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Diffusion Basis Functions Decomposition for
Estimating White Matter Intra-voxel Fiber Geometry
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Abstract—In this paper, we present a new formulation for along the axon orientations. This information is very ukefu
recovering the fiber tract geometry within a voxel from diffusion  in neuroscience research due to the changes that occur in the

weighted MRI data, in the presence of single or multiple neuronal 4,13 connectivity patterns with neurological disordans
fibers. To this end, we define a discrete set of Diffusion Basis . . . '
in general, with brain development [1], [2].

Functions. The intra-voxel information is recovered at voxels . ) o )
containing fiber crossings or bifurcations via the use of a linear ~ The water diffusion angular variation has been summarized,
combination of the above mentioned base functions. Then, the in most medical applications, by Diffusion Tensor Magnetic
parametric representation of the intra-voxel fiber geometry is a Resonance Images (DT-MRI) [3], [4]. In [5], Stejskal-Tanne

discrete mixture of Gauss[ans. C_)ur _synthetlc experllments depict presented a mono-exponential model of the decayed MR
several advantages by using this discrete schema: the approach’.

uses a small number of diffusion weighted images (23) and signal. Afterwards Bassest al. [3], developed the DT model:
relatively small b values (1250s/mm?), i.e., the intra-voxel T

information can be inferred at a fraction of the acquisition S(ak,7) = Soexp(—q; DaxT) + ¢k, 1)
time required for datasets involving a large number of diffusion

gradient orientations. Moreover our method is robust in the Where the anisotropic diffusion coefficients are summarize
presence of more than 2 fibers within a voxel, improving the state- by the (3 x 3) symmetric positive definite tens, .Sy is the
of-the-art of such parametric models. We present two algorithmic  measured signal in the absent of a diffusion magnetic field

solutions to our formulation: by solving a linear program or by : - .
minimizing a quadratic cost function (both with non-negativity gradient (a standar@2 image [1]), the attenuation factor on

constraints). Such minimizations are efficiently achieved with the Qbseryed PW—MR signa¥(qx, 7) is determined by _the
standard iterative deterministic algorithms. Finally, we present gradient diffusion vectoky;, the tensorD and the effective
results of applying the algorithms to synthetic as well as real diffusion timer. The gradient diffusion vectot, = v6Ggy,

data. where v is the gyromagnetic ratio§ is the duration for
Index Terms—DW-MRI, HARDI, Diffusion basis functions, which the directional magnetic gradient is appli€d,is the
Axon fiber pathways, Intra-voxel, Basis Pursuit. magnitude of the applied diffusion magnetic field gradiend a
the unit vectorg;, = [gkx,gky,gkz};‘::l y indicates thek—
|. INTRODUCTION th orientation of the diffusion-encoding gradients. In model

1), e, represents noise with Rician distribution, see [6] and

ATER diffusion estimation has been used extensive e Appendix. A standard protocol for indirectly measuring

in recent years as an indirect way to infer axon fiber . L ) . :
pathways and this in turn has made the estimation of ﬁb\grater diffusion consists in acquite/ three-dimensional (3D)

connectivity patterns in vivo; one of the most challengioglg images along independent orientatigns A convention is to
. Vity p: Y : giog let b = (766')27 and thus making (denoted ins/mm?) a
in neuroimaging. For this purpose, a special Magnetic Res- . - . :
. . e : constant directly proportional to the magnitude of theudifbn
onance Imaging (MRI) technique named Diffusion Weighte S
vectors and the acquisition time.

MRI (DW-MRY) is used. This imaging technique allows one to ~ . .
( ) ging g Given S, and at least six measuremerfiéqy, 7)i=1,....6,

estimate the preferred orientation of the water diffusiothie . i
brain which, in the white matter case, is usually consttin he DT is est|mat_ed by a Least Square_zs (L.S) p_rocedure_[3]_, [7]
he DT can be visualized as a 3D ellipsoid, with the principal
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Images (HARDI) fails to estimate correctly 2 or more fiber
orientations (as the Apparent Diffusion Coefficient (ADC)
Map [11]), as is deeply discussed in [11]-[14].

In this work we use the Gaussian Mixture Model (GMM)
as a more plausible model for the decayed signal phenomenon
[12]:

(b)
L Fig. 1. 2D Schema of DBFs. (a) Continuous-blue line shows tB&$
S(ag, ) = So Zﬁj exp(—qi D;qxT) + £k; (2) generated by an uniformly distributed tensor basis with icalily N = 5;

the doted-red line shows the signgi(q) generated by an arbitrary DT. (b)
Schema for a two fiber case, the dotted-red line showsStleg 7) measured

. o o signals for the two arbitrary tensors, the half-additionboith signals are

where the real coefficient$ € [0, 1] indicate the contribution shown in the cross-marked black line. See text for details.

of the tenso; (the fiber oriented witiD ;) to the total DW

signal, i.e.,(Zj B = 1). The GMM explains quite well the

diffusion phenomenon for two or more fibers within a voxel

u_nder the a_ssumption of no exchange between fibers, i.e., theP(r) =S5t /S(q, r)e‘iqT‘”dq = F ' E7)], @
signals are independently added. The GMM was explored by

Basseret al. in [15]; they concluded that its solution require§,here the displacement vector= r, — r, defines the particle

a large number of measurementiqy,7), and remarked gighiacement (located at at the beginning and at. at the
the numerical p_roblems_because of_ the non-llne_a_rlty. Fraghd of the experiment)Z~! denotes the inverse FT with
[16] expanded hl$ Spherical Har_momc Decomposition (SH%spect to the diffusion vectay, and E(q, 7) = S(q,7)/So.
method to theV-fiber case by using the model (2). Parker angl,e non-parametric DSI can represent several fibers within
Alexander [17] used the Levenberg-Marquardt algorithmto fihq yoxel; although the large number of required DW images

