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Abstract— In this paper, we present a new formulation for
recovering the fiber tract geometry within a voxel from diffusion
weighted MRI data, in the presence of single or multiple neuronal
fibers. To this end, we define a discrete set of Diffusion Basis
Functions. The intra-voxel information is recovered at voxels
containing fiber crossings or bifurcations via the use of a linear
combination of the above mentioned base functions. Then, the
parametric representation of the intra-voxel fiber geometry is a
discrete mixture of Gaussians. Our synthetic experiments depict
several advantages by using this discrete schema: the approach
uses a small number of diffusion weighted images (23) and
relatively small b values (1250 s/mm2), i.e., the intra-voxel
information can be inferred at a fraction of the acquisition
time required for datasets involving a large number of diffusion
gradient orientations. Moreover our method is robust in the
presence of more than 2 fibers within a voxel, improving the state-
of-the-art of such parametric models. We present two algorithmic
solutions to our formulation: by solving a linear program or by
minimizing a quadratic cost function (both with non-negativity
constraints). Such minimizations are efficiently achieved with
standard iterative deterministic algorithms. Finally, we present
results of applying the algorithms to synthetic as well as real
data.

Index Terms— DW-MRI, HARDI, Diffusion basis functions,
Axon fiber pathways, Intra–voxel, Basis Pursuit.

I. I NTRODUCTION

W ATER diffusion estimation has been used extensively
in recent years as an indirect way to infer axon fiber

pathways and this in turn has made the estimation of fiber
connectivity patterns in vivo; one of the most challenging goals
in neuroimaging. For this purpose, a special Magnetic Res-
onance Imaging (MRI) technique named Diffusion Weighted
MRI (DW-MRI) is used. This imaging technique allows one to
estimate the preferred orientation of the water diffusion in the
brain which, in the white matter case, is usually constrained
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along the axon orientations. This information is very useful
in neuroscience research due to the changes that occur in the
neural connectivity patterns with neurological disordersand,
in general, with brain development [1], [2].

The water diffusion angular variation has been summarized,
in most medical applications, by Diffusion Tensor Magnetic
Resonance Images (DT–MRI) [3], [4]. In [5], Stejskal-Tanner
presented a mono-exponential model of the decayed MR
signal. Afterwards Basseret al. [3], developed the DT model:

S(qk, τ) = S0 exp(−qT
k Dqkτ) + εk, (1)

where the anisotropic diffusion coefficients are summarized
by the(3× 3) symmetric positive definite tensorD, S0 is the
measured signal in the absent of a diffusion magnetic field
gradient (a standardT2 image [1]), the attenuation factor on
the observed DW–MR signalS(qk, τ) is determined by the
gradient diffusion vectorqk, the tensorD and the effective
diffusion time τ . The gradient diffusion vectorqk = γδGgk,
where γ is the gyromagnetic ratio,δ is the duration for
which the directional magnetic gradient is applied,G is the
magnitude of the applied diffusion magnetic field gradient and
the unit vectorgk = [gkx, gky, gkz]

T
k=1,...,M indicates thek–

th orientation of the diffusion–encoding gradients. In model
(1), εk represents noise with Rician distribution, see [6] and
the Appendix. A standard protocol for indirectly measuring
water diffusion consists in acquireM three-dimensional (3D)
images along independent orientationsgk. A convention is to
let b = (γδG)

2
τ and thus makingb (denoted ins/mm2) a

constant directly proportional to the magnitude of the diffusion
vectors and the acquisition time.

Given S0 and at least six measurementsS(qk, τ)k=1,...,6,
the DT is estimated by a Least Squares (LS) procedure [3], [7].
The DT can be visualized as a 3D ellipsoid, with the principal
axis aligned with the eigen–vectors,[ê1, ê2, ê3], and scaled by
the eigen–values,λ1 ≥ λ2 ≥ λ3. Such eigen–values indicates
diffusivity along the eigen–vectors. Thus,̂e1 is named the
Principal Diffusion Direction (PDD) and is associated with
the orientation of the fibers in the case of a single fiber
bundle within a voxel. Therefore, the partial volume effect
limits the capacity of determining the fiber orientations: the
observed DT at voxels where two or more fibers cross, split,
or merge is the average of the diffusion in the constituent
fiber orientations. Thus the DT inadequately represents such
an intra-voxel information [8]–[10].

On the other hand, the computation of non-parametric dif-
fusivity coefficients with High Angular Resolution Diffusion
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Images (HARDI) fails to estimate correctly 2 or more fiber
orientations (as the Apparent Diffusion Coefficient (ADC)
Map [11]), as is deeply discussed in [11]–[14].

In this work we use the Gaussian Mixture Model (GMM)
as a more plausible model for the decayed signal phenomenon
[12]:

S(qk, τ) = S0

L
∑

j=1

βj exp(−qT
k Djqkτ) + εk; (2)

where the real coefficientsβ ∈ [0, 1] indicate the contribution
of the tensorDj (the fiber oriented withDj) to the total DW

signal, i.e.,
(

∑

j βj = 1
)

. The GMM explains quite well the
diffusion phenomenon for two or more fibers within a voxel
under the assumption of no exchange between fibers, i.e., the
signals are independently added. The GMM was explored by
Basseret al. in [15]; they concluded that its solution requires
a large number of measurementsS(qk, τ), and remarked
the numerical problems because of the non-linearity. Frank
[16] expanded his Spherical Harmonic Decomposition (SHD)
method to theN–fiber case by using the model (2). Parker and
Alexander [17] used the Levenberg-Marquardt algorithm to fit
the GMM. RecentlyÖzarslanet al. [14] used the GMM to
perform an important refinement in their Diffusion Orientation
Transform (DOT) for computing a diffusion displacement
probability. See [1] for more details about model in (2).

However, in the best of our knowledge, the GMM has not
been efficiently fitted to the DW-MR signals. We describe
below the better implementations for this aim. Tuchet al. [12],
[13], proposed a non–linear LS method for solving (2). That
approach fixed the eigen–values for the diffusion tensors and
solves the GMM for the number of tensors,L, the coefficients,
β, and the tensor’s orientation angles. The drawbacks of the
method are: the large number of required diffusion images{S}
that notably increases the acquisition time (for instance,126
diffusion 3D–images are used in [12], [13] and more recently
54 measurements in [17]) and the algorithmic problems related
to the non-linearity of (2). Thus, multiple restarts of the
optimization method are required for preventing the algorithm
from settling in a local minimum. Note that it is necessary to
choose between fit a single Gaussian or a GMM, or to fit both
and then choose the one which explains better the DW-MR
signals. Furthermore, no stable solution has been reportedfor
more than 2 fiber bundles, i.e. forL > 2 (see [12] and [13,
Chap. 7]).

Another interesting model–based approach is reported in
[18], by assuming that the observed diffusion signal results
from the hindered (extra–axonal space) and the restricted (intra
axonal space) water diffusion. Although such a model was
extended to a multi-fiber case, the above explained model–
selection problem is present.

Q–space method is an alternative non-parametric repre-
sentation. This method is based on the Diffusion Spectrum
Imaging (DSI) [19]–[21], by exploiting the Fourier Transform
(FT) relationship from which an Ensemble Average Probability
(EAP) is computed. The EAP [13], [22] is defined as
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Fig. 1. 2D Schema of DBFs. (a) Continuous-blue line shows the DBFs
generated by an uniformly distributed tensor basis with cardinality N = 5;
the doted-red line shows the signalS(q) generated by an arbitrary DT. (b)
Schema for a two fiber case, the dotted-red line shows theS(q, τ) measured
signals for the two arbitrary tensors, the half-addition ofboth signals are
shown in the cross-marked black line. See text for details.

