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Abstract

A new regularization formulation for inverse problems in computer vision and image processing is introduced,

which allows one to reconstruct second order piecewise smooth images, that is, images consisting of an

assembly of regions with almost constant value, almost constant slope or almost constant curvature. This

formulation is based on the idea of using potential functions that correspond to springs or thin plates

with an adaptive rest condition. Efficient algorithms for computing the solution, and examples illustrating

the performance of this scheme, compared with other known regularization schemes are presented as well.
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1 Introduction

Since the seminal works in Refs. [1]-[4] about image (or surface) restoration with discontinuities, in recent

years, several methods for Edge-Preserving Regularization (EPR) for inverse problems in computer vision

and image processing, have been published [5]–[27]. These methods have demonstrated their performance

in detecting outliers in the data and reconstructing piecewise smooth images. The definition of piecewise

smooth, however, has in most cases meant “almost piecewise constant”, which means that the image can be

represented as an assembly of regions such that inside them the gradient is close to zero. In the regularization

framework, given the observed image g, the regularized solution f is computed as the minimizer of an energy

functional U. Although convex potentials guarantee convergence to its global minimum [6]–[12], sharper

edges are reconstructed with non-convex potentials that grow at a slower rate than quadratic ones. Provided

a good initial guess for f is given, efficient algorithms for computing a local minimum have been reported

in the literature [13]–[22]. In spite of the success of robust regularization methods, there are still important

open problems; in particular, the definition of piecewise smooth images has not been extended successfully

to include regions with almost constant slope (second order smoothness). As a result, regions with constant

slope are reconstructed with a “staircase” effect.

The purpose of this paper is to introduce a new formulation for energy potentials that allows one to

reconstruct images with second order piecewise smoothness. In addition, efficient algorithms for computing

the solution are presented. The organization of the paper is as follows: section 2 presents a review of the EPR

techniques based on robust potentials. In order to clarify the behavior of first order robust regularization an

analogy with a Weak Spring System (WSS) is used. We show that this model has limitations for representing

potentials for high order EPR.

The third section introduces a new formulation for potentials based on the paradigm of the adaptive

rest condition (ARC). For first order potentials, the corresponding analogous model is a spring system with

adaptive rest condition (SARC); we show that for this case, there is an equivalence between WSS and SARC

potentials, although the SARC formulation allows an increased flexibility. In section 4, we extend the ARC
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formulation to second order potentials, which do not have an equivalent representation in terms of known

models. We call this model the Plate System with Adaptive Rest Condition (PARC), and show that it allows

one to correctly reconstruct piecewise planar images. Also in this section we present efficient minimization

algorithms for the corresponding energy functions. In section 5 we present experimental results for the new

systems, both with synthetic and real images, and compare their performance with other EPR techniques.

Finally, our conclusions are given in section 6.

2 Robust Regularization

2.1 Statement of the Problem

The problem of reconstructing an image f from noisy and degraded observations g given the following model

of the observations:

g = F (f) + η, (1)

where η is additive noise and F is (in general) a non-linear operator that is assumed to be known, is an ill

posed problem. Therefore, regularization of the problem is necessary. This means that, prior information or

assumptions about the structure of f need to be introduced in the reconstruction process. The regularized

solution f∗ is computed by minimizing an energy functional U :

f∗ = arg min
f

U(f)

where U is of the form:

U(f) = D(f, g) + λR(f), (2)

The first term in (2) establishes that the reconstructed f should be consistent with the data g and the second

term imposes a penalty for violating the prior assumptions about f , e.g., piecewise smoothness. The relative

contribution of each term to the global energy is controlled by the positive parameter λ.
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2.2 The Homogeneous Spring System

In the framework of Bayesian regularization, the data term in (2) is chosen as the negative log-likelihood

and the prior constraints are incorporated in the form of a prior MRF model for f [1][3][28], so that the

regularization term R in (2) takes the form of a sum, over the cliques of a given neighborhood system, of a

set of “potential functions” supported on those cliques. One may take for instance as the neighborhood N

of a pixel r its 8 closest neighbors:

Nr = {s : |r − s| < 2}

and cliques of size 2 〈r, s〉 that correspond to horizontal, vertical and diagonal pixel pairs, where r = (x, y)

represents a site in the pixel lattice L. A quadratic regularization energy is obtained by assuming that η

corresponds to Gaussian noise and choosing quadratic potentials over the first neighbor pairs:

UH(f) =
∑

r

{
|F (f)r − gr|2 +

λ

2

∑

s∈Nr

drs |fr − fs|2
}

(3)

where the constant drs is equal to the inverse of the distance between the pixels r and s (drs = 1/|r − s|).

Functional (3) corresponds to the internal energy of the physical model of a Homogeneous Spring System.

This model is equivalent to a system of particles located at the sites of the pixel lattice, so that the vertical

position of each particle is represented by the gray level of the corresponding pixel. Eq. (3) corresponds to

the energy of the complete system where (when F is the identity) each particle fr is connected by means of

springs with the observation gr and with its neighboring particles. The cost functional (3) does not preserve

edges and will produce an over-smoothing of the real edges of the image.

2.3 The Weak Spring System: Robust Regularization

To alleviate that problem, there have been proposed potential functions for the regularization term that

allow edge preservation, based on the idea of a breakable spring, that is, if the potential energy of a spring

exceeds a given threshold θ, then the spring must be broken [1][3] or weakened [5][13][16][17]. To achieve

this behavior, an auxiliary variable ω than acts as edge (outlier) detector is introduced; then the potential
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takes the form:

ρ(fr − fs, ωrs) = (fr − fs)2ωrs + Ψ(ωrs), (4)

where ωrs is associated to each pixel pair (r, s), and Ψ is a potential function that controls an over-detection

of edges. In the case of the breakable spring model [1], ωrs only takes the values {0, 1}; on other hand, in the

case of the WSS model, ωrs ∈ [0, 1], and is set close to 1 for (fr−fs)2 < θ (where θ is a given threshold) and

less that one otherwise. Black and Rangarajan [13] have shown that the potentials of the weak spring model

correspond to the cost function for robust M-estimators. These potentials are, in general, non-convex and

grow at a slower rate than the quadratic ones. This method is capable of finding the significant missing data

of a noisy image and performing an edge-preserving restoration. Furthermore, the explicit outlier detection

formulation allows one to incorporate additional constraints about the structure of the edge reject field ω

[13][25][26]. For instance, one can penalize the “thickness” and the discontinuities on the edges, at the

expense of an additional computational cost.

2.4 The Weak Thin Plate Model

The thin plate model [2][5][28] is obtained when one uses as potentials, squares of finite difference approxi-

mations to second derivatives:

∆2fr = fq − 2fr + fs. (5)

The computation of ∆2fr involves cliques of size 3 〈q, r, s〉 that correspond to horizontal, vertical and

diagonals pixel triads (see figure 1).

One could use the weak potential

ρ(∆2fr, ωqrs) =
[
∆2fr

]2
ωqrs + µΨ(ωqrs) , (6)

as a second order edge-preserving potential; however, the results are not completely satisfactory, even for the

reconstruction of piecewise constant images, where the first order model presents an excellent performance.

The observed effect consists in the “ramping” or interpolation of first order discontinuities. In order to

compute a second order solution, Geman and Reynolds [5] proposed to use the reconstruction computed
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with the first order model [using ρ(fr − fs, ωrs)] as the starting point for the second order model. This

improves the results, but still presents some problems, because the outliers for the first order model (jumps)

do not correspond to the outliers for the second order one (large curvatures). Thus, the weak second order

model does not work well in the edges defined by jumps in the gray level (see section 5).