the GMM. RecentlyOzarslanet al. [14] used the GMM {0 5165 the method impractical for medical purposes. Recent
perform an important reflnement in thel_r le_fusmn Orierat |\ «thods for recovering EAP, as Q-Ball [23] , Persistent
Transform (DOT) for computing a diffusion displacemenknqjar Structure (PAS) [24] or DOT [14] have demonstrated
probability. See [1] for more details about model in (2). 4504 results with a smaller number of diffusion images; for
However, in the best of our knowledge, the GMM has nghstance, in [24] are used 54 measurements. However it is
been efficiently fitted to the DW-MR signals. We describgesirable to diminish this number for practical purposes. A
below the better implementations for this aim. Twtfal.[12], drawback in the previous methods is that, for estimating
[13], proposed a non-linear LS method for solving (2). Thage intra—fiber orientations, the maxima of the EAP need be
approach fixed the eigen—values for the diffusion tensods agomputed as a postprocessing [13], [14], [22], [23].
solves the GMM for the number of tensofs, the coefficients, Recently, spherical-deconvolution techniques explain-DW
f3, and the tensor’s orientation angles. The drawbacks of tR signals as the convolution of a single fiber response with
method are: the large number of required diffusion images  the Fiber Orientation Distribution (FOD). FOD is represht
that notably increases the acquisition time (for instad@8 \yith a linear basis for spherical functions in [25], [26] and
diffusion 3D-images are used in [12], [13] and more recentlyf [27] was proposed a maximum-entropy formulation of
54 measurements in [17]) and the algorithmic problemsedlatiye spherical deconvolution (MESD) problem with a non—
to the non-linearity of (2). Thus, multiple restarts of thgnear deconvolution kernel (a generalization of PAS mejho
optimization method are required for preventing the alani - Ajthough [27] presented better results, the method does not
from settling in a local minimum. Note that it is necessary tgyarantee the attainment of the global minimum and regaires
choose between fit a single Gaussian or a GMM, or to fit bogigmﬁcam computational effort. In [28] it is proposed enple
and then choose the one which explains better the DW-Mixja| symmetric model of diffusion, where the angular distr
signals. Furthermore, no stable solution has been reptted pytion of fibers is computed by a deconvolution process and by
more than 2 fiber bundles, i.e. fdr > 2 (see [12] and [13, assuming constant, both, mean diffusivity and perpenalicul
Chap. 7]). diffusivity in all the white matter (a similar assumption sva
Another interesting model-based approach is reported uged in [26]).
[18], by assuming that the observed diffusion signal result |n most previous works [12], [14], [23], [25], [26], [28],
from the hindered (extra—axonal space) and the restrigtéd ( |arge b-values (larger than 2008/mm?) or large datasets
axonal space) water diffusion. Although such a model wage required for recovering good angular resolution, which
extended to a multi-fiber case, the above explained moded-somewhat impractical in a clinical setting. In a recent
selection problem is present. article [10], a regularization-based approach was prapose
Q-space method is an alternative non-parametric repfer recovering the underlying fiber geometry within a voxel.
sentation. This method is based on the Diffusion Spectruftnat approach reconstructs the observed tensors as a linear
Imaging (DSI) [19]-[21], by exploiting the Fourier Transfie combination of a given tensor basis. However the multi-
(FT) relationship from which an Ensemble Average Probibilitensor model is computed from previously fitted DTs (instead
(EAP) is computed. The EAP [13], [22] is defined as of the raw measurementS(qy, 7)) and thereby important

Jj=1
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Erg) with «; > 0; where we define thg—th DBF by:

oj(ak,7) = Soexp(qi T;qxT), %)

where,¢;(qx, 7) is understood as the coefficient of the diffu-
sion weighted signal for the diffusion vectqr, due to a single

1 fiber modelled by the base tens@y;. The non-negativey;

T . denotes the contribution of thjeth DBF {¢; (qx, 7) }k=1,....am-
Note that the basi§¢} is incomplete, because the available
orientations are a discretization of the 3D space (seeosecti
VIII). So that, a residualyq, in the signal representation
is observed. By choosing a basis with a large cardinality
we can diminishng, , until it becomes insignificant enough,

In this paper, a novel method for reconstructing the intraa—nOI then negle_cted for practical purposAs. can be noted,
advantage in our model (4) is that the unknowns are

voxel information is presented. We note that present wo e -
b P the a—coefficients and the;(qx, ) coefficients can be pre-

extends previos conference papers [29], [30]. The method’i tedin fact qt te the best li bi
based on the solution of a discrete version of the parametfﬁmp?SBFn ?ﬁ ,twe neg Ofr? mpuneﬁj Teh' es _lllne?r ?o(;n_ ina-
model in (2). Synthetic experiments for a realistic sitoati lon o s that reproduce the sig IS 1S 1llustrated In

demonstrate the advantages of our method: the intra—vo%‘? 2D schema shown in Fig. 1. Panel 1(a) shows a single fiber

information for more than 2 axon fibers can be inferred &£~° where we compute thg values that, given a set of 5

a fraction of the acquisition time with respect to metho BFs (contmtjoug-tt)tlug Im(;a?_) reproduce m?]f’ﬂk:l““é‘;l _
that require a larger set of DW-MR imagesd/( > 54) or measurements (dotted-red line) as accurately as posible;

large b values § > 2000 s/mm?). We present two variants this partlculgr case, we expeah ~ 1. On th.elother hand,

of our method: one based on the minimization of a Linegﬁ>r the two fiber case (Panel .1(b))’ thecpeﬁqents should
Programming (LP) problem (which is computationally moréeprodtucejhe zijcil)ltéonN(rilust;]s?p black line); mhth's c;we i
efficient) and another based on the minimization of a regfiPectas &~ a5 ~ U.o. INOte thal In our approach, we do not
larized quadratic cost function (which improves the qyatit work with the schematized continuous measurements in Fig.

the results for noise corrupted data), both with non-negati 1, but with "’} dlsc;rete set af/ samples (mea}surgments). .
constraints Although in this work we use the free—diffusion model in

(5) for setting the DBF, it is possible to use another diffunsi
model as the cylinder restricted diffusion model propoged i
[I. THE DIFFUSION BASIS FUNCTIONS [31], see discussion in section VIII.

. ) ] o By substituting our observation model (4) in the EAP in
In this section we propose a discrete diffusion model bas?g, we obtain:

on the GMM in (2). In order to simplify the solution of

Fig. 2. Normalized diffusion weighted signd(q) for a base TensoT;
and its corresponding EAP. The black axis denotes the PDD.

information is lost.

such a model, we propose to use a set of Diffusion Basis N
Functions (DBF){¢}, which are generated from a tensorial P(r) =Syt Zaj]-"l [¢i(q,7)]. (6)
basis as the one used in [10]. Such a tensor basis is defined j=1

as a fixed set of tensord with cardinality equal toN.