P (r) = S−1
0

∫

S(q, τ)e−iqT rdq = F−1 [E(q, τ)] , (3)

where the displacement vectorr = re−r0 defines the particle
displacement (located atr0 at the beginning and atre at the
end of the experiment),F−1 denotes the inverse FT with
respect to the diffusion vectorq, andE(q, τ) = S(q, τ)/S0.
The non-parametric DSI can represent several fibers within
the voxel, although the large number of required DW images
makes the method impractical for medical purposes. Recent
methods for recovering EAP, as Q–Ball [23] , Persistent
Angular Structure (PAS) [24] or DOT [14] have demonstrated
good results with a smaller number of diffusion images; for
instance, in [24] are used 54 measurements. However it is
desirable to diminish this number for practical purposes. A
drawback in the previous methods is that, for estimating
the intra–fiber orientations, the maxima of the EAP need be
computed as a postprocessing [13], [14], [22], [23].

Recently, spherical–deconvolution techniques explain DW–
MR signals as the convolution of a single fiber response with
the Fiber Orientation Distribution (FOD). FOD is represented
with a linear basis for spherical functions in [25], [26] and
in [27] was proposed a maximum-entropy formulation of
the spherical deconvolution (MESD) problem with a non–
linear deconvolution kernel (a generalization of PAS method).
Although [27] presented better results, the method does not
guarantee the attainment of the global minimum and requiresa
significant computational effort. In [28] it is proposed a simple
axial symmetric model of diffusion, where the angular distri-
bution of fibers is computed by a deconvolution process and by
assuming constant, both, mean diffusivity and perpendicular
diffusivity in all the white matter (a similar assumption was
used in [26]).

In most previous works [12], [14], [23], [25], [26], [28],
large b-values (larger than 2000s/mm2) or large datasets
are required for recovering good angular resolution, which
is somewhat impractical in a clinical setting. In a recent
article [10], a regularization-based approach was proposed
for recovering the underlying fiber geometry within a voxel.
That approach reconstructs the observed tensors as a linear
combination of a given tensor basis. However the multi-
tensor model is computed from previously fitted DTs (instead
of the raw measurementsS(qk, τ)) and thereby important
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Fig. 2. Normalized diffusion weighted signalE(q) for a base Tensor̄Tj

and its corresponding EAP. The black axis denotes the PDD.

information is lost.
In this paper, a novel method for reconstructing the intra–

voxel information is presented. We note that present work
extends previos conference papers [29], [30]. The method is
based on the solution of a discrete version of the parametric
model in (2). Synthetic experiments for a realistic situation
demonstrate the advantages of our method: the intra-voxel
information for more than 2 axon fibers can be inferred at
a fraction of the acquisition time with respect to methods
that require a larger set of DW-MR images (M ≥ 54) or
large b values (b ≥ 2000 s/mm2). We present two variants
of our method: one based on the minimization of a Linear
Programming (LP) problem (which is computationally more
efficient) and another based on the minimization of a regu-
larized quadratic cost function (which improves the quality of
the results for noise corrupted data), both with non-negativity
constraints.

II. T HE DIFFUSION BASIS FUNCTIONS

In this section we propose a discrete diffusion model based
on the GMM in (2). In order to simplify the solution of
such a model, we propose to use a set of Diffusion Basis
Functions (DBF){φ}, which are generated from a tensorial
basis as the one used in [10]. Such a tensor basis is defined
as a fixed set of tensors̄T with cardinality equal toN .
The individual base tensors̄Tj are chosen, such that, they
are distributed as uniform as possible in the 3D space of
orientations, and their anisotropy is chosen according to prior
information about longitudinal and transversal fiber diffusion.
For the human brain, it is reasonable to assume that the
anisotropy and magnitude of the water diffusion for a single
fiber in white matter is almost constant in all the volume
[12], [26], [28], we will discuss this topic in section VIII.
For instance, one could expect that longitudinal fiber diffusion
is about five times than the transversal one:[λ1, λ2, λ3] ≈
[1×10−3mm2/s, 2×10−4mm2/s, 2×10−4mm2/s] [1], [13].
However, these values could change between patients, so that,
we instead recommend setting the basis eigen–values accord-
ing to the procedure described in section IV-A.2. By fixing
the basis eigen–values, we reduce the degrees of freedom for
the problem. Thus, we propose to model the DW–MR signal,
at each voxel, with:

S(qk, τ) =
∑N

j=1
αjφj(qk, τ) + ηqk

+ εk; (4)

with αj ≥ 0; where we define thej–th DBF by:

φj(qk, τ) = S0 exp(qT
k T̄jqkτ), (5)

where,φj(qk, τ) is understood as the coefficient of the diffu-
sion weighted signal for the diffusion vectorqk due to a single
fiber modelled by the base tensorT̄j . The non-negativeαj

denotes the contribution of thej–th DBF {φj(qk, τ)}k=1,...,M .
Note that the basis{φ} is incomplete, because the available
orientations are a discretization of the 3D space (see section
VIII). So that, a residualηqk

in the signal representation
is observed. By choosing a basis with a large cardinality
we can diminishηqk

, until it becomes insignificant enough,
and then neglected for practical purposes.As can be noted,
an advantage in our model (4) is that the unknowns are
the α–coefficients and theφj(qk, τ) coefficients can be pre-
computed. In fact, we need to compute the best linear combina-
tion of DBFs that reproduce the signalS. This is illustrated in
the 2D schema shown in Fig. 1. Panel 1(a) shows a single fiber
case where we compute theαj values that, given a set of 5
DBFs (continuous-blue lines) reproduce theS(qk, τ)k=1,...,M

measurements (dotted-red line) as accurately as possible;for
this particular case, we expectα3 ≈ 1. On the other hand,
for the two fiber case (Panel 1(b)), theα coefficients should
reproduce the addition (plus-sign black line); in this case, we
expectα3 ≈ α5 ≈ 0.5. Note that in our approach, we do not
work with the schematized continuous measurements in Fig.
1, but with a discrete set ofM samples (measurements).

Although in this work we use the free–diffusion model in
(5) for setting the DBF, it is possible to use another diffusion
model as the cylinder restricted diffusion model proposed in
[31], see discussion in section VIII.

By substituting our observation model (4) in the EAP in
(3), we obtain:

P (r) = S−1
0

N
∑

j=1

αjF
−1 [φj(q, τ)] . (6)

As the DBF is a Gaussian (according to the free–diffusion
model) and the FT of a Gaussian results in a Gaussian
(

F [g((x),Σ)](w) ∝ g(w,Σ−1)
)

, then in our case, the EAP
is a GMM with peaks oriented along the PDDs of the
corresponding base tensors. Moreover, the peaks inP (r) are
determined by the largestαj and therefore also the fiber
orientations. This is illustrated in Fig. 2 where we show for
a given base tensor the synthetic DW signal and the EAP
computed with (3). As can be seen, the maxima of a single
EAP in the GMM corresponds with the PDD of the associated
base tensor.

III. N UMERICAL SOLUTIONS FOR DBF MODEL

In this section we present two procedures for estimating the
coefficientsα in (4). We first introduce the notation that will
be useful in the following. The observation model (4) can be
written in matrix form as

S = Φα + η; (7)
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with αj ≥ 0,∀j; Φ is anM×N matrix where thej–th column
corresponds to thej–th DBF (Φj = [φj(qk, τ)]k=1,...,M ) and
S ∈ ℜM is the vector composed by all the DW signals. Note
that because of our requirements, the matrixΦ is rectangular:
we want to acquire as few as possibleS signals and to recover
solutions with a high angular resolution; for instance we use
N = 129 DBFs andM = 23 DW-MR images. Consequently,
we have more unknowns,α’s, than data,S’s; the problem (7)
is ill-posed and should be constrained or regularized in order
to compute a meaningful solution.