3 The Adaptive Rest Condition Potentials (ARC-Potentials)

3.1 Spring System with Adaptive Rest Condition

In this section we introduce the potentials for EPR that are based on the paradigm of Adaptive Rest

Condition (ARC). The system we are proposing is based on the idea of using quadratic potentials with a

non–zero adaptive rest condition, which is expressed as the product of a function φ of the gradient times an

“edge variable” l. In the first order case, the potentials for springs with ARC (SARC potentials) are thus:

ρsarc(fr, fs) = |fr − fs − φ(fr − fs)lrs|2 (7)

and the complete energy is:

Usarc(f, l) =
∑

r

{|F (f)r − gr|2 +
λ

2

∑

s∈Nr

[ρsarc(fr, fs) + Φ(l, r, s)]} (8)

where Φ(l, r, s) is a term that penalizes the appearance of edges in the solution.

This energy will have the correct behavior if φ(fr − fs)lrs is close to zero for those values of fr, fs one

wants to smooth out (i.e., in the interior of regions with constant intensity), and φ(fr − fs)lrs ≈ fr − fs for

those values that are considered edges. We have 4 possible strategies for choosing φ and l:

1. Explicit Line Process (SARC-EL). This corresponds to the choice φ(t) = t, thus (7) can be written

as |trs(1− lrs)|2. If Φ(l, r, s) is a convex function of lrs, this case is equivalent to the WSS model; for

instance, choosing Φ(l, r, s) = µl2rs, one gets the Ambrosio–Tortorelli potential [19]. Note that in this

case, the optimal l is always in the interval [0, 1].
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2. Implicit Line Process (SARC-IL). This corresponds to the choice lrs = 1 for all r, s, and φ(t) shaped

as in Fig. 2. This may be obtained by setting φ(t) = t− ρ′(t)/2, where ρ(t) is a robust potential. Note

that with this choice, SARC-IL is equivalent to the implicit WSS model [13], with potentials equal to

(ρ′/2)2.

3. Line Process Only (SARC-LP). This corresponds to the choice φ(t) = 1. Choosing Φ(l, r, s) = µl2rs,

one gets a formulation similar to that in [14][15]. Note that l approximates the gradient of f (at least

close to the detected edges); hence, if a penalization term for the gradient of l is added (as in [18] [24]),

this becomes, in some sense, a second order formulation.

4. General Case (SARC-G). This is a new formulation, different from the known first order EPR schemes.

It corresponds to the choice Φ(l, r, s) = µl2rs, and φ(t) chosen as in the SARC-IL case. A robust

potential that gives good results is:

ρ(t) = εt2 + 1− (1− ε)
k

exp(−kt2)

where ε is a small constant used to penalize very large gradient values and k is a scale parameter. This

gives:

φ(t) = (1− ε)t(1− exp[−kt2]) (9)

Note that for small values of fr − fs, l will be close to zero (by effect of the penalization term),

whereas for large values it will be close to one (since φ(t) ≈ t). This formulation has in general

better performance than the WSS, and produces cleaner edge maps; Fig. 3 shows an experiment that

illustrates this fact. Note that for large values of fr − fs, φ(fr − fs) will approximate the gradient of

f , and l will act as an edge indicator variable.

As in the case of the half-quadratic algorithms, the minimization of the regularized functional, USARC(f, l)

in the SARC-G case, is performed in a two–step procedure: given an initial estimation f0 for f , repeat until

convergence:

1. Step 1. Minimize USARC(f, l) with respect to l keeping f fixed.
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2. Step 2. Minimize USARC(f, l) with respect to f keeping l fixed.

Step 1 gives a closed–form solution for the optimal l:

lr,s =
µφ(fr − fs)

µ + φ2(fr − fs)
(fr − fs) , for all〈r, s〉 ∈ L.

The minimization of step 2 is relatively difficult, since USARC(f, l) is a non–convex function of f . How-

ever, it is not necessary to carry out a complete minimization, and it is enough to guarantee that USARC

decreases after step 2.

