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Abstract

Intravascular ultrasound (IVUS) is a catheter-based medical imaging technique
that produces cross-sectional images of blood vessels and is particularly useful for
studying atherosclerosis. In this paper, we present a computational method for the
delineation of the luminal border in IVUS B-mode images. The method is based in
the minimization of a probabilistic cost function (that deforms a parametric curve)
which defines a probability field that is regularized with respect to the given like-
lihoods of the pixels belonging to blood and non-blood. These likelihoods are ob-
tained by a Support Vector Machine classifier trained using samples of the lumen
and non-lumen regions provided by the user in the first frame of the sequence to be
segmented. In addition, an optimization strategy is introduced in which the direc-
tion of the steepest descent and Broyden-Fletcher-Goldfarb-Shanno optimization
methods are linearly combined to improve convergence. Our proposed method
(MRK) is capable of segmenting IVUS B-mode images from different systems
and transducer frequencies without the need of any parameter tuning, and it is ro-
bust with respect to changes of the B-mode reconstruction parameters which are
subjectively adjusted by the interventionist. We validated the proposed method on
six 20 MHz and six 40 MHz IVUS stationary sequences corresponding to regions
with different degrees of stenosis, and evaluated its performance by comparing the
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segmentation results with manual segmentation by two observers. Furthermore,
we compared our method with the segmentation results on the same sequences
as provided by the authors of three other segmentation methods available in the
literature. The performance of all methods was quantified using Dice and Jaccard
similarity indexes, Hausdorff distance, linear regression and Bland-Altman analy-
sis. The results indicate the advantages of our method for the segmentation of the
lumen contour.

Keywords: IVUS, Probabilistic Segmentation, Contour Parameterization,
Ultrasound, Coronary Arteries

1. Introduction

Complications attributed to cardiovascular disease (CVD) are currently the
main cause of death worldwide (Lloyd-Jones et al. (2009)). It is known that the
majority of adverse CVD-related events are due to coronary artery disease, a con-
dition in which fatty lesions called plaques are formed on the walls of those ves-
sels which nourish the heart with blood. Sudden rupture of a plaque may lead to
a rapidly-progressing stenotic condition in which the blood supply is entirely cut
off from a region of the heart. This may result in death.

Intravascular ultrasound (IVUS) is a catheter-based medical imaging tech-
nique capable of providing high-resolution, cross-sectional images of the interior
of blood vessels in real time allowing the collection of morphological informa-
tion about the vessel. The IVUS catheter consists of either a solid-state or a
mechanically-rotated transducer which transmits ultrasound pulses and receives
a reflected signal (i.e., A-line) over each radial scan at a discrete set of angles.
Commonly, 240 to 360 A-line signals are obtained and digitized per rotation. The
envelopes of these signals are computed, compressed, stacked along the angular
direction, and mapped into 8-bit gray scale to form an image known as a polar
B-mode image. Finally, the polar B-mode image is geometrically transformed to
obtain the familiar disc-shaped image known as a Cartesian B-mode image.

The IVUS imaging technique consists of steering a guidewire with a small
diameter (usually 0.36 mm) into the blood vessel branch to be imaged. The ul-
trasound catheter is then slid-in over the guidewire and positioned within a target
segment of interest. The IVUS system starts acquiring and displaying the images
usually at 30 frames/second. The ultrasound catheter is then pulled back in order
to identify and analyze the vessel regions. The pullback can be performed either
manually or using a motorized device which moves the transducer at a constant
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Figure 1: Example of (a) an typical IVUS image with (b) its corresponding segmentation (lu-
men/intima and media/adventitia interface are depicted using a solid and dotted lines, respec-
tively).

determined speed (usually 0.5 mm/s). In human coronary arteries, the target seg-
ments generally include at least 10 mm of distal vessel, the lesion site(s), and the
entire proximal vessel back to the aorta (Mintz et al. (2001)). If additional infor-
mation about a lesion is needed, an acquisition may be performed by maintaining
the IVUS catheter stationary over the region of interest. The analysis of the ac-
quired data may be performed in real-time during the intervention or off-line after
the acquisition.

Segmentation of IVUS images refers to the delineation of the lumen/intima
and media/adventita borders (Fig. 1). This process is necessary for assessing
morphological characteristics of the vessel and plaque such as lumen diameter,
minimum lumen cross-section area, and total atheroma volume. This information
is crucial for making decisions such as whether a stent is needed to restore blood
flow in an artery and to determine the characteristics of the stent.