The individual base tensorE; are chosen, such that, the As the DBF is a Gaussian (according to the free—diffusion

y . . .
are distributed as uniform as possible in the 3D space r(r;ﬁ[c; e(zl()x)a;c;l] (t’? O'(:;(v?ff Zai1?)autshselinmreosulilt§alsr; a;heGaEL::SIan

_cmentatl_ons, and their _anls_otropy is chosen acc_ordmgmup is a GMM with peaks oriented along the PDDs of the
information about longitudinal and transversal fiber difan. . ;

A orresponding base tensors. Moreover, the peali3(ir) are
For the human brain, it is reasonable to assume that the . )
. X e . _determined by the largesi; and therefore also the fiber
anisotropy and magnitude of the water diffusion for a single

fiber in white matter is almost constant in all the Volumgnentatlons. This is illustrated in Fig. 2 where we show for

[12], [26], [28], we will discuss this topic in section VIII. a given base tensor the synthetic DW signal and the EAP

! - . . computed with (3). As can be seen, the maxima of a single
For instance, one could expect that longitudinal fiber difin . . .
. ) . ] EAP in the GMM corresponds with the PDD of the associated
is about five times than the transversal ofe;, A2, \3] =~

[1x1073mm?/s,2x10~*mm?/s,2x 10~ *mm?/s] [1], [13]. base tensor.
However, these values could change between patients, 5o tha
we instead recommend setting the basis eigen—values accord Ill. NUMERICAL SOLUTIONS FOR DBF MODEL

ing to the procedure described in section IV-A.2. By fixing . . L
ot In this section we present two procedures for estimating the
the basis eigen—values, we reduce the degrees of freedom for

. oefficientsa in (4). We first introduce the notation that will
g:eeggc;]b\lzr)r:.elﬂ\:vl::ﬁ'we propose to model the DW-MR &gna{ﬁ)e useful in the following. The observation model (4) can be

written in matrix form as

N
S(Qkﬁ):Zj:laj%(%,T)Jr??qurEk; 4) S =®da+1; (7
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with ; > 0,Vy5; ® is anM x N matrix where thg—th column B. Spatial and Coefficient-Contrast Regularization
COFreSIBO_ndS to thg—th DBF (®; = [¢;(ar, 7)]k=1...m) @D The adverse effect of noise or a limited number of mea-
S € R is the vector composed by all the DW signals. N_OtgurementSS(qkm) could possibly lead most methods to miss
that because of our requirements, the matixs rectangular: e original fiber directions. In such situations, the BP oelt
we want to acquire as few as possibisignals and to recover ¢4 erroneously estimate thecoefficients: they may do not

solutions with a high angular resolution; for instance we Ugrespond to the correct axonal fiber orientations or may no
N =129 DBFs andM = 23 DW-MR images. Consequently, jngicate the right number of fibers in each voxel. In such a

we have more unknowns’s, than datasS's; the problem (7) 556 the use of a spatial regularization diminishes theonex
is ill-posed and sho_uld be con;tralned or regularized irtOrd,qice effect [37], [38]. In this work, in order to reduce such
to compute a meaningful solution. - _an adverse effect, we propose to filter thecoefficients and

In the following subsections we introduce two algorithmenerefore to introduce prior knowledge about the piecewise
for computing the besi vector by means of introducing prior smoothness assumption on the axon fibers orientation and for
information about desired features in the solution. promoting high contrast in the—coefficients.

In our notation, a voxel position is denoted by= [z, y, 2],
such thata;, is the o;—th coefficient at ther voxel position
and V.. denotes the second order spatial neighborhood: of

Compact signal representation is a well studied problem B = {s : |[r — s| < 2}. Therefore thea;, coefficient is
signal processing researchers [32]-[34]. In that conieis implicitly associated with the fraction diffusion in a giveri-
convenient to represent a given signal by a set of coeffigie@ntation (i.e. along the PDD of the associated base tenspr
associated with elements of a dictionary (or base) of fonsti and the spatial smoothness of the layer (vr) is intimately
The elements of such a dictionary are calldms(or basis related with the fiber's spatial smoothness. Moreover, if an
functions). The idea is to select from the dictionary ttem @axon bundle have a trajectory close parallel to fité PDD,
decomposition that best match the signal structure, usinggn we expect a large value for the coefficient. Thus, by
criterion for choosing among equivalent decompositions. #noothness, the neighbor voxels along the orientation ef th
commonly used criterion is the basic principle of sparsigy, fiber should have its; coefficient large too. Similarly, such
to represent the signal with the fewegbmsas possible. Ad- @ behavior is expected for the close-to-zero coefficients to
ditionally, a desirable feature is to achieve the decontjposi if @ fiber is not present in a position, then it is not likely to

A. Basis Pursuit Algorithm

in a computationally efficient way. detect its prolongation along its orientation. The abowverpr
In our notation, Eq. (7) is the mathematical model foknowledge is coded in the regularization term [10]:
representing the decomposition of the sigsak R as a 2
b J b N Uslarr) = Y > wirs (ar = aj0)”;

linear combination ofitoms®; in a dictionary®.

In [32], the Basis Pursuit (BP) technique was proposed for
solving the problem (7), i.e., for computing thecoefficients. Which penalizes the difference between neighboring coeffi-
Based on the BP framework, we propose to compute asoluti_@jﬁnts along the underlying fiber orientations. Such a E®ce

s:s€EN,. j

T it 4

(s=r) Tj(s=r)/lls =l
min flafl, =32, a; = eTa Additionally, we promote high contrast in the-coefficients
subject to o — S to distinguish the representative-coefficients (orientations)

from the noisy ones and to compute a sparse solution. Thus
we force eachy;, coefficient to be different from the arith-

where ¢ is a vector with all its components equal to ond"€UC meana, i 2 O‘J'T/Nj by minimizing U, (.O"T) =

