segmented out from the left region of the
house roof).

8 Summary and conclusions

In this paper, we have proposed a method for segmenting and registering
coplanar regions of a scene, based on the observation of a pair of stereo views.
This process can be used in any environment containing planar structures. Its
domain of application is wide because planar surfaces are quite common both
at indoor and outdoor scenes. One can intrinsically segment a piecewise planar
scene from two 2D images without performing neither camera calibration nor
3D reconstruction.

There are still limitations and further research to continue. We have chosen
an assisted strategy to initialize our algorithm. Indeed, this approach depends
on the user selection of sample regions and it may be sensitive to this choice.
Although automatic planar segmentation methods have been found in the
literature, interactivity may help to reduce computational time (from several
hours [17] to some seconds in our method) and to correct wrong segmentations.
However, we consider that this stage is independent of our method and that
it does not demerit our proposal; contrarily, interactivity may help to extend
planar regions that other methods cannot detect or separate. Our approach
may accept any other initialization method and we are in actuality studying
other approaches for this step.

We also have analyzed the information that can be extracted from color prop-
erties of the images and from move matching between two views of a planar
surface. We propose to use an approach combining both kinds of information
and to refine the marginal probability of finding both criteria for a given pla-
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nar model, by means of an innovative Bayesian approach based on Markov
Random Fields.

One of the future improvements of our method is that now registration has
been conducted only from the first image to the second one, but no coherence
from the registration in the opposite sense has been verified. This step should
improve the performance of our method in some challenging regions such as
discontinuities and occlusions. Another goal of our future work consists on
obtaining metric information from the computed registration parameters, such
as the epipole positions and the plane parameters, for a larger set of views,
intending to auto-calibrate the cameras and to recover the planar piecewise
structure of the scene.
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