Manual segmentation of IVUS images is commonly performed by an observer.
However, depending on the type of analysis, the number of frames that are needed
to be segmented can range from a few frames to hundreds of frames. Therefore,
the manual segmentation of those images may be excessively time-consuming.
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Moreover, the manual segmentation may suffer from inter- and intra-observer
variability due to its high level of subjectivity. Studies have shown that there
may exist large differences (up to 20%) in the cross-sectional area of luminal seg-
mentations provided by the same observer (Meier et al. (1997)). Thus, a robust
automatic segmentation method for IVUS images is needed to overcome these
limitations. However, automatic segmentation of IVUS images remains an open
problem because of (i) the various artifacts that can appear in the IVUS images
(e.g., shadows, speckle noise, side branches, and guidewire artifacts), and (ii) the
variability on the gray level distribution for the different regions of interest de-
picted in the B-mode images which depends on the settings of the IVUS system
(i.e., frequency of the transducer) and the image-generation parameters (i.e., gain,
intensity compression, rejection, and gamma curves (Hiro et al. (1996))) that are
subjectively adjusted by the interventionist during the acquisition.

In this paper, we present a probabilistic approach for the segmentation of the
luminal border in IVUS images. The proposed method is based on the deforma-
tion of a curve which represents the lumen contour by minimizing a cost function
that is formulated using a probabilistic approach in which the likelihoods of each
pixel to belong to blood and non-blood are obtained by a Support Vector Machine
(SVM) classifier. The SVM classifier is trained using a small number of samples
from the lumen and non-lumen regions provided by the user on the first frame of
the sequence to be segmented. The use of an SVM model to compute the likeli-
hood of each pixel to belong to blood and non-blood regions makes the method
applicable to IVUS images acquired with systems operating at different frequen-
cies (i.e., 20 and 40 MHz) without the need of adjusting any parameter. Addition-
ally, the proposed method includes a step in which possible changes in the gray
level distributions of the regions of interest within a sequence are automatically
detected, so that the likelihood computations can be progressively adapted. This
step makes the method robust with respect to a possible change of gray level dis-
tributions within an IVUS sequence due to a change in the B-mode reconstruction
parameters.

We have presented a preliminary version of this method in (Mendizabal-Ruiz
et al. (2008)). The two major limitations of our previous method (Mendizabal-
Ruiz et al. (2008)) are the number of parameters to be tuned for the parameteri-
zation of the curve which uses a mixture of Gaussians, and the simple method for
estimating the likelihood of the pixels to belong to lumen and non-lumen using
gray-level histograms which limited the method to the segmentation of 20 MHz
IVUS sequences only. The method proposed here has three significant differences
with respect to the work presented in (Mendizabal-Ruiz et al. (2008)). First, the
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lumen contour is parameterized using Fourier series, which is more suitable to the
characteristics of the segmentation problem because it provides a smooth-periodic
contour with a smaller number of parameters to be tuned when compared to the
previous parameterization that used a periodic mixture of Gaussians. This pa-
rameterization also allows us to exclude the multi-scale approach proposed in the
previous method. Second, the computation of the likelihood of the pixels to be-
long to lumen and non-lumen is based on the analysis of texture and the use of a
SVM classifier. Third, an approach for the detection of possible incorrect segmen-
tation based on the similarity of consecutive frames is proposed. The similarities
with the previous method include the use of the same probabilistic cost function,
the use of the same optimization method, and the need of user intervention for
initialization.

The main contribution of our paper is a segmentation method that is robust
with respect to the variability of gray level distributions of the regions of inter-
est within the frames of an IVUS sequence and between different IVUS systems.
Our method was evaluated on selected consecutive frames from twelve non-gated
stationary IVUS sequences from two different IVUS systems using different fre-
quencies, and the segmentation results were compared with other three existing
segmentation methods.

The rest of the paper is organized as follows: Section 2 presents previous work
in IVUS segmentation, while in Section 3 a detailed description of the proposed
method is presented. Section 4 presents the results obtained with our method, and
Sections 5 and 6 present our discussion and conclusions, respectively.

2. Previous work

Automated segmentation of IVUS sequences has been a topic of interest since
the early 1990’s. Many of the early approaches were based on the use of local
properties of the image such as pixel intensity and gradient information (edges)
combined with computational methods including graph search (Sonka et al. (1995),
von Birgelen et al. (1996), Zhang et al. (1998)), active surfaces (Klingensmith
et al. (2000)), active contours (Kovalski et al. (2000)), and neural networks (Plis-
siti et al. (2004)). In later approaches, segmentation was accomplished by the use
of region and global information including texture (Mojsilovic et al. (1997)), gray
level variances (Haas et al. (2000), Luo et al. (2003)) contrast between the regions
(Hui-Zhu et al. (2002)), statistical properties of the image modeled by Rayleigh
distributions using 2D (Haas et al. (2000), Brusseau et al. (2004)) and 3D infor-
mation (Cardinal et al. (2006)), and by mathematical morphology techniques (dos
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Santos Filho et al. (2006)).
Recently, a shape-driven method for lumen and media-adventitia segmentation