In the following subsections we introduce two algorithms
for computing the bestα vector by means of introducing prior
information about desired features in the solution.

A. Basis Pursuit Algorithm

Compact signal representation is a well studied problem by
signal processing researchers [32]–[34]. In that context,it is
convenient to represent a given signal by a set of coefficients
associated with elements of a dictionary (or base) of functions.
The elements of such a dictionary are calledatoms(or basis
functions). The idea is to select from the dictionary theatom
decomposition that best match the signal structure, using a
criterion for choosing among equivalent decompositions. A
commonly used criterion is the basic principle of sparsity,i.e.,
to represent the signal with the fewestatomsas possible. Ad-
ditionally, a desirable feature is to achieve the decomposition
in a computationally efficient way.

In our notation, Eq. (7) is the mathematical model for
representing the decomposition of the signalS ∈ ℜM as a
linear combination ofatomsΦj in a dictionaryΦ.

In [32], the Basis Pursuit (BP) technique was proposed for
solving the problem (7), i.e., for computing theα coefficients.
Based on the BP framework, we propose to compute a solution
to (7) by means of an LP problem of the form:

min ‖α‖1 =
∑

j αj = êT α

subject to Φα = S,

αj ≥ 0 , ∀j, (8)

where ê is a vector with all its components equal to one
(we can use just̂eT α instead of‖α‖1 since the sign of the
components ofα is already constrained). Because of the noise
and given thatΦ is an uncomplete dictionary, the signal recon-
struction constraint in (8) could not to be fully accomplished,
resulting in an over-constrained LP problem. Therefore an
appropriate minimization procedure is required: an interior-
point method which tries to minimize the magnitude of the
residual vectorηα = Φα−S (see [35]). In our experiments we
used the powerful primal-dual predictor-corrector algorithm by
Merhotra (see [35], [36]) that computes the results in a fraction
of the computational effort required by other less-sophisticated
interior point methods. The BP method have shown, in general,
a better performance with respect to other pursuit techniques
as, for instance, Matching Pursuit (MP) [34]. The BP method
represents with fewα coefficients theatomsthat best fit the
local structures.

B. Spatial and Coefficient-Contrast Regularization

The adverse effect of noise or a limited number of mea-
surementsS(qk, τ) could possibly lead most methods to miss
the original fiber directions. In such situations, the BP method
could erroneously estimate theα coefficients: they may do not
correspond to the correct axonal fiber orientations or may not
indicate the right number of fibers in each voxel. In such a
case, the use of a spatial regularization diminishes the noxious
noise effect [37], [38]. In this work, in order to reduce such
an adverse effect, we propose to filter theα coefficients and
therefore to introduce prior knowledge about the piecewise
smoothness assumption on the axon fibers orientation and for
promoting high contrast in theα–coefficients.

In our notation, a voxel position is denoted byr = [x, y, z],
such thatαjr is the αj–th coefficient at ther voxel position
andNr denotes the second order spatial neighborhood ofr:
Nr = {s : |r − s| < 2}. Therefore theαjr coefficient is
implicitly associated with the fraction diffusion in a given ori-
entation (i.e. along the PDD of the associated base tensorT̄j),
and the spatial smoothness of theαj layer (∀r) is intimately
related with the fiber’s spatial smoothness. Moreover, if an
axon bundle have a trajectory close parallel to thej-th PDD,
then we expect a large value for theαj coefficient. Thus, by
smoothness, the neighbor voxels along the orientation of the
fiber should have itsαj coefficient large too. Similarly, such
a behavior is expected for the close-to-zero coefficients too:
if a fiber is not present in a position, then it is not likely to
detect its prolongation along its orientation. The above prior
knowledge is coded in the regularization term [10]:

Us (α, r) =
∑

s:s∈Nr

∑

j

wjrs (αjr − αjs)
2
;

which penalizes the difference between neighboring coeffi-
cients along the underlying fiber orientations. Such a process
is controlled with the anisotropic weight factorswjrs =

(s − r)
T

T̄j (s − r) / ‖s − r‖4.
Additionally, we promote high contrast in theα–coefficients

to distinguish the representativeα–coefficients (orientations)
from the noisy ones and to compute a sparse solution. Thus
we force eachαjr coefficient to be different from the arith-
metic meanᾱr =

∑

j αjr/N , by minimizing Uc (α, r) =

−
∑

j (αjr − ᾱr)
2, see [10]. Finally, the cost function that we

propose to minimize is:

U(α, r) = ‖S − Φαr‖
2
2 + µsUs (α, r) + µcUc (α, r) , (9)

subject toαjr ≥ 0, where the non–negative control parameters
µs and µc allow us to tune the amount of regularization.
The potentials were chosen in order to keep the cost function
(9) quadratic. Thus by equaling to zero the partial derivative
with respect to eachαjr results in a constrained linear sys-
tem. It can easily be solved by using a Gauss-Seidel (GS)
scheme [39] (used in our experiments because of its efficient
use of memory) or a conjugate gradient technique which is
time efficient [35]. The non-negativity constraint over theα
coefficients is accomplished along with the minimization with
a particular case of the well known Gradient Projection: the
negativeαjr values are projected to zero in each iteration
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[35]. The tuning of the spatial regularization parameter is
quite simple: the largeµs value eliminates noise but a too
large value over–smooths the recovered solution. We found
that, in our experiments,µs ∈ [0.5, 3.0] produces an adequate
noise reduction. As was explained in [10], theµc value is
gradually introduced because it is important to perform the
coefficient–contrast regularization once we have an intermedi-
ate regularized solution: for each iterationk = 1, 2, . . . , n, we
set µ(k)

c = µc

(

1.0 − 0.95100k/n
)

that increases toµc in the
approximately90% of the total number of iterationsn, with
µc ∈ [0.1, 0.5] for all our experiments.

IV. I MPLEMENTATION DETAILS

In this section we describe important implementation details
to be taken into account for obtaining high quality results.

A. Designing the Tensor Basis

There are two main aspects: (i) the eigen–vector orientations
and (ii) the eigen–values.

1) Orientations: The basis orientation set depends on a
compromise between the desired resolution of the results and
the computational effort. The procedure for obtaining the 3D
balanced orientations is exactly the same as that of selecting
the acquisition DW orientations in the MR machine [40], i.e.
one can use the almost uniformly distributed directions given
by then-fold tessellated icosahedron hemispheres, or by using
an electrostatic repulsion model [41]. In particular, we used
recursive tessellations of a square pyramid (having equilateral
triangles as sides) that results in{3, 9, 33, 129, 513, 2049,. . .}
almost uniform orientations for{0, 1, 2, 3, 4, 5,. . .} successive
tessellations, respectively. We usedN = 129 orientations in all
our experiments.Note that in our approach, the high angular
resolution is in the tensor basis but not in the acquired signals
S(q, τ).

2) Eigen–Values: As was mentioned in section II, we
can make use of prior information about longitudinal and
transversal diffusion. As the diffusion parameters may change
between patients or by scale-factor effects in the signal, then
it is important to determine the best set of parameters for each
experiment. In present work we perform experiments using rat
brain data. The optimal parameters were determined by fitting
the standard DT model to the voxels in thecorpus callosum,
a well known region with high Generalized Anisotropy (GA)
[42] and relatively free of crossing fibers. Then, the mean
values of the fitted DTs are used for designing the base;
in particular we found[λ1, λ2, λ3] = [6 × 10−4mm2/s, 2 ×
10−4mm2/s, 2 × 10−4mm2/s].

We do not constrain
∑

j αj = 1 because (assuming thatS0

is accurate enough) a well designed basis will automatically
satisfy it. A summation different enough from 1 indicates error
in the DBF design; in our experiments, for such a voxelwise
summation, we obtained a mean value equal to0.96.