In our implementation, this is achieved by performing a single iteration of a modified Gauss–Newton

scheme. The Gauss–Newton’s algorithm is given by f t+1 = f t + δt, where δt represents the update of f in

step t and it is computed as the solution of the linear system

H̃(f t)δt = −G(f t),

where G(f t) and H̃(f t) represents the gradient and an approximation of the Hessian H(f t) of USARC

in the point (f t, lt), respectively. To solve the linear system for δ we use the Linear Conjugated Gradient

algorithm. In practice, we perform 3 iterations of in each step. If the step δt does not reduce the energy, we

apply the backtracking method presented in subsection 4.2.

This algorithm converges faster than the classical EPR scheme (e.g. the algorithms based on an alternated

minimization reported in [5][16]). The reason for this is that in the classical scheme (φ (t) = t) the border

indicators lr,s take their extreme (convergence) values {0, 1} only if |fr − fs| = 0 (in which case lr,s = 0) or

|fr−fs| > µ (in which case lr,s = 1). When |fr−fs| ∈ (0, µ), lr,s takes intermediate values which slow down

the convergence of the method. In our case, by contrast, the edge variable lr,s takes intermediate values in

(0,1) only in a very small interval of values of |fr − fs|, and as a result, the system converges faster and to

a cleaner solution[21].

The SARC-G (and also SARC-EL) formulation has the additional advantage of allowing the introduction

of explicit constraints on the detected edges [27], e.g., using potentials that favor sharp changes in the l field
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in directions perpendicular to the edges; one may use, as in [25][26], potentials of the form:

Φ(l, r, s) = µl2rs + ρl(lqr − lrs), (10)

where ρl is in general a robust potential and site q is a neighbor to sites r, s, as in Fig. 1. In the present (first

order) case, the effect of introducing these potentials is not very noticeable and increases the computational

complexity. In the second order case, however, it has a significant effect (see sections 4 and 5).

4 Thin Plate System with Adaptive Rest Condition (PARC)

The greatest advantage of the ARC formulation is that it can be easily extended to the second order case,

by defining thin plate potentials with adaptive rest condition. These PARC regularization potentials have

the property of not just adapting their stiffness, but also changing their behavior to SARC potentials at the

edges of almost constant regions. This represents a significant advantage over the half-quadratic plate model

based on robust potentials[4][5][13][14] [15][16].

The generalization of the SARC model to the second order case is based on the observation that the

second order (plate) potential (5) can be written as the difference between 2 spring potentials:

∆2fr = ∆+fr −∆−fr (11)

where

∆+fr = fq − fr and ∆−fr = fr − fs
(12)

(see figure 1). Using an ARC for each one of these first order potentials, one gets the general PARC potential

as:

ρparc(fq, fr, fs) =
∣∣∆+fr − φ(∆+fr)lqr − (∆−fr − φ(∆−fr)lrs)

∣∣2 , (13)

where the function φ() and the edge indicator variables l are defined as in the SARC case (Eq. (9)). The

complete energy is now:
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Uparc(f, l) =
∑

r

{|F (f)r − gr|2 +
λ

2

∑

q,s∈Nr

[ρparc(fq, fr, fs) + Φ(l, r, s) + Φ(l, q, r)]} (14)

Note that this energy will have the desired behavior: in the interior of regions of constant slope, lqr

and lrs will be close to zero, by effect of the Φ penalization terms; in the vicinity of edges between uniform

regions, one of the rest conditions will be activated and the PARC potential will behave like a spring, and

at edges between regions of non–zero constant slope, both ARC’s will become active.

As in the SARC case, there are different strategies for choosing φ and l, which generate different second

order EPR schemes; in this case, however, they are not equivalent to any known model. We consider 2 cases:

1. Explicit Line processes (PARC-EL), which corresponds to the choice φ(t) = t and Φ(l) = µl2.

2. Implicit Line processes (PARC-IL), which corresponds to the choice lrs = 1 for all r, s, and φ given by

(9).

We now explain the minimization algorithms that are used in each case.