was introduced by Unal et al. (Unal et al. (2008)). In this work, the lumen and
media-adventitia contours were constrained to a smooth, closed geometry. Then, a
shape space was built using training data and principal component analysis (PCA).
Finally, segmentation was performed on this shape space by the minimization of
an energy function using nonparametric probability densities with global mea-
surements. Taki et al. (Taki et al. (2008)) proposed a method for the delineation
of the vessel borders. This method consisted of a preprocessing step followed by
the geometric deformation of parametric models using edge information. Downe
et al. (Downe et al. (2008)) introduced a method where principal component
analysis was used for pre-processing, while active contour models were used to
provide an initial segmentation for a 3D graph search method. Multilevel discrete
wavelet frames decomposition was used by Papadogiorgaki et al. (Papadogior-
gaki et al. (2008)) to generate texture information that was used along with the
intensity information for contour initialization. Similarly, Katouzian et al. (Ka-
touzian et al. (2008)) presented a method where texture information was extracted
using a discrete wavelet packet transform. Then, pixels were classified as lumen
or non-lumen using k-means clustering. Finally, the contour was parameterized
using a spline curve. Our group presented a segmentation method based on the
deformation of a lumen which represents the interface between lumen and wall
(Mendizabal-Ruiz et al. (2008)). The segmentation was obtained by the mini-
mization of a probabilistic cost function using gray level histograms to compute
the likelihoods of the pixels to belong to class lumen and non-lumen. Bovenkamp
et al. (Bovenkamp et al. (2009)) proposed an interactive method for IVUS seg-
mentation based on the use of a multi agent image interpretation system which
employs high-level knowledge-based control over low-level image segmentation
algorithms. Ciompi et al. (Ciompi et al. (2009)) presented a method in which seg-
mentation was tackled as a classification problem and solved using an error cor-
recting output code technique. In that work, contextual information was exploited
by means of conditional random fields computed from training data. Wennogle
et. al (Wennogle and Hoff (2009)) proposed improvements over the method pre-
sented in (Cardinal et al. (2006)) which included a preprocessing step to remove
motion artifacts, a new directional gradient velocity term, and a post-processing
level-set method. Cardinal et al. (Cardinal et al. (2010)) presented a multiple in-
terface 3D fast-marching method that was based on a combination of gray level
probability density functions and the intensity gradient. The segmentation method
included an interactive initialization procedure of the external vessel wall border.
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Zhua et al. (Zhu et al. (2011)) proposed a snake-based method for segmenta-
tion of IVUS images on which linear-filtered gradient vector flow which drives
the deformation of a balloon snake. Moraes et al. (Moraes and Furuie (2011))
presented a method that relies on a binary morphological object reconstruction
to segment the coronary wall in IVUS images. Balocco et al. (Balocco et al.
(2011)) proposed a method based on the stabilization of the IVUS sequence and
the subsequent registration of contiguous frames to generate a parametric image
that distinguished the presence of tissues from blood. Segmentation was achieved
by the classification of the pixels in the IVUS image using the growcut method.
Katouzian et al. (Katouzian et al. (2012)) presented a 3D method which employs
frequency-based harmonic information extracted by brushlet expansion. Then,
the blood and non-blood regions of the IVUS image are detected by clustering the
resulting brushlet coefficients. The detection of the lumen border is performed
using surface function actives Duan et al. (2009) on the clustering result.

A common challenge for existing IVUS segmentation methods is that, be-
sides the frequency of operation of the IVUS system, the gray level distribution
of the different regions of interest depicted in the B-mode images depends on the
reconstruction settings (e.g., time gain compensation (TGC), dynamic range com-
pression, brightness, contrast and scaling) (Hiro et al. (1996)) (Fig. 2). These
settings are subjectively selected by the interventionist (Mintz et al. (2001)), and
may change from one intervention to the next, or even during the same acquisition.

In general, IVUS segmentation methods rely on the use of gray level inten-
sity models that describe the regions of interest such as blood, plaque and vessel
wall. However, these models and their parameters are computed using statistics
over a determined training set of IVUS images. Therefore, these methods may re-
quire tuning or re-training in order to work appropriately on sequences containing
IVUS images that are have different gray level distributions to those images in the
training set because to the use of a different IVUS system or the use of different
B-mode reconstruction parameters.

