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Abstract. We present a regularized method for solving an inverse problem in Diffusion Tensor

Magnetic Resonance Imaging (DT–MRI) data. In the case of brain images, DT–MR imagery

technique produces a tensor field that indicates the local orientation of nerve bundles. Now

days, the spatial resolution of this technique is limited by the partial volume effect produced

in voxels that contain fiber crossings or bifurcations. In this paper, we proposed a method

for recovering the intra–voxel information and inferring the brain connectivity. We assume

that the observed tensor is a linear combination of a given tensor basis, therefore, the aim

of our approach is the computation of the unknown coefficients of this linear combination.

By regularizing the problem, we introduce the needed prior information about the piecewise

smoothness of nerve bundles orientation. As a result, we recover a multi–tensor field. More-

over, for estimating the nerve bundles trajectory, we propose a method based on stochastic

walks of particles through the computed multi–tensor field. The performance of the method is

demonstrated by experiments in both synthetic and real data.
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1. Introduction

One of the most challenger medical goals is the estimation of brain connectivity

in vivo. For this purpose, a special Resonance Magnetic Imaging (MRI) technique

named Diffusion Tensor Magnetic Resonance Imaging (DT–MRI) is used. DT–

MRI are computed from three–dimensional (3D) Diffusion Tensor Images (DTI).

They measure the directional microscopic diffusion of water in tissues, specifically

in brain tissue, such a diffusion is constrained by cellular walls. The Stejskal–

Tanner equation (Basser et al., 1996; Westin et al., 2002),

Sr = S0r exp(−bgTDrg), (1)

shows, for a given voxel r, the relationship between the measured signal magni-

tude without diffusion S0, and the one attenuated by the water diffusion in the

tissue S. The unitary vector g = [gx, gy, gz]
T indicates the direction in which a

directional independent magnetic gradient is applied, Dr is a positive definite

symmetric tensor that determines an angular diffusion coefficient and b is a

constant that depends on the acquisition parameters, see (Westin et al., 2002)

for more details. The conventional procedure for computing the tensor field D

is based on a least–squares method with at least 8 diffusion images, S(i):

argmin
Dr

L
∑

i=1

[

ln S(i)
r − ln S0r + bg(i)TDrg

(i)
]2

, (2)

where L is the number of acquired diffusion weighted images, each one corre-

sponding to a magnetic gradient in the g(i) direction. The least–squares problem

(2) is solved for the 6+1 unknowns (Westin et al., 1999). Such unknowns are six

independent components of the symmetric diffusion tensor, Dr, and the diffusion

free signal, S0r. One can find in the literature a close-form to fit the diffusion

tensor: the tensor Dr is decomposed in a particular orthonormal tensor basis

(Westin and Maier, 2002) . However, this method is more sensitive to the perni-

cious noise effect than the least–squares. Nevertheless the least–squares method,
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Figure 1. Geometric representation of probability distribution associated to a diffusion tensor.

Figure 2. Several combinations of two high–anisotropic tensors produces the same

low–anisotropic tensor.

as the method reported in (Westin and Maier, 2002) do not constrain the tensor

to be positive definite and a post-processing that guarantees the positiveness is

required. For this reason, recently, (Tschumperlé and Deriche, 2003b) and (Wang

et al., 2003) proposed regularized methods addressing such a problem.

A diffusion tensor can be visualized as a 3D ellipsoid, as shown in Figure

1. In this geometric interpretation, the principal axis are aligned according to

the eigenvectors [ê1, ê2, ê3], the respective eigenvalues, λ1 ≥ λ2 ≥ λ3, define the

diffusion magnitude along each axis. Thus, ê1 is named the principal diffusion

direction (PDD). A study of the behavior of the eigenvalues gives more insight

on the angular diffusion variation into the voxels. The relationship between

eigenvalues allows one to establish 3 kinds of diffusion (Westin et al., 1999), that

corresponds with 3 different levels of anisotropy (anisotropy is a measure of the

3–D asymmetry): a) λ1 ≫ λ2 ≃ λ3, high anisotropy; the geometric interpretation

of such tensor has a cigarette shape, b) λ1 ≃ λ2 ≫ λ3, medium anisotropy, the
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geometric interpretation of the tensor looks like a plate and c) λ1 ≃ λ2 ≃ λ3,

low anisotropy, this case is visualized as a soccer ball.

In the 3D case, the one concerns here, fractional anisotropy (FA) is the most

commonly used measure (Basser et al., 1996; Basser et al., 2000):

FA(D) =

√

(λ1 − λ2)
2 + (λ1 − λ3)

2 + (λ2 − λ3)
2

2 (λ2
1 + λ2

2 + λ2
3)

, (3)

where λk is the kth eigenvector of D. Note that FA is close to one for highly

anisotropic tensors, while FA is close to zero for a low anisotropic tensor (the

spherical case).