4.1 Half-Quadratic Coupled Minimization Algorithms for PARC-EL Models

In this case, if F is a linear operator, Uparc is quadratic in f for a given l and quadratic in l for a given f , so

that standard half–quadratic techniques that alternatively minimize f and l may be used. The PARC-EL

model can also incorporate potentials that penalize the structure of the auxiliary variable, as in the case of the

first order potentials, so that Φ is given by (10). In this case, the algorithm becomes more complicated, since

now the minimization of l for a given f is itself a half–quadratic minimization problem, so that the solution

of the complete system involves an iterative process in which 3 uncoupled systems of linear equations have

to be solved at each iteration. In practice, however, it is not necessary to perform the complete quadratic

minimization at each step; we have found very good results by alternating just one Gauss–Seidel iteration

for each system at each global iteration. This scheme, with the Geman–McClure potential for ρl in (10) is

labelled PARC-EL+ in the experiments described in section 5.
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4.2 Adaptive Non-Linear Conjugate Gradient Algorithm (ANLCG) for PARC-

IL Models

In this case, Uparc is differentiable, but non-quadratic in f , so a non-linear optimization algorithm needs

to be used to find a minimum. We propose here a modification to the Non-Linear Conjugate Gradient

Algorithm (ANLCG), in which the step size is adaptively varied. Additionally, in order to accelerate the

convergence rate, the algorithm introduces inertia in the descent. The algorithm is:

ANLCG

Set n = 1, β0 = 0, f0 equal to an initial guess, and g0 = ∇U(f0)

Repeat until |gn| < ε:

1. sn = −gn + βnsn−1

2. Compute the step αn such that ensures energy reduction. i.e. U(fn + αnsn) < U(fn) (see below)

3. fn+1 = fn + αnsn,

n = n + 1.

4. gn = ∇U(fn)

5. βn = max
{

0,
gT

n (gn−gn−1)

gT
n−1gn−1

}
,

where ε ∈ (0, 1) is a small positive constant. For computing the step size αn, we propose an adaptive local

line search algorithm, which is inspired in the backtracking line search scheme used in the Quasi-Gauss-

Newton algorithm with an energy reduction constraint [29]. ANLCG algorithm (Step 2) requires that αn is

accepted only if it guarantees a sufficient reduction in the energy U(f), that is, if

U(fn + αnsn) ≤ (1− ε)U(fn),

to achieve this we do the following:

Computation of αn (Backtracking line search algorithm with inertia)
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Initially set a = 0.01,m = 0, and δ small enough (e.g. δ = 10−4 ).

2.1 αn = a

2.2 While U(fn + αnsn) > (1− αnδ)U(fn)

αn = αn/c1, m = 0

2.3 m = m + 1

2.4 if m > c2

a = c3αn, m = 0

else

a = αn

This algorithm may be understood as follows: if the computed step length, αn, decreases sufficiently

the energy, then αn is accepted; otherwise, the step length is reduced by a factor of 1/c1. The inertia is

introduced by counting the number of consecutive iterations, m, such that the same value of α was accepted.

The inertia prevents α being too small. As the method performs an inexact line search (the optimum α is

not computed in each iteration), β (step 5 in ALNCG) is computed using the Polak-Ribière formula with

restart.

Other algorithms for computing α (with the minimum size requirement), are based on the iterative

estimation of the minimum of a quadratic interpolation along the search direction. However, this involves

the additional computational cost of evaluating the energy, or the gradient [29] [30]. On the other hand,

the Gauss-Newton algorithm requires to compute the product of the approximated Hessian and the gradient

vector [29], which is also computational expensive. In the case of the PARC-IL, we observe that although the

number of iterations are reduced with the use of better line search algorithms, the resulted computational

time is larger than the one obtained using the strategy proposed here.

Empirically, we have found that the values of parameters c1 = 2, c2 = 5 and c3 = 3 and the initial step

size a work properly. Note that since αn ensures that the energy decreases at every iteration, the convergence

and stability of algorithm ANLCG are automatically guaranteed.
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5 Experiments

In this section we present the results of experiments (with both synthetic and real data) that demon-

strate the performance of the ARC–based methods presented above, and compare it with that of classical,

regularization–based EPR techniques.

