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We present a generic regularized formulation, based on robust half–quadratic

regularization, for unwrapping noisy and discontinuous wrapped phase maps.

Two cases are presented: the convex and the non–convex one. The unwrapped

phase with the convex formulation is unique and robust to noise; however, the

convex function solution is deteriorated by real discontinuities in phase maps;

therefore, we also present a non–convex formulation which, with a parameter

continuation strategy, shows a superior performance.
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As the result of many optical experiments, one obtains a wrapped phase map

which may be modelled as gr = W (φr + ηr), where r = (x, y) represents a site in a

regular lattice L, η is additive noise and W is the (non-linear) wrapping operator:

W (x) = x+2kπ, with k integer such that W (x) ∈ [−π, π). Then, the phase unwrap-

ping process consists on recovering a phase field φ with given characteristics (i.e., a

smooth or piecewise smooth field) from the wrapped phase, g, that presents spurious

phase jumps due to the wrapping operator.
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From the wrapped phase map, it is possible to compute the phase differences

∆grs
def
= gr − gs between contiguous (vertical or horizontal) pixels; these phase differ-

ences are in the interval [−2π, 2π). When the real phase differences ∆f̂rs = ∆φrs+∆ηrs

are confined to the interval [−π, π), the equation:

∆f̂rs − W (∆grs) = 0, (1)

is satisfied for all the neighboring pixel pairs and the unwrapping process is achieved

by a simple two-dimensional integration of the wrapped difference field, W (∆grs).

However, phase discontinuities in f̂ greater than π generate inconsistencies in the

field W (∆grs), so that path dependent algorithms fail. Inconsistencies are located at

those sites where ∆×W (∆grs) 6= 0, with ∆× as the discrete version of the rotational

operator. The unwrapping of inconsistent phase maps is ill-posed because information

provided by the data and the model (1) is (in general) not sufficient for an accurate es-

timation of the phase f̂ . In the framework of Bayesian regularization,1 the regularized

solution, f , (estimate of the true phase f̂) is computed by minimizing a cost function

U(f) = D(f)+λR(f). The data term D establishes that the reconstruction, f , should

be consistent with the data, g and is chosen as the negative log-likelihood [see model

(1)]: D(f) =
∑

〈r,s〉[fr−fs−W (∆grs)]
2. The regularization term, R, imposes a penalty

for violating the a priori assumptions. The relative contribution of each term to the

global cost is weighted by the positive parameter λ. The prior constraints are, in this

framework, incorporated in the form of a Markov Random Field model for f , so that

R(f) takes the form of a sum over the cliques 〈r, s〉, of a neighborhood system, of a

set of “potential functions” supported on those cliques: R(f) =
∑

〈r,s〉 ρ(f ; r, s). One
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may use, for example, the neighborhood system: Nr = {s ∈ L : 0 < |r − s| ≤
√

2}, so

that 〈r, s〉 corresponds to horizontal, vertical and diagonal first neighbor pixel pairs:

〈r, s〉 = {(r, s) : r ∈ L, s ∈ Nr}. Choosing ρ as a quadratic function1 one obtains:

U(f) =
∑

〈r,s〉

[

α2
rs + λβ2

rs

]

, (2)

where αrs
def
= fr − fs − W (∆grs) and βrs

def
= fr − fs. Note that for λ = 0 one

obtains the usual least squares formulation. The phase unwrapped with (2) has the

problem of producing a reduced dynamic range and an over–smoothing of the real

phase discontinuities because the term β2
rs penalizes large gradient magnitudes in

the unwrapped phase, f . Additionally, the quadratic term α2
rs is based on the wrong

assumption of residuals [see model (1)] with a Gaussian distribution.