In addition to standard studies on MR images, as the classification of voxels

between white/gray matter tissues, the FA of DT–MR images provides tissue

information. In white matter, according to medical prior knowledge, one expects

high anisotropic coefficients and low anisotropy in grey matter. However, per-

haps, the most important information that can be inferred from DT–MR images

is tissue connections. That means that, for brain, one could estimate axons

bundle pathways by following the PDD’s in regions with high anisotropy (sites

where FA takes large values). This information is very useful in medical image

research, due to the relationship of brain connectivity with several diseases, and

in general, with brain development [see (Buxton, 2002; Poldrack, 2001)]. Due

to the promissory use of the DT images, now days, one can find works that

reports classical computer vision techniques applied to those medical images; for

instance segmentation (Zhukov et al., 2003) or nonrigid registration (Ruiz-Alzola

et al., 2000; Gee et al., 2002).

As in any other imaging acquisition technique, DT–MR images can be cor-

rupted with noise, and therefore, a filtering processes are required. Other problem

concerns the limited resolution for dealing with partial volume voxels. This is,

when a voxel contains a cross or a bifurcation of fibers. In the following subsection

we discuss the problem produced by this partial volume effect.
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1.1. Statement of the Problem

Noise is not the only problem precluding DT–MR images; partial volume voxels

have a more pernicious effect than in standard MR images: the observed diffusion

tensor at voxels where two or more fibers cross, split or merge, is the addition

of several diffusion tensors,—each one aligned with a particular bundle fiber.

The addition of two almost orthogonal tensors with high–anisotropy results in

a tensor with low–anisotropy. This fact increases the uncertainty of the tissue

orientation (the inverse problem is not well–defined, see figure 2)(Westin et al.,

2002; Wiegell et al., 2000). So, one needs to solve these issues in order to recover

the two tensors that produced the measured one.

If the image spatial resolution is increased, then the partial volume effect can

be reduced in voxels located at boundaries of differently oriented tissues, but

with a significant increment of the acquisition time. However, the partial volume

effect produced by fiber crossing can not be diminished by increasing the spatial

resolution. Therefore, in order to compute a good estimation of the original fiber

pathways, it is necessary to develop a process that recover the lost intra–voxel

information.

There are several methods reported in the literature for estimating fiber path-

ways. Those methods are based on: performing deterministic walks of particles

on the tensor field by following the PDD, partial differential equations (Basser

et al., 2000; Basser et al., 2002), local regularization techniques (Poupon et al.,

2000; Zhukov and Barr, 2002), or the propagation of a wavefront by using a fast

marching method (Parker et al., 2002). In (Björnemo and Anders, 2002), the

displacement direction of a particle is computed with a deterministic method.

Then, this direction is randomly disturbed in order to introduce a stochastic

behavior. (Lazar et al., 2003) proposed a method called TEND (TENsor De-

flection), that produces smooth fiber trajectories by enforcing the new particle

direction to be close to the previous direction and the tensor PDD in the current
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a) b)

Figure 3. a) Schema of a tensor field on a fiber crossing. b) particles walking through the

horizontal fiber path; most particles are deviated from the right trajectory, due to the uncertain

direction on the cross.

position. The compromise between these two lead directions is weighted by the

local FA coefficient. In any case, the partial volume effect reduces the estimated

fiber pathways accuracy.

Figure 3 illustrates the estimation of fiber pathways in a fiber crossing. As one

can see, the intersection of two bundle fibers produces a region where the local

orientation is uncertain (FA≃ 0). In order to ensure that the particles chose

the right trajectory through the fiber crossing, they should reach to the low

confident region with a trajectory aligned to the tracked fiber. Otherwise, the

particle trajectory could be bent. To achieve this, in (Westin et al., 2002; Westin

et al., 1999; Björnemo and Anders, 2002) is applied an homogeneous Gaussian

smoothing to the tensor field. Although the blurring produces a denoising effect,

it also increases the orientation uncertainty. The approach reported in (Zhukov

and Barr, 2002) aims to reduce such uncertainty by computing the displacement

of each particle with a direction computed with a robust anisotropic average

of the tensors in a neighborhood surrounding the particle. One can also find

regularized schemes for fiber tractography: (Tschumperlé and Deriche, 2002)

proposed a regularized filter for orthonormal vector fields, as the defined by the

eigen–vector field of DT images. However, the lost intra–voxel structure is not

revealed. In their seminar work (Poupon et al., 2000) proposed a Bayesian regu-

larized based method. In such a work, the moving direction is deterministically
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computed as a MAP estimator that combines the PDD (at the current voxel)

and the a smooth extrapolation of the past trajectory.

The partial volume effect in DT–MR has capture the attention of recent

research. This is the case of the Tuch et al. work (Tuch et al., 1999; Tuch et al.,

2002; Tuch, 2002). They proposed a high angular resolution imaging method

based on an observation model built by a finite mixture of Gaussians:

Si = S0

M
∑

j=1

βj exp(−bgT
i RT

j ΛRjgi), (4)

where Λ is a fixed diagonal matrix of positive eigen–values. The unknowns, in (4),

are: the β coefficients, the rotation angles in R and the number M of Gaussians.