B. Computation of a Continuous Solution

The formulation presented in section II produces a discrete
set of PDDs that can be conveniently post-processed for

i

i+1

(a) (b)

Fig. 3. Example of a single fiber case. (a) Discrete solution (cluster)
composed with two DBFs. (b) Level curves of‖Φα − S‖2 for αi (X-axis)
andαi+1 (Y-axis) coefficients, withαk = 0, ∀k 6= i, j. See text for details.

obtaining refined continuous orientations with smaller angular
errors. Assuming the 2D example shown in Fig. 3, the BP
approach gives us a solution with minimum‖α‖1 and min-
imum magnitude of the errorrα = Φα − S (as shown in
the Panel 3(b)), the maximum diffusion orientation (plotted
in a dotted-red line), lies at an intermediate value between
the orientation of the two closest base tensorsT̄i and T̄i+1

(continuous–lines). For computing the continuous solution we
group the orientations inclusters and we assign an unique
orientation to eachcluster. A cluster Ω = {vl} is a set of
vectors associated with the base tensors that contribute tothe
GMM (their corresponding coefficients areαl > 1 × 10−2)
and with a transitive neighborhood relationship. We denoteby

Nvl
= {vj = PDD(T̄j) : elj ∈ E} ∪

{vj = −PDD(T̄j) : vT
j vl ≤ max

elk∈E
vT

k vl}

the set of neighbor vectors tovl; whereE is the set of edges
in the tessellation structure andPDD(T̄l) is the first eigen-
vector of the base tensor̄Tl. The cluster centroidQ̄ ∈ ℜ3 is
then computed by the weighted summation:

Q̄ =
∑

vl∈Ω

αlvl. (10)

Therefore we obtain a new GMM with continuous DTs (with
eigen–values[λ1, λ2, λ3] and oriented alonḡQ) and mixture
coefficients equal to

∣

∣Q̄
∣

∣.
Due to the high sparsity in theα vector for the discrete

solutions, the processedclusterswere composed in most cases
of two or three vectors.

C. Avoiding Ill-conditioning in Merhotra’s Algorithm

Last iterations of Merhotra’s algorithm could involve to
solve an ill-conditioned problem of the formAx = b, see
[35]. For avoiding such a problem, we modifyA by adding
the valueκ = 5×10−6 to the diagonal when its smallest eigen–
value is less than1×10−3: we solve instead(A + κI)x = b.

D. Fast Convergence

In order to speed up the GS solver for (9), we use the BP
solution as the initial guess forα. Then we eliminate noise by
means of a spatial integration performed by a small number
of iterations of the GS approach.
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(a) S(qk, τ) (b) DS 2 coplanar (c) CS 2 coplanar (d) DS 3 coplanar

(e) CS 3 coplanar (f) EAP for (e) (g) DS 4 coplanar (h) CS 4 coplanar

(i) DS 4 non-coplanar (j) CS 4 non-coplanar (k) DS 5 non-coplanar (l) CS 5 non-coplanar

Fig. 4. Results of noise-free synthetic experiments. The fiber axis are plotted in black. (a) DW signal for 4 non–coplanar fiber orientations,b=1200s/mm2,
Dal = 1 × 10−3, Dtr = 2 × 10−4. (b) and (c) Discrete Solution (DS) and refined Continuous Solution (CS) for 2 coplanar fibers,b=800 s/mm2,
Dal = 6×10−4, Dtr = 2×10−4 (these diffusion parameters are similar to those obtained from the rat brain white matter). (d), (e) and (f) DS, CS and EAP
for 3 coplanar fibers,b=800s/mm2, Dal = 6× 10−4, Dtr = 2× 10−4. (g) and (h) DS and CS for 4 coplanar fibers,b=1350s/mm2, Dal = 1× 10−3,
Dtr = 2 × 10−4. (i) and (j) DS and CS for 4 non-coplanar fibers,b=1200s/mm2, Dal = 1 × 10−3, Dtr = 2 × 10−4. (k) and (l) DS and CS for 5
non-coplanar fibers,b=1000s/mm2, Dal = 1 × 10−3, Dtr = 2 × 10−4.

V. RESULTS ONSYNTHETIC DATA

For showing important features of the signals, all previous
figures were generated usingb=5000 s/mm2 and a high
angular resolution (so that, theS(qk, τ) signal generates
contrasted plots). In real imaging protocols lower values for
previos parameters are preferred. In this section, we show
synthetic results obtained by using only 23 diffusion encoding
orientations, relative smallb values and small ratios between
the longitudinal diffusion(Dal) and the transversal diffusion
(Dtr), see Fig. 4. An example of a realisticS(qk, τ) is
shown in Panel 4(a). Same Fig. shows synthetic noise-free
experiments and demonstrates the capability of our method for
resolving multiple fiber orientations (in yellow parallelepiped)
with a small error. We show the discrete solution and the
continuous solution computed according to the procedure
described in subsection IV-B. The real axis for the maximum
diffusion orientations are plotted as black lines. In Panel4(f)
we show, for illustrative aims, the EAP for the recovered multi-
DT in Panel 4(e), computed with inverse FT of the GMM as
indicated in [8]. We note that the peaks of the EAP (aligned,
as expected, with the PDDs of the recovered multiDTs) corre-
sponds with the axes for the maximum diffusion orientations.
Such EAP peaks are directly determined by the orientation
of DBF with significant α values. Thus, in our approach,
for bunch fiber detection we look for largeα values and the
computation of the EAP is not needed. For computing previous
solutions, the BP solver requires approximately 35 ms per
voxel, implemented in C language, on a modest PC Pentium
IV, 2.8Mhz.

In order to analyze the expected error in real conditions,

(a) θ̄ = 9.21◦ (b) θ̄ = 7.76◦

(c) θ̄ = 6.98◦ (d) θ̄ = 6.47◦

Fig. 5. Simulated crossing fibers, the signals were corruptedwith Rician
noise, SNR = 2.0 (6.02 dB). (a) Solution without regularization (BP based
method). (b), (c) and (d) noise removal effect with the quadratic formulation
and the mean angular errors̄θ. The solution in (d) is over–smoothed because
of a too largeµs value. See text for details.



IEEE TRANSACTIONS ON MEDICAL IMAGING 7

we performed 3D synthetic experiments simulating 3 non-
coplanar fibers within the voxel, oriented with azimuthal
and elevation angles equal to[π/4, π/4], [3π/4, π/4] and
[3π/2, π/4], respectively. In Tables I, II, III and Fig. 6, we
show the computed mean angular error,θ̄, of 100 experimen-
tal outcomes taking into account 4 important variables that
directly affect the solution quality:

1) Noise robustness. TheS(q, τ) signals were corrupted
with Rician noise with an SNR (see the Appendix for
SNR definition) range from 2 (6.02 dB) to 16 (24.08
dB), see Table I.

2) Error in the diffusion basis with respect to the diffusion
parameters in the data. The purpose of this set of
experiments is to evaluate the sensitivity of the method
to deviations in the pre–fixed DBFs with respect to the
real diffusion parameters which change between voxels,
see Table II.

3) Method capability for recovering intra–voxel geometry
with different b-values, see Fig. 6.

4) Sensitivity to changes in the fibers compartment size,
see Table III.

As one can see, the mean angular error,θ̄, is small enough for
a large set of parameter variations. These results improve the
methods of the state-of-the-art. The method in [43] is restricted
to recover only one or two fibers orientations within a voxel,
and reports a mean angular error smaller than 10 degrees for
simulated fibers with anSNR=80 (We note that theSNR is
not defined in [43], so can not be directly compared with our
SNR definition). In our work, we obtained̄θ ≈ 5 degrees for
SNR=6 (15.56 dB), for the 3 fibers case, see Table I. For SNR
≥ 6, our algorithm is capable of yielding high quality results
( θ̄ ≤ 6 degrees) with realisticb values, see Fig. 6.