To address these problems, and also problems associated with phase steps larger

than π in the true phase, we propose to find the unwrapped phase as the minimizer

of:

Uhq(f, l) =
∑

〈r,s〉

ρhq(f, l; r, s) =
∑

〈r,s〉

{

l2rs(α
2
rs + λβ2

rs) + Ψ(lrs)
}

, (3)

where αrs and βrs are defined above, l2rs ∈ [0, 1] is a continuous auxiliary variable

that acts as an outlier detector and Ψ is a convex potential function. The potential

ρhq in (3) is HQ in the sense that: it is quadratic with respect to f when l is fixed

and convex with respect to l when f is fixed.2,3, 4, 5 The behavior of the potential ρhq

may be understood by considering that l2rs ≈ 0 if there is a discontinuity (an edge)

or an inconsistency between the sites r and s, and l2rs ≈ 1 otherwise. Thus, the first

term in (3) constrains the phase differences of the unwrapped phase to be close to

the observed phase differences unless the corresponding l variable is close to one.
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The potential Ψ controls the threshold for detecting an edge. If Ψ(lrs) is too small

everywhere, one may have an edge over–detection; on other hand, if it is too large,

ones does not detect any edge, and as a consequence the solution is homogeneously

smoothed [i.e. (3) behaves as (2)].

Cost functions of the form (3) can be minimized by performing an alternated

minimization of Uhq with respect to the variables f and l.2,3 This is expressed in the

following algorithm:

Alternated Minimization Algorithm (AM): Set t = 0 and lrs = 1 ∀〈r, s〉, then

iterate until convergence:

1. Solve for f the linear system, keeping l fixed, that results from: ∇fUhq(f, l) = 0.

This is

∑

s∈Nr

2l2rs

(

αrs

∂αrs

∂fr

+ λβrs

∂βrs

∂fr

)

= 0 (4)

for all r ∈ L.

2. Update l, keeping f fixed, by solving the system that result from: ∇lUhq(f, l) = 0.

The keypoint, in half–quadratic potentials, is to choose a potential Ψ such that

this step leads one to a closed form solution, i.e. l2rs = w (α2
rs + λβ2

rs).

The second step in the AM algorithm depends on the specific potential Ψ. We distin-

guish two cases:

Convex case. The main advantage of the minimization of convex functions is that

one always computes the global minimum independently of the initial guess. Note

that if one makes λ = 0 and defines the function ρ̂ as:

ρ̂(αrs)
def
=

∫ αrs

0

2w(x2)xdx. (5)
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Then, the minimum f ∗ of Uhq computed using the AM algorithm will also be a

minimum of

Ûhq(f, l) =
∑

〈r,s〉

ρ̂ (αrs) . (6)

Since

∂Ûhq

∂fr

=
∑

s∈Nr

ρ̂
′

(αrs)
∂αrs

∂fr

=
∑

s∈Nr

2w(α2
rs)αrs

∂αrs

∂fr

.

So that (3) holds at the critical points of (6) when l2rs = w(α2
rs) (i.e. for the optimal

lrs). This means that if one chooses Ψ (and hence w) such that ρ̂ is convex, function

(6) [and hence (3)] will have an unique global minimum and the AM algorithm will

converge to it. In particular one can choose Ψ such that potential ρ̂ corresponds to the

convex Huber potential:2,4 ρ̂(αrs) = α2
rs if |αrs| ≤ ε, ρ̂(αrs) = 2ε|αrs| − ε2, otherwise.

Note that in this case there is no need to define Ψ explicitly. The minimization w.r.t.

l results in the closed–form solution :

l2rs = w(α2
rs) =

ρ̂
′

(αrs)

2αrs

=















1
√

α2
rs ≤ ε

ε/
√

α2
rs otherwise,

(7)

where ε is a small positive constant (we use in our experiments ε = 0.1).

Non–convex case. In this case, we use λ 6= 0, and Ψ(lrs) = µ(lrs − 1)2, where µ is

a positive parameter that controls an over–detection of outliers. Thus, we obtain:

l2rs = w(α2
rs + λβ2

rs) =
µ

[µ + (α2
rs + λβ2

rs)]
2
. (8)

That corresponds to the commonly used non-convex Geman–McClure potential,2,3, 4

ρ̂(
√

α2
rs + λβ2

rs) = (α2
rs + λβ2

rs)/(µ + α2
rs + λβ2

rs). Note that in this case the edge de-

tection process, l, is driven by the inconsistencies and the phase gradient magnitude.