Such unknowns must be computed, independently for each voxel from a large set

of acquired images {S}. This Diffusion Multi–Tensor Magnetic Resonance Imag-

ing (DMT–MRI) technique allows one to recover the intra–voxel information that

is not observed in the standard DT–MRI. The drawbacks of the method are: the

large number of additional diffusion images {S} required (for instance, in (Tuch,

2002) are used 126 diffusion 3D–images), the consequent increment on their

acquisition time and the algorithmic problems related to Equation (4), which

is highly nonlinear. So that, multiple restarts of the optimization method are

required to prevent the algorithm from settling in a local minima. Furthermore,

no stable solution has been reported for more than 2 fiber bundles, i.e. for M > 2

[see discussion in Ref. (Tuch, 2002), Chap. 7].

Visualization of fibers is other topic of recent research: streamtubes and

streamsurfaces (Zhang et al., 2000), the creation of textured representations

of dense tensor-valued fields (Tschumperlé and Deriche, 2003a) and measures

maps of brain connectivity (O’Donnell et al., 2002). In this paper we do not

deal with the visualization problem and our visualization tools are intuitive and

basic.

It is well known the limitation of DT–MRI for representing the intra–voxel

geometric/structure of multi–modal water diffusions. So that, techniques that di-
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rectly uses raw data [S(i) in (2)] have recently been proposed. Such techniques are

named High–Angular Resolution. In our knowledge, the here proposed method

is the first one in reconstructing the intra–voxel structure from DT-MR images.

This allows to medical researchers to reuse the existing DT-MR databases and

perform new studies, that in other way could not be done. Actually, the paper

(Ramirez-Manzanares et al., 2004) presents the extension of the here proposed

method for working directly with raw data.

The method we propose here, based on a preliminary version introduced in

(Ramirez-Manzanares and Rivera, 2003), consist of two stages: i) restoration of

the intra–voxel information by computing the coefficients of a tensor basis field

and ii) estimation of fiber pathways by particle stochastic walks. The method

for reconstructing the intra–voxel information uses standard DT–MR images

as input data. That means that existing large data base or new measurements

of DT–MR images can be processed at a fraction of the acquisition time with

respect to DMT–MR images. Additionally, the proposed method is based on

the minimization of a cost function based on quadratic potentials. Such min-

imization can efficiently be performed with standard deterministic algorithms,

in particular, we used an iterated Gauss–Seidel scheme. In the second stage, we

estimate bundle fibers with a stochastic walk procedure formulated in a Bayesian

framework. This particles walk method is close related with (Poupon et al.,

2000) formulation. Differently, in our case there are several possible PDD’s in

a voxel and the posterior distribution of the moving directions is multi–modal.

Therefore, the new position of the particle is computed by sampling the posterior

distribution of the displacement directions. In order to compute this posterior

distribution, we take into account: the information of the reconstructed diffusion

multi–tensor field in a likelihood term and the last positions of the particle in a

prior term (regularization). The prior term promotes smooth trajectories.

The structure of this paper is as follows. Section 2 presents the proposed

restoration method for the intra–voxel structure information. Section 3 presents
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the stochastic walk method for estimating the axon bundle pathways. Section

4 describes experiments with both synthetic and real DT–MR images and a

validation procedure for the recovered data and, finally, section 5 presents our

conclusions.

2. Restoration of Intra–Voxel Information

This section introduces the first stage of the method: the procedure for recovering

the intra–voxel structure. In order to motivate our approach, we first present the

observation model of the measured diffusion tensor field.

2.1. Observation Model of the Diffusion tensor

Differently to the method reported in (Tuch et al., 1999; Tuch, 2002; Ramirez-

Manzanares et al., 2004) [eqn. (4)], we suppose that the raw data set {S} is

not accessible, but the measured (fitted) tensor field D. However, in the above

referenced works is established the model, for two diffusion directions based

on the mixture of two Gaussians: S(i)/S0 = exp(−bgT
i T1gi) + exp(−bgT

i T2gi);

therein is noted that for small b–values one has that: S(i)/S0 ≈ exp(−bgT
i (T1 +

T2)gi) = exp(−bgT
i Dgi) with the observed tensor D = T1 + T2. Therefore, we

assume that D is the summation of individual tensors Ti:

Dr =
Mr
∑

i

Tir + ηr; (5)

where Mr is equal to the number of fibers with a different orientation (note that

M depends on the voxel), and η is a small residual tensor produced by noise.

Such former tensors, Tir, correspond with no–collinear fibers into the voxel, r.