3. Material and methods

Similarly to the work of Unal et al. (Unal et al. (2008)), we employ the B-
mode polar IVUS image representation since this coordinate space makes the
problem friendlier due to the 1D appearance of the lumen contour. In this rep-
resentation, the horizontal axis corresponds to the angular position of the trans-
ducer, while the vertical axis corresponds to the radial penetration by the ultra-
sound beam. Therefore, the intensity value of a pixel x = (r, θ) can be defined
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(a) (b)

Figure 2: Example depicting a 40 MHz IVUS frame in Cartesian B-mode representation using log-
arithmic dynamic range compression, (b) the same frame using linear dynamic range compression
with a compression factor of 0.4.

as I(x) where r and θ correspond to the radius and angle, respectively. We define
the function S that represents the interface between the lumen and the vessel wall
(Fig. 3). This curve S is parameterized by θ and ~C (i.e., S(θ, ~C)).

3.1. Lumen contour parameterization
Manual annotations from observers define the lumen contour as a smooth

curve. Moreover, a polar B-mode IVUS image is periodic with respect to the
horizontal axis. Therefore, the smoothness and the periodicity of the contour are
requirement for the parametric curve that defines the lumen/wall interface. In this
work, we have chosen to parameterize this curve using Fourier series since it pro-
vides a periodic curve in which smoothness can be controlled by the number of
coefficients Nk. The lumen contour is given by:

S(θ, ~C) =
a0
2

+

Nk∑
k=1

[
ak cos

(
k2πθ

N

)
+ bk sin

(
k2πθ

N

)]
, (1)
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(a) (b)

Figure 3: Depiction of the lumen contour in (a) Cartesian representation and (b) the polar B-mode
representation.

where N corresponds to the number of sampled angles (i.e., width of the polar
image), and

~C = [a0, a1, ..., aNk
, b1, ..., bNk

]ᵀ

are the Fourier coefficients that control the shape of the curve.

3.2. Cost function for Probabilistic Segmentation
In our method, the lumen segmentation problem consists of finding the opti-

mum parameters ~C∗ such that the curve S(θ, ~C∗) corresponds to the interface be-
tween the lumen and the vessel wall. The formulation we introduce to solve this
problem is inspired by the variational segmentation theory presented by Rivera et
al. (Rivera and Dalmau (2012)). This work propose to pose the k classes segmen-
tation problem as the computation of a probability field P ∈ Rk with three main
characteristics: (i) P should be similar to a given likelihood field V̂ ∈ Rk, (ii)
P should be spatially smooth, and (iii) the entropy of P should be controllable.
Then, P is computed by solving a problem of the form:

min
p

U(P ) = D(P, v̂) + µ1R1(P ) + µ2R2(P ) , (2)
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where D is a term that promotes P to be similar to V , and v̂k(x) is the likelihood
of the pixel x for belonging to the class k. The regularization term R1 controls the
entropy of P (desired to be as informative as possible) while the regularization
term R2 promotes P to be spatially smooth. The relative contribution of the regu-
larization terms to the total cost function U(P ) is controlled by the parameters µ1

and µ2.
The segmentation of the lumen region corresponds to a binary segmentation

task (i.e., P ∈ R2) on which the two possible classes for each pixel are lumen
(k = l) and non-lumen (k = n). By definition, in the IVUS polar B-mode
representation, the class of each pixel can be determined by evaluating the sign
of the distance from the pixel to the curve that defines the lumen/wall interface
d(x, ~C) = S(θ, ~C) − r. If d(x) > 0 the pixel belongs to lumen, otherwise the
pixel belongs to non-lumen. Therefore, we define a parametric probability field
P for a polar B-mode image by using a sigmoid function which determine the
probability of each pixel in the image to belong to the lumen Pl(x) depending on
its distance to the curve:

Pl(x, ~C) =
1

1 + e−λd(x, ~C)
, (3)

where λ is a parameter that controls the slope of the sigmoid.
Using this formulation, pixels far above the contour will have a higher proba-

bility of belonging to the lumen, while the pixels far below the contour will have
probability close to zero. For the pixels near the contour, depending on the value
of λ, the probability of belonging to lumen will be close to 0.5 (Fig. 4). The
probability of a pixel to belong to non-lumen is given by: (1− Pl(x)).

In our problem, the entropy is related to the sharpness of the transition between
the two classes (from P ≈ 1 to P ≈ 0). This transition is controlled by the
parameter of the sigmoid λ resulting in a similar effect that the entropy control
term R1 of Eq. (2). Similarly, in our case the effect of the regularization term
R2 of Eq. (2) which promotes the spatial smoothness of P , is controlled by the
number of Fourier coefficients Nk corresponding to the parametric curve S(θ, ~C).

In (Rivera and Dalmau (2012)) several choices for the term D are discussed.
In this work, we chose to use the Kerridge’s inaccuracy measure:

D(P, V ) = −
∑
k

∑
x

Pk(x) log v̂k(x). (4)

which is a generalization of the Shannon entropy used to measure the inaccuracy
of the assertion of a probability estimation (Kerridge (1961)).
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(a) (b)

Figure 4: (a) Example depicting the curve corresponding to the lumen/wall interface, and (b) the
parametric probability field defined by the curve using λ = 0.8.