5.1 Comparison with the half-quadratic second order model

The first experiment is a comparison of the performance of the SARC-G models with respect to other first

order EPR models: in figure 4, row (a) we show the synthetic test image (first column) and the noise

corrupted image (second column). The test image was designed so that it includes the following kind

of regions: piecewise constant (delimited by first order discontinuities); piecewise constant slope regions

(delimited by second order discontinuities) and smooth (non-planar) regions. The data were normalized to

the interval [0,1] and corrupted with uniform noise with amplitude equal to 0.2, the MSE for the noisy data

is 1.33× 10−2. The image dimension is 32× 256 pixels. Row (b), shows the reconstruction computed with

the WSS model. The potential function used corresponds to the one reported in [31]. This potential has

been extensively used and has demonstrated its superior performance with respect to other first order EPR

potentials (see [13] [16]). As one can see, in spite of the fact that the regions with constant and smooth

changes in the slope are reconstructed with an acceptable quality, the gray level steps are over-smoothed. The

results of row (c) correspond to the convex potential better evaluated in [12]. This potential corresponds

to the Huber’s M-Estimator [6][32]. We can note that convex potentials have a tendency to reduce the

dynamic range of the jumps producing a blurring effect[12]. Row (d) shows the results computed with the

potential reported by Teboul et al. [26]. This algorithm improves the quality of the first order discontinuities

by robustly penalizing the gradient of the auxiliary variables. Finally, results in row (e) correspond to the

SARC-G model. The MSE for the restoration in rows (b)-(e) are 9.6 × 10−4, 6.5 × 10−4, 5.1 × 10−4 and

4.7× 10−4, respectively. One can note that first order EPR techniques introduce edges at the regions with

high slope, this effect being observed also with the SARC-G potentials.
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Figure 5 shows the restorations and auxiliary variables computed with second order potentials for the

data used in figure 4. Row (a) shows the results for the second order model reported in [5]. A convex version

of this second order potential is reported in [33]. Images in row (b) corresponds to the results using the

potential corresponding to equations 9.14 in [24]. One can appreciate that in both cases, the reconstructed

images present ramps in first order discontinuities, where there should be jumps. Other formulations for

anisotropic diffusion presented in [24] introduce overshoots at the edges and promote edges in the ramps

with high gradient. Rows (c) (d) and (e) show the reconstructions computed with the proposed PARC-EL,

PARC-EL+ and PARC-IL models, respectively. The auxiliary variable l in PARC-EL+ shows clearly high

order discontinuities between regions with almost constant slope. The MSE for the restorations in rows

(a)-(e) are 6.65× 10−4, 14.9× 10−4, 5.01× 10−4, 4.8× 10−4 and 4.1× 10−4, respectively. PARC potentials

are slightly winners in terms of the MSE, but they are the clear winners in a visual inspection of the results.

As one can note, PARC potentials reconstruct the three different kinds of regions with high quality.

In our experiments, PARC models also have shown better performance for low signal to noise ratios.

Figure 6 shows the computed restorations for very noisy data. Row (a) shows the corrupted image with

uniform noise with amplitude equal to the dynamic range of the data. Row (b) shows the restored and

auxiliary variable computed with the weak thin plate model (WTP) (same method than in row (a) of figure

5). Row (c) shows the result computed with the potential reported by Proesmans et al. [24]. Rows (d),

(e) and (f) show the results computed with PARC-EL, PARC-EL+ and PARC-IL, respectively. The MSE

for the reconstructions in the rows 6-(a) to 6-(f) are summarized in table 1. Figure 7 shows the profiles

corresponding to the center row for the images in Fig. 6. From these experiments one can conclude that, for

images corrupted with moderated noise, the PARC-IL model produces sharper restorations than PARC-EL

or PARC-EL+. However, for low SNR, the restorations with PARC-EL+ are better. In subsection 5.4, we

discuss the criteria for choosing the parameters of the PARC models.
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5.2 Restorations of real Images