The solution of the inverse problem implicit in (5), involves the computation of

the tensors {Tir}, with arbitrary size and orientation and their number Mr. For
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Figure 4. A example of 2D tensor base set T̄, with cardinality equal to four.

that reason, instead of the “exact” model (5), we propose to use an approached

model based on a predefined tensor basis, T̄. These base tensors are chosen such

that they are uniformly distributed on the 3D space of orientations, and they

have FA(T̄i) ≈ 1 (Figure 4 shows a 2D example of a basis set of four tensors

with their orientations uniformly distributed in the interval [0, 2π]). Therefore,

the approximated observation model is [compare with (4) and (5)]:

Dr =
N

∑

i

αirT̄i + η̄r, (6)

where N is the cardinality of the base T̄ = [T̄1, T̄2, ..., T̄i, ..., T̄N ] and α =

[α1, α2, ..., αi, ..., αN ]T is a vector field, such that the positive scalar αir denotes

the contribution, at the voxel r, of the base tensor T̄i to the observed tensor,

Dr. Note that the basis T̄ is, in general, not complete. For instance, a tensor

D = vvT (with v = [cos π/8, sin π/8]) is not a linear combination of the basis

tensor in Figure 4. Therefore, the new residual, η̄r, is produced by noise and

by the limited angular resolution of the basis, T̄. However, if one uses a tensor

basis with high angular resolution (N relatively large), one can expect that in

a voxel where there is only one fiber path, a single coefficient αi will take a

significant large value and the others αj 6=i would take values close to zero and,

as a consequence, one has η̄r ≈ ηr[see (5)]. In the same way, if there are m

different fiber paths in a voxel, then we expect that m coefficients αk will take

a significant large value with respect to the other coefficients.
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Figure 5. a) Information propagation from the anisotropic to isotropic regions. b) A 2D second

order neighborhood Nr of the voxel r.

2.2. Cost Function for Restoring Intra–Voxel DT–MRI

Structure

Model (6) can represent more than one tensor in a voxel, but, it is still necessary

to determine which linear combination of base tensors, in T̄, best fit the data Dr.

Unfortunately, the computation of the positive coefficients, {αir}, is an ill–posed

problem because the information provided by the observed tensor, Dr, and the

model (6) is not enough for computing a unique solution. So that, we regularize

the problem by using the voxel spatial context information. Thus, we want to

propagate the coefficient information, in white matter segmented tissue, from

regions with high anisotropy to those with low anisotropy. This is consistent

with prior knowledge that fiber crossing occurs in regions with low anisotropy,

as it is illustrated in Figure 5a. To solve this problem, we propose to minimize

a cost function of the form:

Û (α) =
∑

r

U (α; r) . (7)

This global cost Û is the summation of the individuals cost functions U (α; r)

associated to each voxel, r. A preliminary version of the local cost function is:

U (α; r) = ρ1

(

∑

i

αirT̄i,Dr

)

+ λsωr

∑

s∈Nr

ρ2 (αr, αs) + λcρ3 (αr) , (8)
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Figure 7. a) Coefficients with low contrast: high uncertainty about the significance of the basis

tensors. b) High contrasted coefficients: low uncertainty (see text).

where, in general, the potential functions ρj (with i = 1, 2, 3) define norms. In

next paragraphs, we clarify the meaning of each term in (8).

The first term corresponds to the negative log–likelihood in the Bayesian reg-

ularization framework (Geman and Geman, 1984; Li, 2001). This term penalizes

the difference between the proposed model and the observed tensor, Dr. In this

particular case, we use the Frobenius’s norm for quantifying such a difference.

Then ρ1

(
∑

i αirT̄i,Dr

)

= ‖∑

i αirT̄i − Dr‖2
F . Appendix A shows the residual

model that lead us to the Frobenius’s norm as the negative log-likelihood.

The second term (first regularization term) codifies the prior knowledge by

penalizing the spatial inhomogeneity of the vector α. In order to promote the

propagation of coefficients information from the regions with high anisotropy to

those regions with low anisotropy, and to restrict the opposite (see figure 5a),

we weigh this regularization term with the inverse of fractional anisotropy of the
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data: ωr = 1/FA(Dr), see Eq. (3). The relative contribution of this term, to the

total cost, is controlled by the parameter λs. Nr is the set of the 3D first neighbors

voxels of r (a second order neighborhood system), see Figure 5b. Additionally,

we want to constraint this smoothness process to be performed along the fiber

bundle. This is achieved by an anisotropic filtering of the coefficients α. There-

fore, we use the tensor T̄i as the inertia tensor for controlling such anisotropic

filtering of the layer αi, see Figure 6. Thus, ρ2 is a weighted quadratic potential

of the first differences: αr −αs. (Vigueras, 2001) proposed a method for compute

these weights given an inertia tensor T̄ir: wirs = (s − r)T
T̄ir (s − r) / ‖s − r‖4 ,

where wirs is the weight associated with the potential: (αir − αis)
2.

Finally, the third term, controlled by the parameter λc, promotes large con-

trast in the αir coefficients. Figure 7a shows a low contrast example, with high

uncertainty about discerning which tensors are more representative. On the other

hand, Figure 7b shows an example with low uncertainty: only two coefficients

have large values and the others are close to zero. The analysis of Figure 7 deal

us to the method for improving the contrast i.e.: by forcing each αir coefficient

to be different from their arithmetic mean: ᾱr =
∑

i αir/N .