(we can use just”« instead of||a||, since the sign of the — 2_; (@jr — a,), see [10]. Finally, the cost function that we
components of is already constrained). Because of the noidfOPOse to minimize Is:

and g_iven thatb is_ an uncomplete dictionary, the signal recon- Ula,r) = ||S — (I,ang + usUs (0, 7) + peUs (a, 1), (9)
struction constraint in (8) could not to be fully accompésh

resulting in an over-constrained LP problem. Therefore ambject ton;,. > 0, where the non—negative control parameters
appropriate minimization procedure is required: an ioteri u, and p. allow us to tune the amount of regularization.
point method which tries to minimize the magnitude of th&he potentials were chosen in order to keep the cost function
residual vector, = ®a— .S (see [35]). In our experiments we(9) quadratic. Thus by equaling to zero the partial deneati
used the powerful primal-dual predictor-corrector altori by with respect to eacla;, results in a constrained linear sys-
Merhotra (see [35], [36]) that computes the results in aifbac tem. It can easily be solved by using a Gauss-Seidel (GS)
of the computational effort required by other less-softastd scheme [39] (used in our experiments because of its efficient
interior point methods. The BP method have shown, in generate of memory) or a conjugate gradient technique which is
a better performance with respect to other pursuit teclasiquime efficient [35]. The non-negativity constraint over the

as, for instance, Matching Pursuit (MP) [34]. The BP methaebefficients is accomplished along with the minimizatiothwi
represents with fewy coefficients theatomsthat best fit the a particular case of the well known Gradient Projection: the
local structures. negative o;, values are projected to zero in each iteration

a; >0, Vj, 8)
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[35]. The tuning of the spatial regularization parameter is
quite simple: the large:; value eliminates noise but a too
large value over—smooths the recovered solution. We found
that, in our experimentg;s € [0.5,3.0] produces an adequate
noise reduction. As was explained in [10], tlhe value is
gradually introduced because it is important to perform the
coefficient—contrast regularization once we have an ingeim

ate regularized solution: for each iteratibr=1,2,...,n, we
setul?) = p. (1.0 — 0.95'90%/n) that increases t@.. in the @) (b)
approximately90% of the total number of iterations, with _ _ _ _
" Il our experiments Fig. 3. Example of a single fiber case. (a) Discrete solutlolms(_er)
te € [0.1,0.5] for & p : composed with two DBFs. (b) Level curves o — S||2 for a; (X-axis)

anda;1 (Y-axis) coefficients, withny, = 0, Vk # 4, j. See text for details.
IV. IMPLEMENTATION DETAILS

In this sec.tlon we describe |mp(.)rt.ant |mplemeqtat|on dmta'obtaining refined continuous orientations with smallerwdag
to be taken into account for obtaining high quality results. errors. Assuming the 2D example shown in Fig. 3, the BP

approach gives us a solution with minimuja|, and min-

A. Designing the Tensor Basis imum magnitude of the error, = ®a — S (as shown in
There are two main aspects: (i) the eigen—vector oriematid"® Panel 3(b)), the maximum diffusion orientation (pldtte
and (i) the eigen—values. in a dotted-red line), lies at an intermediate value between

1) Orientations: The basis orientation set depends on W€ orientation of the two closest base tensdysand T,
compromise between the desired resolution of the resutts dfiontinuous-lines). For computing the continuous sofutie
the computational effort. The procedure for obtaining tie 39r0UP the orientations imlustersand we assign an unique
balanced orientations is exactly the same as that of sefectPrientation to eacfeiuster A cluster 2 = {u;} is a set of
the acquisition DW orientations in the MR machine [40], i gvectors associated with the base tensors that contributesto

g Iees B . . . —2

one can use the almost uniformly distributed directionggiv MM (their corresponding coefficients arg > 1 x 107)
by then-fold tessellated icosahedron hemispheres, or by usifgd With a transitive neighborhood relationship. We deibgte
an ele'ctrostatic”re'pulsiofn model [41]. In.ga(r;icullar, W@;I;s N, = {v;=PDD(T;):e; €E}U
recursive tessellations of a square pyramid (having egu - T T

i . L= — )iy <
triangles as sides) that results{ig, 9, 33, 129, 513, 2049, .} {vj = =PDD(T;) : vju < s Uk v}
almost uniform orientations fd0, 1, 2, 3, 4, 5, . .} successive
tessellations, respectively. We usid= 129 orientations in all
our experimentsNote that in our approach, the high angular.
resolution is in the tensor basis but not in the acquired algn

the set of neighbor vectors tg; where& is the set of edges
in the tessellation structure amdD D(T)) is the first eigen-
vector of the base tensar;. The cluster centroid@ € R? is
then computed by the weighted summation:

S(q,7).
2) Eigen—Values: As was mentioned in section Il, we Q=) auw. (10)
can make use of prior information about longitudinal and v, EQ

transversal d_iffusion. As the diffusion param_eters mgyngba Therefore we obtain a new GMM with continuous DTs (with
between patients or by scale-factor effects in the sighain t eigen—valueg;, \», \s] and oriented along)) and mixture

it is important to determine the best set of parameters foh eg.qfricients equal t¢Q}

experiment. In present work we perform experiments usihg ra Due to the high sparsity in the vector for the discrete

brain data. The optimal parameters were determined bydfittig, | tions, the processetlisterswere composed in most cases
the standard DT model to the voxels in tberpus callosum of two or three vectors.

a well known region with high Generalized Anisotropy (GA)

[42] and relatively free of crossing fibers. Then, the mean o o )

values of the fitted DTs are used for designing the bade: Avoiding lll-conditioning in Merhotra’s Algorithm

in particular we found\i, A2, A3] = [6 x 10~ *mm?/s,2 x Last iterations of Merhotra’s algorithm could involve to

10~*mm?/s,2 x 10~4mm?/s]. solve an ill-conditioned problem of the formx = b, see
We do not constraith a; = 1 because (assuming théy [35]. For avoiding such a problem, we modi#y by adding

is accurate enough) a well designed basis will automayicathe valuex = 5x 1076 to the diagonal when its smallest eigen—

satisfy it. A summation different enough from 1 indicateser value is less than x 10~3: we solve insteadA + xI)x = b.

in the DBF design; in our experiments, for such a voxelwise

summation, we obtained a mean value equd).6. D. Fast Convergence

. ) ] In order to speed up the GS solver for (9), we use the BP
B. Computation of a Continuous Solution solution as the initial guess fer. Then we eliminate noise by
The formulation presented in section Il produces a discreteeans of a spatial integration performed by a small number
set of PDDs that can be conveniently post-processed fufriterations of the GS approach.
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- | )