In order to illustrate the performance of the second order models, we performed the following experiment with

a real test image. In Figure 8, panel (a) is shown the cameraman picture (256× 256 pixels) corrupted with

Gaussian noise with σ = 20% of the dynamic range of the original image (which was previously normalized

to [0, 1]). Rows (b) to (f) show the computed filtered images and edges. The summary of these results is

presented in table 2. Regardless of the MSE, one can see that the results computed with the PARC models

present best restorations and sharp edges. In this experiment, all the methods were implemented using only

vertical and diagonal cliques. The used computer was a pentium III at 800 MHz. See subsection 5.4 for a

discussion about the criteria for choosing the parameters of the PARC models.

5.3 Anisotropic Diffusion based on PARC potentials

In many cases, the best value for the regularization parameter λ in Eq. (14) is not known in advance,

and must be determined in a trial and error basis. In these cases it is often better to use a generalized

anisotropic diffusion scheme, as in Refs. [24][27] [34], so that the time itself (i.e., the iteration number) acts

as a regularization parameter, which may then be fixed interactively. A PARC–based anisotropic diffusion

takes then the form:

f t+1
r = f t

r + α
∂

∂fr
Ud

(
f t

)
(15)

where Ud is computed from (14), dropping the data term. In the PARC-IL case, we get:

Ud(f, l) =
∑

q,s∈Nr

|∆+fr − φ(∆+fr)− (∆−fr − φ(∆−fr))|2 (16)

with φ given by (9). The step size α in (15) is chosen such that:

Ud

(
f t+1

) ≤ Ud

(
f t

)
.

Thus, we compute α in at each iteration using the backtracking algorithm with inertia presented in section

4.2. Figure 9 show images of a sequence computed with this method. f0 corresponds to the cameraman

picture corrupted with Gaussian noise with σ = 5%.
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5.4 Parameter Selection of the Models PARC

In the experiments presented, the parameters for each method were empirically selected, so that in each

case the best result was obtained. In the experiments with the synthetic images (figures 4, 5 and 6), we

chose a large value for the smoothness parameter, λ, given our prior knowledge about the smoothness of

the solution. This smoothness parameter was chosen small for the cameraman picture because we expect

a larger variation in the regions surrounded by edges. The µ parameter penalizes the detection of edges;

therefore, µ is larger with respect to λ in the synthetic image than in the cameraman, where more edges are

expected. In the case of PARC-EL+, the µ parameter is chosen slightly larger than in PARC-EL, in order

to compensate for the hysteresis effect of the line potentials.

6 Conclusions

We have presented a new model for edge-preserving regularization. This model is based on the physical

analogy of adaptive rest condition potentials (ARC), which are given by the product of a function φ of the

image gradient times an edge indicator variable l. In order to focus the paper on the characteristics of the

ARC potentials, we dealt with the problem of restoring noisy images, but their use can be extended to other

image processing and computer vision problems as well. We showed that, for particular choices of φ and l,

the first order ARC model is equivalent to the well known adaptive weak spring model, but in the general

case, one gets a new algorithm that exhibits a better behavior, and, more importantly, that can naturally be

extended to generate second (and higher) order potentials; we called these potentials the thin plate model

with adaptive rest condition (PARC). These PARC potentials have the property of automatically changing

their behavior to a first order EPR potential at the edges (steps in the gray level) of the image. As a result,

regularized cost functionals based on the PARC model are more stable and perform a better restoration of

edges and smooth regions, because PARC potentials extend the definition of smoothness to include regions

with almost constant slope.