Already we have all the ingredients for the final local cost function:

U (α, r) =
∑

j

(

∑

i

αirT̄ij − Drj

)2

+ λsωr

∑

s:s∈Nr

∑

i

wirs (αir − αis)
2

− λc

∑

i

(αir − ᾱr)
2 ; (9)

with the additional constraint αir ≥ 0,∀i, where i = 1, ..., N and j = 1, 2, ..., 9

is an index that runs over the tensor (a 3 × 3 matrix) coefficients.

2.3. Minimization Algorithm

The minimization of Eq. (7) is achieved by solving the linear system [(9) is

quadratic] that results from ∇Û(α) = 0 and with α ≥ 0. We use a simple Gauss–
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Seidel scheme, with the additional advantage of low memory requirements, for

solving this linear system. Such iteration is:

αt+1
kr =

−∑

j

(

N
∑

i6=k

αt
irT̄ij − Djr

)

T̄kj + λsωr

∑

s:s∈Nr

wkrsα
t
ks − λcC1

N
∑

i6=k

αt
ir

∑

j T̄kj + λsωr

∑

s:s∈Nr
wkrs + λcC2

, (10)

where C1 = ZA −Z2
AZC +ZAZB and C2 = ZAZB −Z2

AZC −ZB, with ZA = 1/N ,

ZB = 1 − ZA, ZC = N − 1.

The non–negativity constraint on αir is satisfied by projecting to zero the

negative values at each αt+1
kr computation in (10). Following the Gauss–Seidel

minimization scheme, it is necessary to perform a few iterations over the N α–

coefficients at the r position before to update the next position, r+1. Note that,

if the contrast term is turn off (λc = 0); Eq. (9) is a quadratic programming

problem and a global minima can be computed. However, in the case of λc > 0,

the cost function could be no–convex and many local minima are possible. For

this reason is applied a continuation strategy for the parameter λc: we initially

set λc = 0, and then, once the algorithm has converged (with a low contrast on

the αr vectors), the right value of λc is used for refining the solution.

3. Stochastic Walks for Estimating Fiber Pathways

The second stage of the method for recovering fiber pathways in DT–MRI, is

the computation of virtual particles walks through the multi–tensor field. In op-

position to deterministic walk methods, reported in (Basser et al., 2000; Poupon

et al., 2000; Zhukov and Barr, 2002), our approach consist of stochastic walks.

Before to present the stochastic walk method, we establish some definitions.

xt denotes the position vector of a particle at iteration t, d∗
t+1 is the direction

(unitary vector) that leads the particle from the position xt to the next step,
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xt+1, and δ is the step size, i.e. δ = |xt+1 − xt|, then:

xt+1 = xt + δd∗
t+1. (11)

In our case, the particles pathways are close related with the fiber structure.

Therefore, we use the basis tensor decomposition introduced in section 2 in order

to infer the fiber pathways. Thus, the basis tensor decomposition coefficients

control the stochastic walks of the virtual particles. One can expect that in

voxels where only one fiber is present, a single coefficient of the tensor basis field

has a significant large value and its PDD indicates the fiber orientation. On the

other hand, in a bifurcation two coefficients have significant values. The particle

should choose any of those paths corresponding to the PDD’s.

In the simple case of one predominant displacement orientation, µ (note that

the PDD is associated with both ê1 and −ê1 ), we modeled the likelihood of a new

position of a particle, given the predominant orientation and the last position,

with the Dimroth–Watson distribution (Mardia, 1972):

P
(

xt+1

∣

∣

∣
xt, µ

)

=
1

K
exp

(

κ

[

µT (xt+1 − xt)

δ

]2
)

=
1

K
exp

(

κ|µT d∗
t+1|2

)

; (12)

where the parameter, κ, regulates the concentration around ±µ, and K is a

normalization constant.

In the next subsection we discuss how the direction d∗
t+1 and the step size δ

are chosen based on the tensor basis decomposition, i.e., we expand the model

given by equation (12) for the case with several PDD’s per voxel.
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∣

∣
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∣

{d∗
t
}
)

.

3.1. Computation of the Displacement Direction

For computing the displacement direction, d∗
t+1 in (11), we use a Bayesian es-

timation principle based on Markov processes, as it is following explained. Let

q = {q1, q2, ..., qN} a set of unitary orientation vectors (qi and −qi are not dis-

tinguished) each one aligned with the corresponding PDD’s of the base tensors,

T̄. Then, by using the Bayes Rule, we compute the probability of choosing a

particular qi orientation, as the orientation of the vector dt+1, given the α–

coefficient vector at the position r and the sequence of previous displacements:

d∗
1, d

∗
2, ..., d

∗
t , denoted by {d∗

t}, with1 :

P
(

dt+1 ‖ qi

∣

∣

∣
αr, {d∗

t}
)

=
1

Z
P

(

αr

∣

∣

∣
dt+1 ‖ qi, {d∗

t}
)

P
(

dt+1 ‖ qi

∣

∣

∣
{d∗

t}
)

, (13)

where Z is a normalization constant, and x ‖ y denotes that x is parallel to y. The

vector d∗
t+1 is computed by performing a sampling of the posterior probability

distribution (13). This process can be understood as a stochastic tournament.