= |
T O B 3 ) aa ¥ 0 \ 7 FI a a 0 T
(@) S(ag,T) (b) DS 2 coplanar (c) CS 2 coplanar (d) DS 3 coplanar
(e) CS 3 coplanar (f) EAP for (e) (g) DS 4 coplanar (h) CS 4 coplanar
(i) DS 4 non-coplanar (i) CS 4 non-coplanar (k) DS 5 non-coplanar () CS 5 non-coplanar

Fig. 4. Results of noise-free synthetic experiments. The filkés are plotted in black. (a) DW signal for 4 non—coplanbeffiorientationshb=1200s/mm?,
Dg = 1 x 1073, Dy = 2 x 1072, (b) and (c) Discrete Solution (DS) and refined Continuouit®m (CS) for 2 coplanar fibersh=800 s/mm?,
D, =6x10"%, Dy = 2x10~4 (these diffusion parameters are similar to those obtained fre rat brain white matter). (d), (e) and (f) DS, CS and EAP
for 3 coplanar fibersh=800s/mm?, Dy = 6 x 10~%, Dy = 2 x 104, (g) and (h) DS and CS for 4 coplanar fibebs1350s/mm?2, Dy = 1 x 1073,
Dy = 2 x 1072, (i) and (j) DS and CS for 4 non-coplanar fibets;1200 s/mm?, Dy = 1 x 1073, Dy, = 2 x 1074, (k) and (I) DS and CS for 5
non-coplanar fibersy=1000s/mm?2, Dg; = 1 x 1073, Dgp = 2 x 1074,

V. RESULTS ONSYNTHETIC DATA

For showing important features of the signals, all previous
figures were generated using-5000 s/mm? and a high
angular resolution (so that, th&(q,7) signal generates
contrasted plots). In real imaging protocols lower values f

synthetic results obtained by using only 23 diffusion ericgd
orientations, relative small values and small ratios between
the longitudinal diffusion(D,;) and the transversal diffusion
(Ds,), see Fig. 4. An example of a realisti§(qy,7) is
shown in Panel 4(a). Same Fig. shows synthetic noise-free
experiments and demonstrates the capability of our methiod f
resolving multiple fiber orientations (in yellow parallplped)
with a small error. We show the discrete solution and the
continuous solution computed according to the procedure
described in subsection IV-B. The real axis for the maximum
diffusion orientations are plotted as black lines. In Pat(é)

we show, for illustrative aims, the EAP for the recoveredtinul
DT in Panel 4(e), computed with inverse FT of the GMM as
indicated in [8]. We note that the peaks of the EAP (aligned,

N Ve \\QQQ\\ Y RN
N N R
as expected, with the PDDs of the recovered multiDTs) corre- I _ k \\\
sponds with the axes for the maximum diffusion orientations A 0 T 0
Such EAP peaks are directly determined by the orientation (c) 0 =6.98 (d) 6 = 6.47
of DBF with significant o values. Thus, in our approach,Fig. 5. Simulated crossing fibers, the signals were corrupiitd Rician
for bunch fiber detection we look for large values and the noise, SNR = 2.0 (6.02 dB). (a) Solution without regulaimat(BP based

. fthe EAP | t ded. F ti ._method). (b), (c) and (d) noise removal effect with the quacifarmulation
ComPUtat'on otthe IS o n.ee ed. For F:ompu ING PrevIOYRy the mean angular errafs The solution in (d) is over—smoothed because
solutions, the BP solver requires approximately 35 ms pefra too largeus value. See text for details.
voxel, implemented in C language, on a modest PC Pentium
IV, 2.8Mhz.

In order to analyze the expected error in real conditions,

NN
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we performed 3D synthetic experiments simulating 3 non-

coplanar fibers within the voxel, oriented with azimuthal TABLE |
and elevation angles equal tar/4,7/4], [37/4,7/4] and Mean ANGULAR ERRORA V'S. SNR.M = 23 MEASUREMENTS b = 1250
[37/2,m /4], respectively. In Tables I, II, lll and Fig. 6, W€ s/mm?, DBF PARAMETERS[A1, Aa.3, N] = [9 x 104, 1 x 104, 129],
show the computed mean angular erthrof 100 experimen- DIFFUSION PARAMETERS[D gy, Dir] = [1 x 1073,2 x 1074],
tal outcomes taking into account 4 important variables that COMPARTMENT SIZESS; = 1/3, (i = 1,2, 3).
directly affect the solution quality:
1) Noise robustness. Th&(q, ) signals were corrupted SNR 4
with Rician noise with an SNR (see the Appendix for 2(6.02dB) || 15.21
SNR definition) range from 2 (6.02 dB) to 16 (24.08 4(12.04dB) || 7.75
dB), see Table I. 6 (15.56 dB) || 5.29
2) Error in the diffusion basis with respect to the diffusion 8(18.06 dB) || 3.68
parameters in the data. The purpose of this set of 10 (20.00 dB) || 3.66
experiments is to evaluate the sensitivity of the method 12 (21.58 dB)|| 2.74
to deviations in the pre—fixed DBFs with respect to the 14 (22.92dB)|| 2.15
real diffusion parameters which change between voxels, 16 (24.08 dB)|| 1.85
see Table Il.