We introduced two kinds of PARC potentials: the PARC with explicit line process (PARC-EL) and the
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PARC with implicit line process (PARC-IL). We found that these families have specific advantages:

PARC-EL potentials generate a pair of coupled systems (in general, linear for the restored image and

non-linear for the auxiliary variables) that can be alternatively minimized. A special case results from

selecting a coupled quadratic potential; in such case the resulting coupled systems are linear and can be

efficiently minimized (in our case, we used the Gauss-Seidel algorithm in an alternated scheme). This model

can incorporate potentials that penalize specific configurations of the auxiliary variable (for example the

thickness of the edges; see [13, 26, 27] for more details).

The experiments have shown that (in general) one obtains better reconstructions with the PARC-IL model

although at a higher computational cost. However, if the line enhanced process is applied (PARC-EL+) the

algorithm becomes more robust when processing images with low SNR.

An interesting open theoretical problem is to determine the precise relation between PARC-EL and

PARC-IL potentials, as has been found in the case of WSS models.
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Tables

Table 1. Summary of the results corresponding to figure 6.

ROW METHOD MSE (×10−4) Parameters

6-(b) WTP 321.28 λ = 50, µ = 1/25

6-(c) Proesmans et al. 157.21 λ = 50, µ = 1/50, k = 1/1e6

6-(d) PARC-EL 99.01 λ = 1000, µ = 1/50

6-(e) PARC-EL+ 35.75 λ = 1000, µ = 1/300, γ = 0.1, kl = 1/50

6-(f) PARC-IL 48.56 λ = 1000, k = 1/100, ε = 0.05

Table 2. Summary of the results corresponding to figure 8.

ROW METHOD MSE (×10−4) Time (secs.) Parameters

8-(b) WTP 44.72 190 λ = 10, µ = 1/20

8-(c) Proesmans et al. 42.33 80 λ = 10, µ = 1/50, k = 1/1e6

8-(d) PARC-EL 40.50 62 λ = 4, µ = 1/35

8-(e) PARC-EL+ 43.21 82 λ = 4, µ = 1/30, γ = 0.1, kl = 50

8-(f) PARC-IL 43.33 124 λ = 70, k = 1/100, ε = 0.05

20



Figure Captions

Figure 1. Cliques with triads of pixels.

Figure 2. A typical rest condition φl (solid line) and the residual error t = fr − fs (doted line). (b)

ARC-Potential corresponding to |t− φl|2, with φl plotted in panel(a). Doted line: quadratic potential t2.

Figure 3. Filtered images with a rest condition that combines an indicator variable l and a function φ (t)

given by (9). (a) Original image. (b) Noisy observations. (c) and (d) Filtered image and edge map obtained

with the SARC-G model. (e) and (f) Corresponding results obtained with the WSS model (i.e. φ (t) = t).

Figure 4. Synthetic real image (left column) and corrupted noisy data test image (right column). (b)-

(e) Reconstructions computed with the first order models, potentials: Geman-McClure, Huber (convex),

Teboul and SARC-G, respectively. The corresponding edge variables are shown in the right column.

Figure 5. Computed reconstructions and auxiliary variables corresponding to the data in panel 4-(a). (a)

Weak plate potential. (b) Proesmans et al. potential. (c) PARC-EL. (d) PARC-EL+. (e) PARC-IL. The

corresponding edge variables are shown in the right column.

Figure 6. Filtering of Low SNR images. (a) Corrupted with uniform noise with amplitude equal to 100% of

the dynamic range. (b) Weak plate potential. (c) Proesmans et al. potential. (d) PARC-EL. (e) PARC-EL+.

(f) PARC-IL. The corresponding edge variables are shown in the right column.

Figure 7. Rows (a)-(f): plots of the center rows of the images in left column in Fig. 6. (g) Ground

truth. The profiles were scaled for display purposes.
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Figure 8. Cameraman picture corrupted with gaussian noise σ = 20%. Reconstructions computed with

(b) WTP, (c) Proesmans et al. potential, (d) PARC-EL, (e) PARC-EL+ and (f) PARC-IL. The 2 rightmost

columns show the corresponding edge maps.

Figure 9. Images of a sequence computed with an anisotropic diffusion algorithm based on PARC–IL poten-

tials.
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