The ambiguity in the sign of the orientation is solved by choosing from dt+1 and

−dt+1, the one with positive inner product with the extrapolated past direction,

i.e. the closest direction with the past trajectory.

The first term in (13), likelihood term, can be simplified by using the inde-

pendence between the coefficients α, at the current position, and the sequence

1 Due that: P (A|B,C) = P (B|A,C) P (A|C) /P (B|C)
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Figure 10. Functions for prior probability distributions: exp(−yT

t
T̄iyt) [in (+)] and

1/

√

yT
t
T̂iyt (in continue line). Polar (left) and rectangular (right) plots.

{d∗
t}:

P
(

αr

∣

∣

∣
dt+1 ‖ qi, {d∗

t}
)

= P
(

αr

∣

∣

∣
dt+1 ‖ qi

)

. (14)

We model this distribution with a probability mixture model of the form (Hastie

et al., 2001) [compare with (12)]:

P
(

αr

∣

∣

∣
dt+1 ‖ qi

)

=
1

ZM

N
∑

j

βrj exp(κ(qT
i qj)

2), (15)

where the mixing proportion parameters βrj are computed by normalizing the

αrj coefficients, i.e.

βrj =
αrj

∑

k αrk

, (16)

this satisfy
∑N

j βrj = 1. Given that the particle positions are real valued (xt ∈
Ω ⊂ R

3), then, mixture coefficients βxt
are computed with a trilinear interpola-

tion. Note that for a very large value of the κ parameter, one obtains sharper

distributions [i.e. exp(κ(qT
i qj)

2) = 1 if i = j and it is equal to zero otherwise]. In

such case the computation of the likelihood is simplified:

P
(

αr

∣

∣

∣
dt+1 ‖ qi

)

= βxti. (17)

This reduce significantly the computational time, specially for a large numbers

of particles and displacement steps.
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The prior probability in (13) codifies our prior knowledge about smooth fiber

trajectories. Specifically, this prior promotes that d∗
t+1 extends the sequence {d∗

t}
in a smooth way. If the stochastic walk is modelled as a Markovian process, then

the smoothness constraint, on d∗
t+1, depends on a few past steps. For instance,

we define the unitary vector: yt = d∗
t /|d∗

t | for a first order Markov processes that

preserves the last tendency, or

yt = (2d∗
t − d∗

t )/|2d∗
t − d∗

t | (18)

for a second order Markov processes that preserves the last curvature, see Figure

8. Then, we use

P
(

dt+1 ‖ qi

∣

∣

∣
{d∗

t}
)

=
1

Z2

1
√

yT
t T̂iyt

(19)

as prior probability for dt+1 ‖ qi; where Z2 is a normalization constant, T̂i =

trace[T̄i]I − T̄i is the inertia tensor associated to the ith base tensor, T̄i. A

geometric interpretation shows that (19) corresponds to the radius, ρ, in the y–

direction of the 3D–ellipsoid defined by the level set: (ρyt)
T T̂i(ρyt) = Z2. This

is illustrated by Figure 9; the radius in the direction yt is measured for the base

tensors corresponding to Figure 4. In this way, it is clear that the largest value

is computed with the tensor B. Consequently, in this case, it is more probably

than the next walk direction is parallel to the PDD of the base tensor B. We use

(19) instead of, the apparently natural Bingham’s distribution (Mardia, 1972):

P
(

dt+1 ‖ qi

∣

∣

∣
{d∗

t}
)

∝ exp(−yT
t T̄iyt), (20)

because (19) is sharper for high probabilities and allows us a clearer distinction

between close orientations, see Figure 10.

3.2. Implementation Details

Given that the computed walk have coarse trajectories because of the discrete

nature of the tensor basis, we refine the vector d∗
t+1 in order to obtain smooth
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a) b)

Figure 11. A 2D synthetic fiber crossing. a) The data tensor field. b) The 2D recovered

multi–tensor field.

trajectories. Such refinement consists on to use as displacement vector the re-

sultant sum of two vectors: the previous direction step d∗
t , and the winner of the

stochastic tournament, d∗
t+1. Note that, the refined orientation does not necessary

belongs to the set q.

4. Experiments

In this section, we demonstrate the performance of the method by numerical

experiments in both synthetic and real DT–MR data. In the second subsection

we show the validation of the obtained results. All the stochastic walks were

performed using the second order Markov process model, (18).

4.1. Results

Figure 11 shows the results of the first experiment in synthetic two–dimensional

(2D) data. Panel 11a shows the noisy tensor field with a fiber crossing. The

restored multi–tensor field is shown in panel 11b. Note that, the correct two

base tensors are recovered at the intersection and the noise is practically filtered.