3) Method capability for recovering intra—voxel geometry
with different b-values, see Fig. 6.
4) Sensitivity to changes in the fibers compartment size,
see Table IlI. TABLE II
As one can see, the mean angular ergo-rs small enough for MEAN ANGULAR ERRORA VS. BASIS PARAMETERS. N = 129, M = 23
a large set of parameter variations. These results impiowe t °'FFUSION MEASUREMENTS b = 1250s/mm?*, SNR = 6 (15.560B),
methods of the state-of-the-art. The method in [43] is ietst DIFFUSION PARAMETERS[Dq1, Dtr] = [1 x 107%,2 x 1074],
to recover only one or two fibers orientations within a voxel, COMPARTMENT SIZESB; = 1/3, (i = 1,2,3).
and reports a mean angular error smaller than 10 degrees for,

simulated fibers with a$ N R=80 (We note that thé NR is A — A2,3 — [T - DD“Z’?ZTHF 0
not defined in [43], so can not be directly compared with our | -°0*10 0.5 x 10 1.5 x 10 5.45
9.00 x 107% || 1.0 x 1074 1.0 x 10—4 5.77

SNR definition). In our work, we obtainei~ 5 degrees for — — —
SNR=6 (15.56 dB), for the 3 fibers case, see Table I. For SNR | 220X 10° || 1.5 x 10 5.0 x 10 5.02
> 6, our algorithm is capable of yielding high quality results | 1:99 > 10 2.0 x 10 0.0 5.46

( 6 < 6 degrees) with realistié values, see Fig. 6. 1.05 x 1072 || 2.5 x 107 5.0 x 107° 511
Fig. 5 demonstrate the spatial and contrast regularization | 110> 107* || 3.0 x 107% 1.0 x 107 4.96

performance, introduced in section 11I-B. We simulate assko 1.15x 1073 || 3.5 x 107 15x 1074 560

ing of two fibers with 5=1250 s/mm?, D, = 1 x 1073

mm?/s, Dy = 2 x 107* mm?/s, SNR = 2 (6.02 dB)

and a 2D tensor basis composed Mf = 30 orientations.

Panel 5(a) shows the noise corrupted recovered solutidm wit

the BP procedure (i.e. without regularization). The result , Mean Angular Error vs. SNR and b values

orientation errors are similar to the ones reported by Rerri o

et al. [44], wheref ~ 30 degrees was reported in a crossing X b values

zone for a realistic phantom and, in our opinion, reveals the ‘e -

need of introducing a regularization mechanism for dealing 12| x 1250

with highly noise data. Panels 5(b),5(c) and 5(d) show the | w0

noise removal effect when our proposed quadratic regeldriz “I

method is used. The regularization parameters used in the
experiments wer€us, u.] = [1.0,0.5], [ps, pe] = [2.0,0.5]

and [us, 1e] = [3.0,0.5], for in Panels 5(b), 5(c) and 5(d), o
respectively.

Mean Angular Error (degrees)

VI. RESULTS ONRAT BRAIN DW-MR DATA

Under deep anesthesia, a Sprague Dawley rat was transcar-
dially exsanguinated then perfused with a fixative solutiofig. 6. Mean angular srro@ Vs. SN? andb-valu]eS-M[: 23 dizfusion
; : easurements, tensor basis paramefis A2 3, N] = [9 x 107%,1 x
of 4% parafor_maldehyde_ in phosphate buffered_sallne (PB 4 129), diffusion parameterd D, Du] — [1 % 10-3,2 x 10-4],
The corpse is stored in a refrigerator overnight then th@mpartment sizes; = 1/3, (i = 1,2, 3). See text for details.
brain was extracted and stored in the fixative solution. For

MR measurements, the brain was removed from the fixative
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Fig. 7. Computed DTs of the GMM from a real rat brain DW-MR segpenimposed over the GA axial map. Note several fiber crossindssplits. (f) GA
map, FA map and their difference for the ROl in (a).

TABLE Il LI IR AR Y Y
MEAN ANGULAR ERROR® VS. COMPARTMENT SIZES([31, B2, 33]). LR LI : : : : ': N
— - 2 _ VYA \
M = 23 DIFFUSION MEASUREMENTS b = 1250s/mm?*, SNR = 8 AEEEEEEE Y
(18.06DB), TENSOR BASIS PARAMETERS CAABRERARERRYY
[A1,X2,3, N] = [9 x 1074, 1 x 10~4,129], DIFFUSION PARAMETERS \ : : 2 ; ; ; Q § ::
[Dai, Der] = [1 x 1073,2 x 1074]. AR EREE
compartment sizes 0 Mean Recoveredd;, Bz, B3] Ay ANE v\ ANE (\b)
[0.333,0.333,0.333] || 3.90 [0.279,0.283,0.279] A ANV A YA AAN vAVAVAAALAK
[0.433,0.283,0.283] || 7.15 [0.363,0.220,0.221] HEEERRREY MY AVANANANAR
CETAATR TR TR RRLERY CAATAYRIRTATRTRILY
[0.533,0.233, 0.233] 14.16 [0.439,0.186, 0.183] IRy TR
[0.633,0.183,0.183] || 19.27 [0.510, 0.150, 0.159] RS SRR YY NN NN NN NN
T AABRRERRR LA BB R R
VAV AN VAN AN
solution then soaked in PBS, without fixative, for about 12 (©) (d)

hours (overnight). Prior to MR imaging, the brain was rentbverig. 8.  Results of regularization in the rat corpus callosa). ROI in

from the saline solution and placed in a 20 mm tube wit}ia! GA map. (b) Without spatial regularization (BP basediroe} by using

fl . d oil | . | = 23 measurements, the yellow circle indicates a voxel where tligeno
uorinated oil (Fluorinert FC-43, 3M Corp., St. Paul, Ile)and the reduced number of measurements produces an inacasalie (c)

and held in place with plugs. Extra care was taken to remowgth M = 23 measurements and quadratic regularizatjon= 0.50, pc =
any air bubbles in the sample preparation. 0.18. (d) With M = 46 measurements with the BP method. Note that the
The multiple-slice diffusion weighted image data were meg?sult obtained in (c) and (d) are equivalent for all pratjpurposes.

sured at 750 MHz using a 17.6 Tesla, 89 mm bore magnet with

Bruker Avance console (Bruker NMR Instruments, Billerica,

MA). A spin-echo, pulsed-field-gradient sequence was usdifusionb weights: 100 and 1258/mm?. Diffusion-weighted

for data acquisition with a repetition time of 1400 ms and amages with 100s/mm? were measured in 6 gradient di-
echo time of 28 ms. The diffusion weighted gradient pulseections determined by a tetrahedral based tessellatioa on
were 1.5 ms long and separated by 17.5 ms. A total bémisphere. The images with a diffusion-weighting of 1250
32 slices, with a thickness of 0.3 mm, were measured withmm? were measured in 46 gradient-directions, which are
an orientation parallel to the long-axis of the brain (Sicealso determined by the tessellation on a hemisphere. The 100
progressed in the dorsal-ventral direction). These sliea® s/mm? images were acquired with 20 signal averages and the
a field-of-view 30 mm x 15 mm in a matrix of 200 x 100.12505s/mm? images were acquired with 5 signal averages in
The diffusion weighted images were interpolated to a matre total measurement time of approximately 14 hours. In our
of 400 x 200 for each slice. Each image was measured wittDBF based reconstruction, we used only the DW images with
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Real 3 fiber crossing in a rat cerebellum. (a) ROl GA map.Region in which three fibers are present. The diffusiom@lX axis were plotted
in red, alongY axis in green and alon@: axis in blue. Note that the region contains an intersectib8 ber bundles. (c) Zoom in a voxel where the 3

Fig. 9.

bundles are crossing.

b=1250s/mm?.