Fig. 5 demonstrate the spatial and contrast regularization
performance, introduced in section III-B. We simulate a cross-
ing of two fibers with b=1250 s/mm2, Dal = 1 × 10−3

mm2/s, Dtr = 2 × 10−4 mm2/s, SNR = 2 (6.02 dB)
and a 2D tensor basis composed ofN = 30 orientations.
Panel 5(a) shows the noise corrupted recovered solution with
the BP procedure (i.e. without regularization). The resultant
orientation errors are similar to the ones reported by Perrin
et al. [44], whereθ̄ ≈ 30 degrees was reported in a crossing
zone for a realistic phantom and, in our opinion, reveals the
need of introducing a regularization mechanism for dealing
with highly noise data. Panels 5(b),5(c) and 5(d) show the
noise removal effect when our proposed quadratic regularized
method is used. The regularization parameters used in the
experiments were[µs, µc] = [1.0, 0.5], [µs, µc] = [2.0, 0.5]
and [µs, µc] = [3.0, 0.5], for in Panels 5(b), 5(c) and 5(d),
respectively.

VI. RESULTS ONRAT BRAIN DW-MR DATA

Under deep anesthesia, a Sprague Dawley rat was transcar-
dially exsanguinated then perfused with a fixative solution
of 4% paraformaldehyde in phosphate buffered saline (PBS).
The corpse is stored in a refrigerator overnight then the
brain was extracted and stored in the fixative solution. For
MR measurements, the brain was removed from the fixative

TABLE I

MEAN ANGULAR ERROR θ̄ VS. SNR.M = 23 MEASUREMENTS, b = 1250

s/mm2 , DBF PARAMETERS[λ1, λ2,3, N ] = [9 × 10−4, 1 × 10−4, 129],

DIFFUSION PARAMETERS[Dal, Dtr] = [1 × 10−3, 2 × 10−4],

COMPARTMENT SIZESβi = 1/3, (i = 1, 2, 3).

SNR θ̄

2 (6.02 dB) 15.21

4 (12.04 dB) 7.75

6 (15.56 dB) 5.29

8 (18.06 dB) 3.68

10 (20.00 dB) 3.66

12 (21.58 dB) 2.74

14 (22.92 dB) 2.15

16 (24.08 dB) 1.85

TABLE II

MEAN ANGULAR ERROR θ̄ VS. BASIS PARAMETERS. N = 129, M = 23

DIFFUSION MEASUREMENTS, b = 1250s/mm2 , SNR = 6 (15.56DB),

DIFFUSION PARAMETERS[Dal, Dtr] = [1 × 10−3, 2 × 10−4],

COMPARTMENT SIZESβi = 1/3, (i = 1, 2, 3).

λ1 λ2,3

∥

∥T̄ − DDal,Dtr

∥

∥

F
θ̄

8.50 × 10−4 0.5 × 10−4 1.5 × 10−4 5.45

9.00 × 10−4 1.0 × 10−4 1.0 × 10−4 5.77

9.50 × 10−4 1.5 × 10−4 5.0 × 10−5 5.02

1.00 × 10−3 2.0 × 10−4 0.0 5.46

1.05 × 10−3 2.5 × 10−4 5.0 × 10−5 5.11

1.10 × 10−3 3.0 × 10−4 1.0 × 10−4 4.96

1.15 × 10−3 3.5 × 10−4 1.5 × 10−4 5.60
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Fig. 6. Mean angular error̄θ Vs. SNR andb-values.M = 23 diffusion
measurements, tensor basis parameters[λ1, λ2,3, N ] = [9 × 10−4, 1 ×
10−4, 129], diffusion parameters[Dal, Dtr] = [1 × 10−3, 2 × 10−4],
compartment sizesβi = 1/3, (i = 1, 2, 3). See text for details.
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(a) ROI (b) Zoom of(a) (c) ROI

(d) Zoom of(c) (e) ROI (f) GA, FA Maps

Fig. 7. Computed DTs of the GMM from a real rat brain DW-MR set superimposed over the GA axial map. Note several fiber crossings and splits. (f) GA
map, FA map and their difference for the ROI in (a).

TABLE III

MEAN ANGULAR ERROR θ̄ VS. COMPARTMENT SIZES([β1, β2, β3]).

M = 23 DIFFUSION MEASUREMENTS, b = 1250s/mm2 , SNR = 8

(18.06DB), TENSOR BASIS PARAMETERS

[λ1, λ2,3, N ] = [9 × 10−4, 1 × 10−4, 129], DIFFUSION PARAMETERS

[Dal, Dtr] = [1 × 10−3, 2 × 10−4].

compartment sizes θ̄ Mean Recovered[β̄1, β̄2, β̄3]

[0.333, 0.333, 0.333] 3.90 [0.279, 0.283, 0.279]

[0.433, 0.283, 0.283] 7.15 [0.363, 0.220, 0.221]

[0.533, 0.233, 0.233] 14.16 [0.439, 0.186, 0.183]

[0.633, 0.183, 0.183] 19.27 [0.510, 0.150, 0.159]

solution then soaked in PBS, without fixative, for about 12
hours (overnight). Prior to MR imaging, the brain was removed
from the saline solution and placed in a 20 mm tube with
fluorinated oil (Fluorinert FC-43, 3M Corp., St. Paul, MN)
and held in place with plugs. Extra care was taken to remove
any air bubbles in the sample preparation.

The multiple-slice diffusion weighted image data were mea-
sured at 750 MHz using a 17.6 Tesla, 89 mm bore magnet with
Bruker Avance console (Bruker NMR Instruments, Billerica,
MA). A spin-echo, pulsed-field-gradient sequence was used
for data acquisition with a repetition time of 1400 ms and an
echo time of 28 ms. The diffusion weighted gradient pulses
were 1.5 ms long and separated by 17.5 ms. A total of
32 slices, with a thickness of 0.3 mm, were measured with
an orientation parallel to the long-axis of the brain (slices
progressed in the dorsal-ventral direction). These sliceshave
a field-of-view 30 mm x 15 mm in a matrix of 200 x 100.
The diffusion weighted images were interpolated to a matrix
of 400 x 200 for each slice. Each image was measured with 2

(a) (b)

(c) (d)

Fig. 8. Results of regularization in the rat corpus callosum.(a) ROI in
axial GA map. (b) Without spatial regularization (BP based method) by using
M = 23 measurements, the yellow circle indicates a voxel where the noise
and the reduced number of measurements produces an inaccurate result. (c)
With M = 23 measurements and quadratic regularization:µs = 0.50, µc =
0.18. (d) With M = 46 measurements with the BP method. Note that the
result obtained in (c) and (d) are equivalent for all practical purposes.

diffusionb weights: 100 and 1250s/mm2. Diffusion-weighted
images with 100s/mm2 were measured in 6 gradient di-
rections determined by a tetrahedral based tessellation ona
hemisphere. The images with a diffusion-weighting of 1250
s/mm2 were measured in 46 gradient-directions, which are
also determined by the tessellation on a hemisphere. The 100
s/mm2 images were acquired with 20 signal averages and the
1250s/mm2 images were acquired with 5 signal averages in
a total measurement time of approximately 14 hours. In our
DBF based reconstruction, we used only the DW images with
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(a) (b) (c)

Fig. 9. Real 3 fiber crossing in a rat cerebellum. (a) ROI GA map. (b) Region in which three fibers are present. The diffusion along X axis were plotted
in red, alongY axis in green and alongZ axis in blue. Note that the region contains an intersection of 3 fiber bundles. (c) Zoom in a voxel where the 3
bundles are crossing.

b=1250s/mm2.
Representative results for this rat brain data are shown

in Fig. 7. The GMM model is computed for each position
plotted and shown as overlapped ellipsoids. The processed
brain regions are indicated by the highlighted boxes in the
GA map. The intersecting fibers of cingulum and corpus
callosum are seen in Panels (a) and (b) (see Plate 111 and
Fig. 111, Paxinos and Watson [45]). In Panels (c) and (d),
the detailed fiber structure of the fimbria of the hippocampus
can be seen, that illustrates the entry of fibers into the fimbria
from surrounding structures. This detailed analysis showsthat
the computed fiber orientations appear to be congruent with
the prior anatomical knowledge for those regions. Note that
according to Panel 7(d), a significant difference between the
GA (computed from a 6-rank tensor [46]) and FA map are
found in the crossing zone, the same region where we detected
more than one fiber per voxel (as noted in [47]).