Let v̂l(x) and v̂n(x) be the likelihood of the pixel x = (r, θ) to belong to the
lumen and non-lumen, respectively. Then, the lumen segmentation problem is
posed as the minimization of the cost function:

U(~C) = −
∑
x

Pl(x, ~C)[log(v̂l(x))] + [1− Pl(x, ~C)][log(v̂n(x))]. (5)

The details regarding the computation of these likelihoods are provided in Sec.
3.4.

Note that the proposed cost function (Eq. 5) is consistent with the spirit of
the probabilistic framework proposed by Rivera et al. since (i) the probabilistic
segmentation P is attached by the Kerridge information measure to the likelihood
measure field V , (ii) the smoothness of P is controlled by the number of coeffi-
cients that define the parametric boundary curve, and (iii) the slope of P at the
class boundary (i.e., entropy) is controlled by the parameter λ of the sigmoid (Eq.
(3)).

3.3. Optimization
To deform the lumen contour until it reaches the best segmentation, it is nec-

essary to find the values of ~C∗ that minimize the cost function of Eq. (5). In this
work, we propose to use a line search method for this minimization. In a line
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search method, the optimal value ~C∗ is computed iteratively. At every iteration k,
the new value for ~Ck+1 is computed by:

~Ck+1 = ~Ck + αk ~Pk , (6)

where αk is the step length at the iteration k and ~Pk is a descent or search direction.
A popular way to find an adequate value of αk is by searching the one that satisfies
the Wolfe conditions (Nocedal and Wright (1999), Chapter 3):

U(~Ck + αk ~Pk) ≤ U(~Ck) + u1αk∇U(~Ck)
ᵀ ~Pk (7)

∇U(~Ck + αk ~Pk)
ᵀ ~Pk ≥ u2∇U(~Ck)

ᵀ ~Pk . (8)

For selecting the descent direction ~Pk at each iteration k we have several op-
tions. We will discuss two options below.
The steepest descent method: One of the simplest ways to approximate the solu-
tion of optimization problems is by using the steepest descent method (Nocedal
and Wright (1999)). For an objective function U(~C), the steepest descent method
is a line search method that iteratively moves along a search direction given by:

~PG
k = − ∇U(~Ck)∣∣∣∇U(~Ck)

∣∣∣ . (9)

Although this method is robust and guarantees convergence to a local minimal,
the main disadvantage is that this method may take a large number of iterations
(i.e., time) to converge to the solution.
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method: The BFGS method (No-
cedal and Wright (1999)) converges to a solution faster when compared to the
steepest descent method since it incorporates first and second order derivatives to
find the point at which the gradient of the function is equal to zero. The BFGS
algorithm is efficient since, instead of computing the inverse of the Hessian from
scratch at every iteration, it is updated in a simple manner by taking into account
the curvature measured in the most recent step. In this method, the search direc-
tion at each iteration k is given by:

~PB
k = −Hk∇U(~Ck) , (10)

where the matrix Hk is the inverse of a positive definite approximation of the
Hessian of the cost function at each iteration computed as:

Hk+1 = (I − ρk~sk~y ᵀ
k )Hk(I − ρk~yk~s ᵀ

k ) + ρk ~sk~s
ᵀ
k (11)
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with
ρk =

1

~y ᵀ
k ~sk

(12)

were ~sk = ~Ck+1 − ~Ck and ~yk = ∇U(~Ck+1) − ∇U(~Ck) which must satisfy the
curvature condition

~s ᵀ
k ~yk > 0 . (13)

In our problem, depending on the IVUS image to segment, the cost functions
U(~C) may have many local minima mostly due to the similarity between the gray
levels distributions of lumen and other regions of the vessel. Therefore, solving
the cost function with the BFGS method could lead us to an incorrect segmen-
tation if the descent step is too large in a given iteration. Note that the steepest
descent method is robust but slow, while BFGS is fast but may converge into an
incorrect solution (Fig. 5). Therefore, we propose a strategy for combining the
strengths of the two methods which uses a linear combination of the descent di-
rections from steepest descent (~PG) and BFGS (~PG) methods to compute a new
descent direction. The linear combination of these methods is denoted as (~PGB)
and therefore, we refer to this strategy as GB optimization .

GB optimization: An advantage of the BFGS algorithm over other Newton-
based methods such as Levenberg-Marquart (LM) is the direct computation of the
inverse of the Quasi-Hessian H . However, the reason we chose BFGS over LM is
because the information obtained from the curvature condition Eq. (13).