Representative results for this rat brain data are shown
in Fig. 7. The GMM model is computed for each position v
plotted and shown as overlapped ellipsoids. The processed - ‘
brain regions are indicated by the highlighted boxes in the -
GA map. The intersecting fibers of cingulum and corpus o e —
callosum are seen in Panels (a) and (b) (see Plate 111 and @ )

Fig. 111, Paxinos and Watson [45]). In Panels (c) and (d),

the detailed fiber structure of the fimbria of the hippocampié. 10. SyntheticS signal generated for a three fiber crossing with compart-
can be seen, that illustrates the entry of fibers into the fanbf[gexnltosli‘ff; 1:0}{;?”1(2@9]:’ C}h:fi’s?g'nt;;‘;(’ra ff;;fi%ﬁtfﬁll’ X’\foiév ];
from surrounding structures. This detailed analysis shba&6 10-4), v = 46 measurements; = 1250 s/mm? and SNR = 5 (13.97
the computed fiber orientations appear to be congruent with) . (a) Result for Q-Ball, mean angle error (for the threeripe = 10.90
the prior anatomical knowledge for those regions. Note th&t9rees (b) Result for DBF approachs= 3.78 degrees.

according to Panel 7(d), a significant difference between th

GA (computed from a 6-rank tensor [46]) and FA map are TABLE IV )

found in the crossing zone, the same region where we detected MEAN ANGULAR ERROR FORDBF ((pr) AND Q—BALL (00)

more than one fiber per VOXE' (as noted in [47]) RECONSTRUCTIONS THREE FIBER CROSSING WITH COMPARTMENT SIZES

The capabilities of the regularization presented in sectio fi =1/3,(i =1,2,3), TENSOR BASIS PARAMETERS
I1I-B are shown in Fig. 8, note how the noise effect is elimi- *1:A2:3: N = [9x 1073 x 107%,129], DIFFUSION PARAMETERS
nated and the obtained results with = 23 measurements are [Pai» Dir] = [1 10722 x 10™%]. WHEN THE PARAMETER WAS NOT
equivalent to the ones obtained willi = 46 measurements, UNPER ANALYSIS WE SETM = 46 MEASUREMENTS b= 1250s/mm>

Finally, we show in Fig. 9 a region of decussation in the AND SNF =6 (15.5608).

cerebellum, in which we recovered voxels with 3 fiber bundles
using the BP approach (i.e. without spatial regularization
Note that the region is composed of voxels with 2 and 3
maximum diffusion orientations; in particular, in the oent
we can observe voxels with the 3 spatially congruent fiber

SNR—[0g.0pEF]

M—[0q.0pBF]

b—[00.09pBF]

10—[ 8.70 , 2.49]

513—[ 7.57 , 1.70]

3000-[9.23 ,3.37]

6—[ 9.41 , 4.81]

129-[ 8.03 ,3.78]

2000-[9.48 ,3.61]

4-[11.02 , 5.82]

46 9.57 ,3.97]

1250-[9.42 , 3.77]

2—[24.24 ,11.41]

23-[27.57 ,5.43]

900-[9.18 , 3.48]

orientations.

VII. COMPARISONSWITH Q—BALL METHODOLOGY In Fig. 11 we show the Q-Ball solution for the rat DW-

In this section, we compare the performance of the propo$4R images. Confronting Panels 11(a) and 11(b) with Pan-
method with respect to Q—Ball, a well known non—parametrils 7(b) and 7(d) respectively (both results without spatia
method [23]. For all Q-Ball results, we compute the EARegularization), the Q—Ball results presents poor peréoroe
for the 129 orientations defined in section IV-A.1 (the sanf@r such conditions, i.e. low spatial coherence in the éngss
orientations that we use for building the DBFs) and the int@one in Panel 11(a) and inability in resolving the intra-elox
gration over the equators was performed over 36 interpplat@formation (dark region) in the crossing zone in Panel 11(b
uniformly spaced points. In the kernel regression stage weStatistical values for the performance of both methods are
used the following parameters: cutaff. = 20 degrees and shown in Table IV. Each experiment consist of 50 Monte—
og-Bau = 10 degrees. A peak in the computed EAP wa€arlo outcomes with variations of the acquisition paramsete
defined as the maximum value in a radius of 20 degrees. The § value reported by the DBF method is about half of the

Fig. 10 shows a comparison, given the same sigfial one obtained by the Q-Ball approach. This behavior agrees
for a three fiber crossing with Rician noise and in realistiwith the results on rat DW-MRI: Fol/ = 46 and b=1250
acquisition conditions. Note that our proposed methodntspos/mm? we expect a significant large valddor Q—Ball, about
small mean angular errof, than Q-Ball. twice the one obtained by the DBF approach.
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K will not be exactly recovered. However, such errors are kmal

: : : f and do not significantly alter the estimated fiber orientetio

HE O (the most important data in axon fiber tracking). The later

) conclusion is congruent with our experimental results show

LI in Table II.

; 1 x : We have presented a new representation for directly obtain-
e srreeess dN ing the local nerve fiber geometry from DW-MR measure-
e s seeess § ments. Our proposal, by means of discrete approximation of

- ”jjjj;z, $ the GMM dubbed DBF, overcomes the well known difficulties

®) of fitting a GMM to DW-MR data:

1) Automatically computes the number of fibers and the

Fig. 11. Q-Ball results for the rat brain DW-MRI, confronttivithe DBF compartment sizes within each voxel, avoiding the need

results in 7(b) and 7(d). of prior knowledge about the number of Gaussians.