The capabilities of the regularization presented in section
III-B are shown in Fig. 8, note how the noise effect is elimi-
nated and the obtained results withM = 23 measurements are
equivalent to the ones obtained withM = 46 measurements.

Finally, we show in Fig. 9 a region of decussation in the
cerebellum, in which we recovered voxels with 3 fiber bundles
using the BP approach (i.e. without spatial regularization).
Note that the region is composed of voxels with 2 and 3
maximum diffusion orientations; in particular, in the center
we can observe voxels with the 3 spatially congruent fiber
orientations.

VII. C OMPARISONSWITH Q–BALL METHODOLOGY

In this section, we compare the performance of the proposal
method with respect to Q–Ball, a well known non–parametric
method [23]. For all Q–Ball results, we compute the EAP
for the 129 orientations defined in section IV-A.1 (the same
orientations that we use for building the DBFs) and the inte-
gration over the equators was performed over 36 interpolated
uniformly spaced points. In the kernel regression stage we
used the following parameters: cutoffαc = 20 degrees and
σQ−Ball = 10 degrees. A peak in the computed EAP was
defined as the maximum value in a radius of 20 degrees.

Fig. 10 shows a comparison, given the same signalS
for a three fiber crossing with Rician noise and in realistic
acquisition conditions. Note that our proposed method reports
small mean angular error,̄θ, than Q–Ball.

(a) (b)

Fig. 10. SyntheticS signal generated for a three fiber crossing with compart-
ment sizesβi = 1/3, (i = 1, 2, 3), tensor basis parameters[λ1, λ2,3, N ] =
[9×10−4, 3×10−4, 129], diffusion parameters[Dal, Dtr] = [1×10−3, 2×
10−4], M = 46 measurements,b = 1250 s/mm2 and SNR = 5 (13.97
dB) . (a) Result for Q–Ball, mean angle error (for the three fibers) θ̄ = 10.90
degrees (b) Result for DBF approach,θ̄ = 3.78 degrees.

TABLE IV

MEAN ANGULAR ERROR FORDBF (θ̄DBF ) AND Q–BALL (θ̄Q)

RECONSTRUCTIONS. THREE FIBER CROSSING WITH COMPARTMENT SIZES

βi = 1/3, (i = 1, 2, 3), TENSOR BASIS PARAMETERS

[λ1, λ2,3, N ] = [9 × 10−4, 3 × 10−4, 129], DIFFUSION PARAMETERS

[Dal, Dtr] = [1 × 10−3, 2 × 10−4]. WHEN THE PARAMETER WAS NOT

UNDER ANALYSIS WE SETM = 46 MEASUREMENTS, b = 1250s/mm2

AND SNR = 6 (15.56DB).

SNR→[θ̄Q,θ̄DBF] M→[θ̄Q,θ̄DBF] b→[θ̄Q,θ̄DBF]

10→[ 8.70 , 2.48] 513→[ 7.57 , 1.70] 3000→[9.23 , 3.37]

6→[ 9.41 , 4.81] 129→[ 8.03 , 3.78] 2000→[9.48 , 3.61]

4→[11.02 , 5.82] 46→[ 9.57 , 3.97] 1250→[9.42 , 3.77]

2→[24.24 ,11.41] 23→[27.57 ,5.43] 900→[9.18 , 3.48]

In Fig. 11 we show the Q–Ball solution for the rat DW-
MR images. Confronting Panels 11(a) and 11(b) with Pan-
els 7(b) and 7(d) respectively (both results without spatial
regularization), the Q–Ball results presents poor performance
for such conditions, i.e. low spatial coherence in the crossing
zone in Panel 11(a) and inability in resolving the intra–voxel
information (dark region) in the crossing zone in Panel 11(b).

Statistical values for the performance of both methods are
shown in Table IV. Each experiment consist of 50 Monte–
Carlo outcomes with variations of the acquisition parameters.
The θ̄ value reported by the DBF method is about half of the
one obtained by the Q–Ball approach. This behavior agrees
with the results on rat DW–MRI: ForM = 46 and b=1250
s/mm2 we expect a significant large valuēθ for Q–Ball, about
twice the one obtained by the DBF approach.
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(a) (b)

Fig. 11. Q–Ball results for the rat brain DW–MRI, confront with the DBF
results in 7(b) and 7(d).

VIII. D ISCUSSION ANDCONCLUSIONS

The use of Basis Functions (for instance radial or kernel
basis functions) that span a subspace of smooth functions isa
common and successful strategy for noise reduction in signal
and image processing problems. Such a strategy can be seen
as an implicit regularization procedure where prior knowledge
is introduced by selecting the right form of the base function.
In our case, the chosen basis functions are directly related
with the signal observation model. Thus, besides promoting
noise reduction, our formulation reconstructs the signal by
estimating the control parameters of the diffusion process(the
α−coefficients). An important characteristic of the proposed
DBFs is that they are over-complete for spanning the subspace
of smooth functions: Some reconstructions can be computed
with different combination ofα-coefficients; for instance,
because of the sparsity constraint, an isotropic diffusioncan be
approximated with several triads of DBFs with self-orthogonal
PDD; similarly a flat (2D-isotropic) diffusion with different
possible pairs of DBFs. This could be seen as a limitation
of our model that makes the restoration process ill-posed.
But it only means that if theS(qk) signal does not exhibit
preferential diffusion directions the DBF representation. Thus,
our proposal, like others as DT, Q–space or deconvolution
methods will be unable to recover the intra–voxel geometry.

Undefined diffusion directions can be caused by noise or
tissue properties, as in gray matter or Cerebral Spinal Fluid.
In this work we assume that white matter has previously been
segmented from other tissues and thus the proposed model
can recover the intra-voxel fiber structure for the case of low
level of noise. In other cases, for relatively high level noise, a
regularization process that codifies the prior knowledge about
smooth fiber trajectories is proposed. Subsection III-A andIII-
B presented our approaches for the two noise level cases above
discussed .

The present work is based on the assumption that the MR
signals for a single fiber orientation are sufficiently homoge-
neous in the white matter tissue (as in [12], [26], [28]), so that,
for each voxel, the MR signal could be explained as a linear
combination of DBFs that takes into account changes only in
orientation. In [26] it was noted that if the diffusion parameters
change by different myelination levels, axonal diameters and
axonal densities, then the diffusion parameters violate the
homogeneity assumption and the relative volume fractions

will not be exactly recovered. However, such errors are small
and do not significantly alter the estimated fiber orientations
(the most important data in axon fiber tracking). The later
conclusion is congruent with our experimental results shown
in Table II.

We have presented a new representation for directly obtain-
ing the local nerve fiber geometry from DW–MR measure-
ments. Our proposal, by means of discrete approximation of
the GMM dubbed DBF, overcomes the well known difficulties
of fitting a GMM to DW–MR data:

1) Automatically computes the number of fibers and the
compartment sizes within each voxel, avoiding the need
of prior knowledge about the number of Gaussians.

2) Is capable of detecting more than 2 fibers within a voxel,
that improves the state-of-the-art for methods based on
parametric GMM.