When this condition is satisfied, the curvature of the function becomes more
positive as the descent approaches to a minimum. However, if the curvature condi-
tion is not satisfied, a better descent direction is the negative gradient (i.e., steepest
descent direction). Additionally, note that for small values of the product ~s ᵀ

k ~yk, the
computation of the update formula for the Hessian, or its inverse, is non-defined
(the function is not locally convex). Then, by design there is more confidence
in the BFGS descent direction if the value of ρ (Eq. (12)) is large and positive.
On the other hand, for ρ ≈ 0, the confidence in ~PB

k is smaller and we prefer the
steepest descent direction ~PG

k . Based on this analysis, we propose to compute
the descent direction as a convex linear combination of both descent directions
(Mendizabal-Ruiz et al. (2008)):

~PGB
k+1 = [ψ(ρk)~P

B
k + (1− ψ(ρk))~P

G
k ]. (14)

where the function that controls the contribution of each descent direction
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ψ(ρ) is defined as:

ψ(ρ) =

{
0 if ρ < 0
ρ2

K+ρ2
otherwise .

(15)

Algorithm 1 describes the proposed optimization method.

(a) (b) (c)

Figure 5: Examples of a segmentation result on a 20 MHz IVUS frame using (a) steepest descent
optimization (72 iterations), (b) BFGS optimization (38 iterations), and (c) GB optimization (26
iterations).

3.4. Likelihood estimates
3.4.1. Texture descriptors

The intensity of the blood speckle increases exponentially with the increase
of the frequency of the transducer (Mintz et al. (2001)). For example, in 20 MHz
images the gray level distribution of the pixels in the lumen region appears rel-
atively dark when compared to 40 MHz images which depict some texture due
to the speckle. Therefore, in this work, we propose to incorporate texture infor-
mation into the terms corresponding to the likelihoods of the pixels to belong to
lumen and non-lumen. Laws’ texture measures are a well known, widely used
class of textural image descriptors and enjoy continued use today mostly due to
their relatively simple implementation, and the fact that they mimic the behavior
of more advanced methods (Lee and Schenk (1992)). Laws’ texture features are
generated from an image by first convolving the image with a number of special-
ized kernels. These kernels are in the majority of cases 5 × 5 (level 5), though
others were proposed which do not currently find widespread use. The level 5
kernels are produced by taking the outer product of all the combinations of the
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Algorithm 1 GB optimization
Require: Starting point ~C0 and a tolerance ε.

1: Initialize H0 = I

2: ~PGBk = − ∇U( ~Ck)

|∇U( ~Ck)|
3: Set k = 0

4: while ‖∇U(~Ck)‖ > ε do
5: Compute αk to satisfy the Wolfe Conditions (7) and (8)

6: ~Ck+1 = ~Ck + αk ~P
GB
k

7: ~sk = ~Ck+1 − ~Ck

8: ~yk = ∇U(~Ck+1)−∇U(~Ck)

9: ρk = 1
~y ᵀ
k ~sk

10: Hk+1 = (I − ρk ~sk~y ᵀ
k )Hk(I − ρk~yk~s ᵀ

k ) + ρk ~sk~s
ᵀ
k

11: ~PGBk+1 = −[ψ(ρk)Hk∇U(~Ck) + (1− ψ(ρk))
∇U( ~Ck)

|∇U( ~Ck)| ]

12: Set k = k + 1
13: end while
14: Return Ck
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Table 1: One-dimensional convolution kernels for level 5.
Name Kernel

Levels (L5) [ 1 4 6 4 1 ]
Edges (E5) [ -1 -2 0 2 1 ]
Spots (S5) [ -1 0 2 0 -1 ]

Waves (W5) [ -1 2 0 -2 1 ]
Ripples (R5) [ 1 -4 6 -4 1 ]

basis one-dimensional level 5 convolution kernels (Table 1) (Laws (1980)). The
2D kernels are assigned a string mnemonic kLkE (e.g., Kernel L5E5 is generated
by convolving vertical kernel L5 by horizontal kernel E5). A total of 25 images
are formed by convolving the original 2D images with the convolution kernels.

After convolving the polar B-mode image with these kernels, it is necessary
to convert each of the resulting 25 images Ll into a measure of texture energy El.
This is accomplished by a windowing operation in which the value of every pixel
x is replaced by the absolute value of the sum of the pixel values in a 5×5 window
Wx centered in the pixel x

El(x) =
∑
y∈Wx

|Ll(y)|.

These texture energies are used to form a 25-dimensional feature vector
~Ex = [E1, E2, ..., E25] that will characterize the class of each pixel x.