Thus, the method discover the intra–voxel structure. Only the base tensors with

the αi coefficients that represent at least the 95% of the linear combination are
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a) b)

c) d)

Figure 12. Results of the numerical experiment with synthetic data (see text).

displayed. The parameters of the method were N = 6, λs = 1.0, λc = 0.1. We

choose the base tensors such that their eigen–values are [λ1, λ2] = [1, 0.1].

The second experiment was performed on the 3D synthetic data shown in

Figure 12, panel (a). In this case, the tensors show smooth wavy paths with no

orthogonal intersection. Panels 12b and 12c show the recovered multi–tensor field

and the detail of the intersection, respectively. Panel 12d shows the particle paths

of a set of 100 particles with starting point in the left part of the horizontal fiber.

We note that approximately the 15% of the particles are deviated to the other

simulated fiber bundle. This feature is product of the stochastic nature of the

particle walks and allows us to explore possible bifurcations in fiber bundles.

In comparison, deterministic walk methods will recover the same trajectory

for all the particles that were started at the same point. The parameters of

the method are: 33 orientations (N) that sample uniformly the 3D orientation

space, λs = 0.07, and λc = 0.05. The image test dimensions are 32 × 32 × 32

voxels. In this case, we choose the base tensors, such that their eigen–values are
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a) b)

c) d)

Figure 13. Results of the numerical experiment with standard DT–MRI data (see text).

[λ1, λ2, λ3] = [1, 0.1, 0.1]. We select this tensor basis based on the prior knowledge

that diffusion along the fiber PDD is about 10 times larger than the diffusion in

the transversal directions of real axon fibers (Buxton, 2002).

Figures 13 and 14 show the results of an experiment with real DT–MRI data.

The original DT–MRI data were acquired with a resolution of 128 × 128 × 20,

and each voxel corresponds to a volumetric space of 2mm × 2mm × 4mm. We

interpolate the data, so that, each interpolated voxel have a dimension of 1mm×
1mm×1mm (it corresponds to 186×154×60 voxels in the region of interest, i.e.

the parallelogram that contains brain tissue). The interpolation was performed

by using the DT data approximation method reported in (Pajevic et al., 2002),

with a scaling factor ∆ = 0.5. Panel 13a shows the fractional anisotropy of an

axial slice of the interpolated data (used as input to the algorithm for recovering

the intra–voxel structure) and the small square indicate the region of detail.

Panel 13b shows the region of detail of the interpolated DT. Panel 13c shows, the

detail of the recovered multi–tensor field and Panel 13d the computed trajectories
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Figure 14. particle trajectories computed with the stochastic walk in the recovered

multi–tensor field.

of the particles. In this case, the displacement of the particles was constrained

to lay in the axial slice shown in Panel 13a. Figure 14 shows the full view of

several pathways computed in the mentioned slice. It is important to note that

the set of parameters and the tensor basis were the same used in the experiment

of Figure 12.

Finally, figure 15 shows the result of the experiment designed to demonstrate

the capability of the method for filtering tensor fields. Panel 15a shows a region of

DT–MRI input data, panel 15b shows the recovered multi–tensor field and panel

15c shows the reconstructed tensor field Df
r . Such reconstruction is computed

with [see the direct model (6)]:

Df
r =

N
∑

i

αirT̄i. (21)

Note that the restored tensor field is congruent with the input data and the

enhancement is evident: the restoration have more defined local orientations

and a higher anisotropy.

The last experiment with real data was performed in order to study a section

of the corona radiata in a human brain. Figure 16 shows the results with a

crossing fiber region. The recovered intra–voxel structure is congruent with the
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a) b)

c)

Figure 15. Filtering of tensor fields (a region of detail). a) DT–MRI input data. b) intra–voxel

restoration and c) filtered tensor field (see text).

a priori anatomical knowledge for that region, see (Poupon et al., 2000, Figure

3).

4.2. Results Validation

The validation procedure consist in to generate synthetic diffusion tensors corre-

sponding to a two wavy fibers crossing. For each voxel, we established, for each

fiber, the diffusion coefficients D and the orientation present.

Then, we compute the Si, (i = 1, . . . , 4) signal decay coefficients according

with the expression in (Buxton, 2002, Chapter 9):

Si = S0 exp [−b(D1 cos2 θi + D2 sin2 θi] (22)
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a) b) c)

Figure 16. Results for a corona radiata section. a) FA map, the region of interest (ROI)

is marked, b) standard DT field of the ROI, the circle shows a crossing zone, and c) the

multi–tensor field recovered, see text.

in the case of one fiber present in the voxel, or

Si = S0 exp [−b(D1 cos2 θi + D2 sin2 θi + D3 cos2 φi + D4 sin2 φi)] (23)

if there are two; where D1, D2 are the principal and secondary diffusion coef-

ficients of the first fiber and D3, D4 are the principal and secondary diffusion

coefficients of the second fiber (D1

10
≈ D3

10
≈ D2 ≈ D4), θi and φi are the

angles between the orientation of the principal diffusion for the first and second

fiber respectively with the i-th acquisition axis (see figure 17). The b coeffi-

cient was set to 1000 s/mm2 according to the standard DT-MRI protocol, and

D1 = 1 × 10−3mm2/s (typical for brain white tissue). Once the signal decay co-

efficients, Si, were generated, we fitted the tensor with the Least-Square method

reported in (Westin et al., 1999).