3) Allows us to infer complicated local fiber geometry with
DWIs collected along a sparse set of diffusion encoding
directions (46, or 23 by using quadratic regularization)
as opposed to techniques that use a large number of
directions in HARDI data sets.

4) According to our experiments, it yields small angular
errors for relatively smallb values (1250s/mm2).

5) Has the additional advantage of being formulated as
a constrained LP or constrained quadratic optimization
problem, that are solved efficiently by a parallelizable
interior point method or by the solution of a bounded
linear system, respectively.

To the best of our knowledge, the aforementioned properties
considerably advance the state-of-the-art.

It is important to note that (8) uses an L-1 norm instead
of an L-2 norm. In this sense, we know that the L-1 norm
belongs to the robust potential category, distinct from the
L2-norm. From an ill-posed problem the BP schema allows
us to introduce prior information about the desired solution
namely: to select among possible solutions that minimizes the
magnitude of the residual vectorrα = Φα − S, the one with
the high sparsity in theα vector. This could be translated in
the DW-MR framework as, “to explain the voxel’s DW signal
with as few as possible DBFs.”

Because the solution is given in a parametric form, the
fiber orientations are computed by basis PDDs weighted
by the recoveredα coefficients, so that the probability of
displacement is achieved without the need of looking for peaks
in non-parametric models as in [48], [49]. Moreover, in our
case for fiber pathway tracking one can use the simple method
reported in [10] (no modifications are needed).

Distinct from the model–free methods (as Q-Ball, DOT,
etc.), our method implicitly incorporates prior knowledgeon
axonal water diffusion models for the reconstruction of the
diffusion signals. In particular, we use the free diffusionmodel
because the parameters (the DT) can be easily estimated from
the corpus callosum for each patient (see subsection IV-A.2).
However, the proposed method can be adapted to use others
axonal water diffusion models, as the cylindrical confined
diffusion model [31]. In such a case it is necessary to compute
the diffusion coefficient, cylindrical radius and length for the
Söderman’set al. model.
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Model based methods (as presented here) have the ad-
ditional advantage over model–free methods of being more
robust to noise because one can discard unreasonable fiber
topologies; see experimental comparisons for an unique fiber
region of DT-MRI versus Q–Ball results in the fiber phantom
by Perrinet al. [44]. In many cases, the selection among dif-
ferent mathematical models is based on algorithmic (numerical
and algebraic) advantages. This is the case with our approach.

Finally, the proposed method is very efficient as the DBF
used in the GMM can be pre-computed by using the ac-
quisition parameters. We demonstrated via experiments, the
performance of our algorithm on synthetic and real data sets,
and in the former case, the results were validated.
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APPENDIX

NOISE GENERATION ANDSNR DEFINITION

For the MR images, the Rician noise distribution results
in the magnitude of the complex number such that the real
and imaginary parts were corrupted with additive independent
Gaussian noise withN (0, σ2). Thus one can simulate signals
Sσ(qk, τ) corrupted with Rician noise [50] as:Sσ(qk, τ) =
√

(S(qk, τ) + ε1)2 + ε2
2; whereε1 ∼ N (0, σ), ε2 ∼ N (0, σ).

Signal–To–Noise–Ratio (SNR) was computed according to
the ratio of the peak–to–peak distance in the signal to the
Root Mean Square of the noise signal (that as convention is
equal toσ [51]) as: SNR(S, σ) = max(S)−min(S)

σ . For the
aim of correct experiment reproducibility, we prefer the above
SNR convention that avoids dependency on the Direct Current
(DC) component in the signal (differently to one that depends
on the mean value ofS). For the decibel standard, we use
SNRdB(S, σ) = 20 log10(SNR(S, σ)).

REFERENCES

[1] R. Buxton, Introduction to Functional Magnetic Resonance Imaging
Principles and Techniques. Cambridge University Press, 2002.

[2] R. A. Poldrack, “A structural basis for developmental dyslexia: Evidence
from diffusion tensor imaging,” inDyslexia, Fluency, and the Brain,
M. Wolf, Ed. York Press, 2001, pp. 213–233.

[3] P. J. Basser, J. Mattiello, and D. LeBihan, “MR diffusiontensor
spectroscopy and imaging,”Biophys. J., vol. 66, pp. 259–267, 1994.

[4] P. J. Basser and C. Pierpaoli, “Microstructural and physiological features
of tissues elucidated by quantitative-diffusion-tensor MRI,” J. Magn.
Reson. B, vol. 111, pp. 209–219, 1996.

[5] E. O. Stejskal, “Use of spin echoes in a pulsed magnetic-field gradient to
study anisotropic restricted diffusion and flow,”J. Chem. Phys., vol. 43,
pp. 3597–3603, 1965.

[6] H. Gudbjartsson and S. Patz, “The Rician distribution ofnoisy MRI
data,” Magn. Reson. Med., vol. 34, pp. 910–914, 1995.

[7] Z. Wang, B. C. Vemuri, Y. Chen, and T. H. Mareci, “A constrained
variational principle for direct estimation and smoothing ofthe diffusion
tensor field from complex DWI,”IEEE Trans. Med. Imag., vol. 23, no. 8,
pp. 930–939, 2004.

[8] D. C. Alexander, “An introduction to computational diffusion MRI: the
diffusion tensor and beyond,” inVisualization and Image Processing of
Tensor Fields, J. Weickert and H. Hagen, Eds. Berlin: Springer, 2005.

[9] M. R. Wiegell, M. Henrik, B. W. Larsson, and V. J. Wedeen, “Fiber
crossing in human brain depicted with diffusion tensor MR imaging,”
Radiology, vol. 217, pp. 897–903, 2000.

[10] A. Ramirez-Manzanares and M. Rivera, “Basis tensor decomposition for
restoring intra-voxel structure and stochastic walks for inferring brain
connectivity in DT-MRI,” Int. Journ. of Comp. Vis., vol. 69, no. 1, pp.
77–92, 2006.

[11] D. S. Tuch, R. M. Weisskoff, J. W. Belliveau, and V. J. Wedeen, “High
angular resolution diffusion imaging of the human brain,” inProc. 7th
Annual Meeting of the ISMRM, 1999, p. 321.

[12] D. S. Tuch, T. G. Reese, M. R. Wiegell, N. Makris, J. W. Belliveau,
and V. J. Wedeen, “High angular resolution diffusion imagingreveals
intravoxel white matter fiber heterogeneity,”Magn. Reson. Med., vol. 48,
no. 4, pp. 577–582, 2002.

[13] D. S. Tuch, “Diffusion MRI of complex tissue structure,”Ph.D. disser-
tation, Harvard-MIT, Cambridge MA, January 2002.

[14] E. Ozarslan, T. Shepherd, B. C. Vemuri, S. Blackband, andT. Mareci,
“Resolution of complex tissue microarchitecture using the diffusion
orientation transform (DOT),”Neuroimage, vol. 31, no. 3, pp. 1083–
1106, Jul 2006.

[15] P. J. Basser and D. K. Jones, “Diffusion-tensor MRI: theory, experi-
mental design, and data analysis,”NMR Biomed., vol. 15, pp. 456–467,
2002.

[16] L. R. Frank, “Characterization of anisotropy in high angular resolution
diffusion-weighted MRI,”Magn. Reson. Med., vol. 47, pp. 1083–1099,
2002.

[17] J. Parker and D. Alexander, “Probabilistic Monte Carlobased mapping
of cerebral connections utilising whole-brain crossing fibre information,”
in Proc. IPMI, July 2003, pp. 684–695.

[18] Y. Assaf, R. Z. Freidlin, G. K. Rohde, and P. J. Basser, “New modeling
and experimental framework to characterize hindered and restricted
water diffusion in brain white matter,”Magn. Reson. Med., vol. 52,
no. 5, pp. 965–978, 2004.