3.4.2. Support vector machines (SVM) classifier
SVM is a class of binary supervised learning methods that are commonly used

for classification and regression. SVMs process the data by mapping all samples
features into a high dimensional space defined by a kernel. In this high dimen-
sional space, the data may be linearly separated by a single boundary defined by
a hyperplane where support is given by selected samples in the data (support vec-
tors). To increase the probability of a correct classification it is desirable to have
the decision boundary at a maximum possible distance from the samples. The dis-
tance between the support vectors and the decision boundary is called the margin.
The goal of SVM, is to find a separating hyperplane that would result in the largest
margin. Once the optimal hyperplane function is computed, any new sample can
be classified by mapping its features into the same space defined by the kernel and
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then evaluating in the discriminant function2. In this work, we chose to employ the
radial basis function (RBF) kernel (i.e., k( ~Ei, ~Ej) = exp(−γ|| ~Ei − ~Ej||2),γ > 0,
for a pair of feature vectors ~Ei and ~Ej). One of the motivations to use the RBF
kernel, is that it requires only two parameters to be tuned (c which corresponds
to the penalty for errors in the classification, and γ corresponds to the width of
the RBF kernel) as compared with other kernels (e.g., polynomial) (Hsu et al.
(2003)). A common strategy for finding the values for these hyper parameters is
by using cross-validation and grid-search (Hsu et al. (2003)). In addition to the
class of a given sample, it is possible to compute the posterior probability estimate
of the SVM prediction P (k| ~Ex) (Wu et al. (2004)). In this work, we propose to
use P (k| ~Ex) as the learned likelihood for lumen and non-lumen v̂l(x) and v̂n(x),
respectively.

3.4.3. Computation of likelihoods
In general, we can assume that the gray level distributions and texture of the

lumen and non-lumen regions remain similar within the frames belonging to the
same sequence. We part from this assumption to compute the likelihoods based on
the use of a SVM classifier that is trained using texture features of a small num-
ber of samples from the lumen and non-lumen regions given by the user in the
first frame of the sequence to be segmented. However, although the assumption
of similarity of gray level distributions within the frames of the same sequence is
valid most of the time, minor differences in the gray level distribution of the lumen
region on the frames can be expected since the gray level distribution of speckle is
also related to blood velocity, where low-velocity blood produces coarser, brighter
speckle and higher velocities produce finer, lower-intensity speckle (Nissen and
Yock (2001)). Moreover, possible changes in the B-mode reconstruction parame-
ters during the acquisition may result in large differences between the gray level
distributions of frames within the same sequence. If any of these cases occur, it
may be possible that the original SVM model that was generated using the sam-
ples from the first frame is not reliable for computing the likelihoods for those
frames with different gray level distributions. One option to overcome this limita-
tion is to train the SVM using samples from all the frames in the sequence which
depict significant changes in the gray level intensities of the regions of interest.
However, it is the intention of this work to require the less user intervention as
possible. Therefore, we propose to detect the possible changes on the gray level

2For more information regarding the theory of SVM we refer the reader to (Burges (1998)).
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intensities during the sequence and then adjusting the SVM model to account for
this possible changes. Then, the process of estimating the likelihoods can be di-
vided into three steps: training, deployment, and model adjustment.
Training: In the training step, we require the user to select samples of lumen
and non-lumen regions (Rl and Rn, respectively) from the first frame f1 of the
sequence to be segmented (Fig. 6). We compute the texture energies
L(x) ∀ x ∈ {Rl, Rn} in the IVUS polar B-mode image using the Law’s filters
as described previously. A feature vector ~Ex ∈ R25 containing the computed
texture energies for each pixel corresponding to Rl and Rn is associated to its
corresponding class k(x) ∈ {l, n}. A training set T1 is then generated using the
feature vectors and the classes of each pixel. The optimal hyper parameters of
the SVM model using the RBF kernel c and γ are found using a grid search with
5-fold cross-validation (Hsu et al. (2003)). Next, a SVM model Π1 is computed
using the training set T1 and the optimal c and γ.
Deployment: For each of the frames to be segmented, we compute a vector ~Ex
for every pixel in the frame fi and we obtain its class k(x) using Π1. The posterior
probabilities of the classification result for each pixel are then used as the learned
likelihoods v̂l(x) = P (l| ~Ex) and v̂n(x) = P (n| ~Ex).