The last step in the validation procedure is to obtain the multi-tensor field

accord to the method described in section 2.

We measured the difference between :

1. The original diffusion orientations and the recovered multi-tensors PDD’s.

2. The trace of the original tensor and the trace of the addition of the recovered

multi-tensors [see equation (21)].
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Figure 17. Angle θ of the first fiber (defined by the diffusion coefficients D1 and D2) with

respect to the acquisition axis, and angle Φ of the second fiber (D3 and D4)

a b)

Figure 18. a) Synthetic DT–MRI computed with (22) and (23), for the case of 1 and 3 fibers

respectively. b) Tensor basis decomposition.

The results of the validation procedure are following discussed. The input

synthetic field is shown in Panel 18a, and the recovered multi-tensor field is

shown in Panel 18b. The difference between the original diffusion orientation

and the recovered PDD’s has a peak error equal to 28.37 degrees and a mean

error of 5.34 degrees (see panel 19a ). The difference between the traces has a

peak error equal to 0.04−3 mm2/s and a mean error equal to 0.009−3 mm2/s (see

panel 19b ). The peak angular errors are concentrated in a small regions at the

border of the crossing zone. On the other hand, the negligible peak trace error

is about 4% of the original trace. This error is more homogeneously distributed

in the crossing zone. Note that the method reproduce the correct values at the

high anisotropic regions.
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a) b)

Figure 19. Error map of the recover multi-tensor field respect to the synthetic ground truth:

a) angular and b)trace

5. Conclusions

We presented a method that improves the resolution of standard DT–MRI

technique and allows one to reconstruct the intra–voxel information in fiber

crossing and bifurcations. Therefore, we estimate the intra–voxel information

from standard DT–MR images instead of compute it directly from raw data, as

in (Tuch et al., 1999; Tuch et al., 2002; Tuch, 2002). In our method, the capture

time for the DT–MR images is not modified but the computational time.

The presented method is based on the minimization of a cost function with

quadratic potentials. So that, the minimization can be perform by gradient

descent type methods or, as in our case, by a memory efficient Gauss–Seidel

scheme. According to our experiments, the method is robust to the parameter

set and the tensor basis selected.

The proposed multi–tensor restoration method can efficiently be used as a

generic filtering method of tensor fields, as was demonstrated by experiments

(see figure 15).

We presented a novel stochastic particle walk procedure based on Bayesian

estimation theory and a second order Markov random process model. The pro-

cedure allow us to estimate the fiber pathways and therefore deduct the brain
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connectivity. The stochastic movement of the particle allows one to explore

possible bifurcations on fiber bundles.

Diffusion Tensor MRI (DT- MRI) is used for in vivo identification of fiber

tracts in the human brain. However, interpretation of the DT-MRI is limited by

the difficulty of post-mortem validations because of post-mortem delay and im-

mersion fixation. So that, we validate our method with synthetic generated data

with a model that consider the intra–voxel geometric structure. An opportunity

for future research is the development of test database (phantoms) for evaluating

the algorithms performance in the intra-voxel reconstruction problem.
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Appendix A. Noise Model

From (6), the noise model is given by η̄r = Dr −
∑N

i αirT̄i; where η̄ is a resid-

ual tensor produced by the limited angular resolution of the tensor basis and

noise. Given that the difference between two positive definite tensors is always a

positive definite tensor, in this appendix, we show that if the residual produced

by noise is of the form η = RT
θ NRθ, then the Frobenius’s norm is adequate

for the data term in (9); where the diagonal matrix N = diag(n1, n2, n3), with
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ni ∈ N (0, σ2) are independent Gaussian variables and Rθ is an arbitrary rotation

matrix. This is, the rotation angles, θ = [θ1, θ2, θ3]
T , are uniformly distributed

in the 3D space. Based on the noise model, the likelihood is given by (Geman

and Geman, 1984): P
(

Dr

∣

∣

∣

∑N

i αirT̄i

)

= P (ηr). If we define n = [n1, n2, n3]
T ,

then P (ηr) =
∏

i P (nir) = 1√
2πσ

exp
[

− 1
σ2n

Tn
]

. Now, we have that nTn =

n2
1 +n2

2 +n2
3 = ‖N‖2

F = ‖ηr‖2
F . Where ‖.‖2

F denotes the square Frobenius’s norm.

Note that last equality is based on the fact that the norm of the symmetric

matrix ηr is invariant to rotations. So that, the likelihood is:

P

(

Dr

∣

∣

∣

N
∑

i

αirT̄i

)

=
1√
2πσ

exp

[

− 1

σ2

∥

∥

∥
Dr −

N
∑

i

αirT̄i

∥

∥

∥

2

F

]

and the negative log–likelihood corresponds to the Frobenius’s norm.
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