2) Is capable of detecting more than 2 fibers within a voxel,
that improves the state-of-the-art for methods based on
parametric GMM.

The use of Basis Functions (for instance radial or kernel 3) Allows us to infer complicated local fiber geometry with
basis functions) that span a subspace of smooth functicas is DWiIs collected along a sparse set of diffusion encoding
common and successful strategy for noise reduction in bigna  directions (46, or 23 by using quadratic regularization)
and image processing problems. Such a strategy can be seen as opposed to techniques that use a large number of
as an implicit regularization procedure where prior knalgie directions in HARDI data sets.
is introduced by selecting the right form of the base funttio 4) According to our experiments, it yields small angular
In our case, the chosen basis functions are directly related errors for relatively smalb values (12505 /mm?).
with the signal observation model. Thus, besides promoting5) Has the additional advantage of being formulated as
noise reduction, our formulation reconstructs the signal b a constrained LP or constrained quadratic optimization
estimating the control parameters of the diffusion progdss problem, that are solved efficiently by a parallelizable
a—coefficients). An important characteristic of the proposed interior point method or by the solution of a bounded
DBFs is that they are over-complete for spanning the sulespac  linear system, respectively.
of smooth functions: Some reconstructions can be computggl the best of our knowledge, the aforementioned properties
with different combination ofa-coefficients; for instance, considerably advance the state-of-the-art.
because of the sparsity constraint, an isotropic diffusimbe |t is important to note that (8) uses an L-1 norm instead
approximated with several triads of DBFs with self-orthogb of an L-2 norm. In this sense, we know that the L-1 norm
PDD; similarly a flat (2D-isotropic) diffusion with differé belongs to the robust potential category, distinct from the
possible pairs of DBFs. This could be seen as a limitatiarp-norm. From an ill-posed problem the BP schema allows
of our model that makes the restoration process ill-posegs to introduce prior information about the desired sohutio
But it only means that if theS(gx) signal does not exhibit namely: to select among possible solutions that minimikes t
preferential diffusion directions the DBF representatibhus, magnitude of the residual vecto, = ®« — S, the one with
our proposal, like others as DT, Q-space or deconvolutigiie high sparsity in ther vector. This could be translated in
methods will be unable to recover the intra—voxel geometrythe DW-MR framework as, “to explain the voxel's DW signal

Undefined diffusion directions can be caused by noise with as few as possible DBFs.”
tissue properties, as in gray matter or Cerebral SpinaldFlui Because the solution is given in a parametric form, the
In this work we assume that white matter has previously befiber orientations are computed by basis PDDs weighted
segmented from other tissues and thus the proposed mdsielthe recoveredn coefficients, so that the probability of
can recover the intra-voxel fiber structure for the case wf lodisplacement is achieved without the need of looking fokpea
level of noise. In other cases, for relatively high levelsgia in non-parametric models as in [48], [49]. Moreover, in our
regularization process that codifies the prior knowledgautib case for fiber pathway tracking one can use the simple method
smooth fiber trajectories is proposed. Subsection llI-A Bikd reported in [10] (no modifications are needed).

B presented our approaches for the two noise level caseg aboDistinct from the model-free methods (as Q-Ball, DOT,

discussed . etc.), our method implicitly incorporates prior knowledge

The present work is based on the assumption that the MRonal water diffusion models for the reconstruction of the
signals for a single fiber orientation are sufficiently homog diffusion signals. In particular, we use the free diffusiandel
neous in the white matter tissue (as in [12], [26], [28]),lsatf because the parameters (the DT) can be easily estimated from
for each voxel, the MR signal could be explained as a linettre corpus callosum for each patient (see subsection IY-A.2
combination of DBFs that takes into account changes only ltowever, the proposed method can be adapted to use others
orientation. In [26] it was noted that if the diffusion parat®rs axonal water diffusion models, as the cylindrical confined
change by different myelination levels, axonal diameterd adiffusion model [31]. In such a case it is necessary to comput
axonal densities, then the diffusion parameters violate tthe diffusion coefficient, cylindrical radius and length the
homogeneity assumption and the relative volume fractio@®derman’set al. model.

VIIl. Di1scussiION ANDCONCLUSIONS
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Model based methods (as presented here) have the @ad} A. Ramirez-Manzanares and M. Rivera, “Basis tensor dgumsition for
ditional advantage over model-free methods of being more restoring intra-voxel structure and stochastic walks fdeiiring brain

robust to noise because one can discard unreasonable fiber

connectivity in DT-MRI,” Int. Journ. of Comp. Vis.vol. 69, no. 1, pp.
77-92, 2006.

topologies; see experimental comparisons for an unique fipet] D. S. Tuch, R. M. Weisskoff, J. W. Belliveau, and V. J. Wed, “High
region of DT-MRI versus Q-Ball results in the fiber phantom
by Perrinet al. [44]. In many cases, the selection among dif[lz]

ferent mathematical models is based on algorithmic (nurakri

and algebraic) advantages. This is the case with our approac
Finally, the proposed method is very efficient as the DBfr3;
used in the GMM can be pre-computed by using the ac-
quisition parameters. We demonstrated via experiments, th*
performance of our algorithm on synthetic and real data sets
and in the former case, the results were validated.
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APPENDIX
NOISE GENERATION ANDSNRDEFINITION

(18]

(18]

For the MR images, the Rician noise distribution results
in the magnitude of the complex number such that the rgad
and imaginary parts were corrupted with additive indepande
Gaussian noise with/(0, 02). Thus one can simulate signals

S (qk, ) corrupted with Rician noise [50] assi, (qx,7)

V(S(qk, ) +1)2 + £3; wheree; ~ N(0,0), e2 ~ N(0,0).
Signal-To—Noise—Ratio (SNR) was computed according to
the ratio of the peak—to—peak distance in the signal to tha;
Root Mean Square of the noise signal (that as convention is
equal too [51]) as: SNR(S,0) = 2ex(8-minlS) " por the
aim of correct experiment reproducibility, we prefer theed |5
SNR convention that avoids dependency on the Direct Current

(DC) component in the signal (differently to one that depen
on the mean value of). For the decibel standard, we us

SNRdB(Sa 0') =20 loglO(SNR(S7U))

(1]
(2]

(3]
(4]

(5]

(6]

(7]

(8]

(9]
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