We implement a parameter continuation strategy in order to lead the algorithm to a
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“good” local minimum and to eliminate the dynamic range reduction on f , because

of the penalization of the gradient magnitude. The parameter continuation is imple-

mented by setting λ2 ≡ λ (t) = λ0 × 0.5c1t and µ ≡ µ (t) = µ0 × 0.5c2t, where c1 and

c2 are positive parameters and t is the number of iteration. Therefore, the edge sen-

sibility and the gradient contribution is reduced every iteration. In our experiments,

we set: c1 = c2 = 1/20 and the initial values of the parameters: λ0 = 10 and µ0 = 1.

Now we present and discuss some numerical experiments that illustrate the perfor-

mance of the convex and non-convex HQ phase unwrapping techniques. Figure 1

shows the test phases. Panel 1–(a) shows a synthetic wrapped phase previously cor-

rupted with uniform noise with amplitude equal to 3.0 radians. The wrapped phases

in panels 1–(b) and 1–(c) correspond to real EPSI images: the wrapped phase in panel

1–(b) shows the relative deformation of a steel plate when a thermal stress is applied.

The wrapped phase in panel 1–(c) shows the relative deformation of a steel plate with

a fracture when a mechanical stress is applied.

Figure 2 shows the unwrapped phase, of the wrapped phase in 1–(a), with dif-

ferent methods. First column corresponds to the unwrapped phase, middle column

to the rewrapped phase and last column to the edge field, l2. With the exception of

the case illustrated in row 2–(d), we use 8 neighbors in all the cases, which improves

significantly the quality of the unwrapped phase [compare 2–(d) with 2–(e)]. In this

experiment, one notes the bad performance of the convex potential [row 2–(c)]. How-

ever, the convex function can be adequate for low noise levels which show that, with

the advantage of the solution being unique [these two cases are compared in figure

3]. The algorithm based on non–convex functions and the parameter continuation
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strategy produced in all the cases (synthetic and real test wrapped phases) the best

results [see rows 3–(c) and 3–(d)]. The phase discontinuity in the wrapped phase in

panel 1–(c) is better preserved in the unwrapped phase shown in row 3–(d). The

drawback, in the non-convex case, is the additional parameters that need be tuned

and the computational cost that results in a slow parameter continuation. The com-

putational times (and the number of iterations) for the wrapped phases shown in Fig.

3, were: a) 57 secs. (31 iter.), b) 177 secs. (75 iter.), c) 385 secs. (223 iter.) and d)

618 secs. (320 iter.). Each iteration corresponds to solving the linear system (4) with

the conjugate gradient algorithm and updating the l field.

We observed a degradation of the non-convex unwrapping method for wrapped

phase with a very low SNR; in such case, the algorithm is easy trapped by a local

minima. For instance, if the wrapped phase in 1–(a) is corrupted with uniform noise

with amplitude equal to 4.0 radians, then the unwrapped phase contains disconti-

nuities as those observed in Fig. 2–(b). As in the case of Figs. 2–(b) and (c), the

rewrapped phase in this case is indistinguishable from the original wrapped phase.

An opportunity for future research is to improve the performance of the method for

wrapping phases with low SNR.
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Figure Captions

Figure 1. Test wrapped phases: (a) synthetic, (b) deformation of a steel plate (ESPI),

and (c) fracture in a steel plate (ESPI).

Figure 2. Each row shows, respectively, the unwrapped phase, rewrapping of the un-

wrapped phase and the l field with: (a) quadratic potential,1 (b) the Ghiglia–Romero’s

L0–Norm6 [in our formulation it is equivalent to the Herbert–Leahy’s non-convex HQ

potential,3 i.e. Ψ(lrs) = µ(l2rs − ln(l2rs) − 1), where µ is the positive parameter that

controls the outlier detection and with λ = 0], and the proposed HQ cost function

with: (c) convex, (d) non-convex with 4 neighbors and (e) non-convex with 8 neigh-

bors.

Figure 3. Results computed with the proposed method, in the same order as Fig.

2. Rows (a) and (b) with the convex HQ cost function, rows (c) and (d) with the

non-convex one.
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Fig. 1.
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Fig. 2.
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Fig. 3.
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