[19] V. J. Wedeen, T. G. Reese, D. S. Tuch, M. R. Weigel, J. G. Dou, R. M.
Weiskoff, and D. Chessler, “Mapping fiber orientation spectra in cerebral
white matter with Fourier-transform diffusion MRI,” inProc. 8th Annual
Meeting of the ISMRM, 2000, p. 82.

[20] D. S. Tuch, M. R. Wiegell, T. G. Reese, J. W. Belliveau, and V. Wedeen,
“Measuring cortico-cortical connectivity matrices with diffusion spec-
trum imaging,” in Proc. 9th Annual Meeting of the ISMRM, 2001, p.
502.

[21] V. J. Wedeen, P. Hagmann, W.-Y. I. Tseng, T. G. Reese, and R. M.
Weisskoff, “Mapping complex tissue architecture with diffusion spec-
trum magnetic resonance imaging,”Magn. Reson. Med., vol. 54, no. 6,
pp. 1377–1386, Oct 2005.

[22] D. C. Alexander, “Multiple-fibre reconstruction algorithms for diffusion
MRI,” Annals of the New York Academy of Sciences, vol. 1046, pp.
113–133, 2005.

[23] D. S. Tuch, “Q-Ball imaging,”Magn. Reson. Med., vol. 52, pp. 1358–
1372, 2004.

[24] K. M. Jansons and D. C. Alexander, “Persistent angular structure:
new insights from diffusion magnetic resonance imaging data,” Inverse
Probl., vol. 19, pp. 1031–1046, 2003.

[25] A. W. Anderson, “Sub-voxel measurement of fiber orientation using
high angular resolution diffusion tensor imaging,” inProc. 10th Anual
Meeting of the ISMRM, 2002, p. 440.

[26] J. D. Tournier, F. Calamante, D. G. Gadian, and A. Connelly, “Direct
estimation of the fiber orientation density function from diffusion-
weighted MRI data using spherical deconvolution,”Neuroimage, vol. 23,
pp. 1176–1185, Nov. 2004.

[27] D. C. Alexander, “Maximum entropy spherical deconvolution for diffu-
sion MRI,” in Proc. IPMI, 2005, pp. 76–87.

[28] A. W. Anderson, “Measurement of fiber orientation distributions using
high angular resolution diffusion imaging,”Magn. Reson. Med., vol. 54,
no. 5, pp. 1194–1206, 2005.

[29] A. Ramirez-Manzanares, M. Rivera, B. C. Vemuri, and T. H. Mareci,
“Basis functions for estimating intravoxel structure in DW-MRI,” in
Proc. IEEE Medical Imaging Conference, Nuclear Science Symposium
Conference Record. Rome, Italy: IEEE, October 2004, pp. 4207–4211.

[30] A. Ramirez-Manzanares and M. Rivera, “Basis pursuit based algorithm
for intra-voxel recovering information in DW-MRI,” inProc. IEEE
Sixth Mexican International Conference on Computer Science. Puebla,
Mexico: IEEE, September 2005, pp. 152–157.

[31] O. S̈oderman and B. J̈onsson, “Restricted diffusion in cylindrical geom-
etry,” J. Magn. Reson., vol. 117, pp. 94–97, Nov 1995.

[32] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,”SIAM Review, vol. 43, no. 1, pp. 129–159, 2001.

[33] R. Gribonval, P. Depalle, X. Rodet, E. Bacry, and S. Mallat, “Sound
signal decomposition using a high resolution matching pursuit,” in Proc.
ICMC, 1996, pp. 293–296.



IEEE TRANSACTIONS ON MEDICAL IMAGING 12

[34] S. Mallat and Z. Zhang, “Matching pursuit with time-frequency dictio-
naries,”IEEE Trans. Signal Processing, vol. 41, no. 12, pp. 3397–3415,
1993.

[35] J. Nocedal and S. J. Wright,Numerical Optimization, 2nd ed. Springer
Series in Operation Research, 2000.

[36] S. Mehrotra, “On the implementation of a primal-dual interior point
method,”SIAM J. Optimization, vol. 2, no. 4, pp. 575–601, 1992.

[37] Y. Chen, W. Guo, Q. Zeng, G. He, B. C. Vemuri, and Y. Liu, “Recovery
of intra-voxel structure from HARD DWI,” inProc. International
Symposium in Biomedical Imaging, October 2004, pp. 1028–1031.

[38] O. Pasternak, N. Sochen, and Y. Assaf, “Variational regularization of
multiple diffusion tensor fields,” inVisualization and Image Processing
of Tensor Fields, J. Weickert and H. Hagen, Eds. Berlin: Springer,
2005.

[39] R. L. Burden and J. D. Faires,Numerical Analysis, 7th ed. Brooks/cole.,
2001.

[40] S. Skare, M. Hedehus, M. E. Moseley, and T. Q. Li, “Condition number
as a measure of noise performance of diffusion tensor data acquisition
schemes with MRI,”J. Magn. Reson., vol. 147, pp. 340–352, Dec 2000.

[41] D. K. Jones, M. A. Horsfield, and A. Simmons, “Optimal strategies
for measuring diffusion in anisotropic systems by magnetic resonance
imaging,” Magn. Reson. Med., vol. 42, no. 3, pp. 515–525, 1999.

[42] E. Ozarslan, B. C. Vemuri, and T. H. Mareci, “Generalizedscalar
measures for diffusion MRI using trace, variance, and entropy,” Magn.
Reson. Med., vol. 53, no. 4, pp. 866–876, 2005.

[43] B. W. Kreher, J. F. Schneider, I. Mader, E. Martin, J. Hennig, and K. A.
Il’yasov, “Multitensor approach for analysis and trackingof complex
fiber configurations,”Magn. Reson. Med., vol. 54, pp. 1216–1225, sep
2005.

[44] M. Perrin, C. Poupon, B. Rieul, P. Leroux, A. Constantinesco, J. F.
Mangin, and D. LeBihan, “Validation of Q-Ball imaging with a diffusion
fibre-crossing phantom on a clinical scanner,”Philos. Trans. R. Soc. B
Biol. Sci., vol. 360, no. 1467, pp. 881–891, 2005.

[45] G. Paxinos and C. Watson,The Rat Brain in Stereotaxic Coordinates,
2nd ed. San Diego: Academic Press, 1998.

[46] E. Ozarslan and T. Mareci, “Generalized diffusion tensor imaging
and analytical relationships between diffusion tensor imaging and high
angular resolution diffusion imaging,”Magn. Reson. Med., vol. 50, no. 5,
pp. 955–965, Nov 2003.

[47] M. Descoteaux, E. Angelino, S. Fitzgibbons, and R. Deriche, “Apparent
diffusion coefficients from high angular resolution diffusion images:
Estimation and applications,”Magn. Reson. Med., vol. 56, no. 2, pp.
395–410, Aug. 2006.

[48] G. J. M. Parker and D. C. Alexander, “Probabilistic anatomical con-
nectivity derived from the microscopic persistent angular structure of
cerebral tissue,”Philos. Trans. R. Soc. B Biol. Sci., vol. 360, no. 1467,
pp. 893 – 902, 2005.

[49] D. S. Tuch, J. W. Belliveau, and V. Wedeen, “A path integral approach to
white matter tractography,” inProc. 8th Annual Meeting of the ISMRM,
2000, p. 791.

[50] A. M. Wink and J. Roerdink, “BOLD noise assumptions in fMRI,” J.
Biomed. Imag., vol. 2006, no. 12014, pp. 1–11, 2006.

[51] J. Sijbers, A. den Dekker, J. V. Audekerke, and M. Verhoye, “Estimation
of the noise in magnitude MR images,”Magnetic Resonance Imaging,
vol. 16, no. 1, pp. 87–90, 1998.