Ringdown artifact: Cartesian B-mode frames depict a dark circle in the middle
of the image. This circles are generated by the IVUS system and corresponds to
the IVUS catheter for which there is no available information. Ring-down artifacts
are produced by acoustic oscillations in the transducer which are usually observed
as bright halos of variable thickness surrounding the catheter creating a zone of
uncertainty adjacent to the transducer surface (Mintz et al. (2001)). These artifacts
are commonly present in the region corresponding to the lumen and may interfere
with the computation of the likelihoods for the lumen. However, our observations
in numerous IVUS sequences indicate that the width of this halo remains relatively
constant within a sequence. Therefore, since the region occupied by the ring down
artifact correspond to lumen we set the likelihoods of those pixels to belong to
lumen to one. We require the user intervention to provide the radial location χ
of the outer-most trace of the ringdown artifact in the first polar B-mode frame
of the sequence to be segmented. Then, we set the likelihoods for the region
corresponding to the catheter and the ring down artifact as v̂l(x) = 1 ∀ x | r ≤ χ
and v̂n(x) = 0 ∀ x | r ≤ χ. Figure 6 depicts examples of the likelihood computed
for a frame as computed with the SVM model.
Model adjustment: Considering the speed of the IVUS images acquisition (30
frames/s) and the typical pullback speed using motorized device (0.5 mm/s), we
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can assume that the distance between the cross sections of the vessel depicted by
two consecutive frames is approximately 16 µm. Then, in general we assume the
shape of the lumen contour of two consecutive frames i and i + 1 is very similar
and therefore the maximum distance between the lumen contour of these consec-
utive frames is constrained to wb (an experiment for validating this assumption is
presented in Sec. 5.1.2). We propose to use this information to assess the relia-
bility of the SVM model trained with the samples acquired from the first frame
of the sequence to detect the possible changes in the gray level intensities of the
lumen and non-lumen regions by assessing its accuracy on the classification of the
regions defined by the curve Si(r, θ, ~Ci) on the next consecutive frame Si+1 in the
following way.

Consider the segmentation result Si for a frame i. If we place the curve Si on
the next consecutive frame i+ 1, we can assume that most of the pixels above and
below the curve will effectively belong to the corresponding classes with excep-
tion of those pixels that are closer to the curve. We define a distance wb around
this curve and we assume that the pixels with d(x, ~Ci) ≥ wb correspond to lumen
while those pixels with −wn ≤ d(x, ~Ci) ≤ −wb correspond to non-lumen. We
introduce wn as a limit below the curve is because we are only interested in the
non-lumen regions more proximal to the lumen in order to discard other outer
regions such as adventitia or outer adventitia. This information is used to cre-
ate a class mask (Fig. 7), and we use the classes of these pixels as ground truth
for assessing the classification result of the texture features of frame i + 1 for
the pixels on the mask. If the accuracy A1 of the classification is above a given
threshold (i.e., A1 ≥ τ1), we assume that we can rely on the classification result
and therefore we use the classes and probabilities of the prediction given by Π1 as
the likelihoods for the segmentation of this frame. However, if the A1 < τ1 this
may be an indication of a change on the gray level distributions of the regions of
interest or a large change on the shape of the lumen contours from frame i to frame
i + 1. Then, we perform the following steps: first we assume that the reason for
the low accuracy obtained is due to a change in the gray level distribution. Then,
we build a new training set T2 consisting of randomly selected samples from the
original training set T1 and from the blood and non blood regions on the frame
i+ 1 defined by the class mask. Then, we train a new SVM model Π2 in using T2.
The accuracy A2 of Π2 is evaluated by classifying all the pixels within the class
mask. If A2 improves with respect to A1 (i.e., A2 ≥ A1), we consider that the
new model is more reliable and therefore it is used to estimate the likelihoods of
the subsequent frames. However, if A2 < A1, we assume that the low accuracy is
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the result of a large change on the shape of the lumen occurred and therefore the
previous SVM model Π1 is maintained to compute the likelihoods of the pixels of
that frame and the subsequent frames. This process is repeated for each frame in
the sequence leading to a progressively adapting blood and non-blood model.

After the likelihoods for each pixel in the image are defined. The segmentation
of the frame is performed by the minimization of Eq. 5. Algorithm 2 presents the
steps of the proposed B-mode approach.

4. Results

The similarity between the lumen shape of consecutive frames, the sensitivity
of our method with respect to its parameters λ and Nk, and the overall perfor-
mance of our method in the segmentation of IVUS B-mode Cartesian images,
was evaluated on twelve non-gated stationary IVUS sequences from two IVUS
systems using different frequencies. Six sequences were acquired from human
coronary arteries from different patients using a Volcano system with a 20 MHz
Eagle Eye catheter, and the remaining six were acquired from Rabbit’s aortas us-
ing a Boston Scientific Galaxy 2 system with a 40 MHz Atlantis SR Catheter.
From each sequence a number of consecutive frames corresponding to regions of
interest within the artery (different degrees of stenosis) were selected and manu-
ally segmented by human observers (585 frames in total). To compare the perfor-
mance our method (MRK) with other existing segmentation methods, we asked
three research groups to perform segmentation in the selected data sets using their
segmentation methods. The original IVUS data was provided to each author and
they provide us with the segmentation results. The methods used for comparison
correspond to the methods presented by Unal et al. (UNL) (Unal et al. (2008)),
Papadogiorgaki et al. (PAP) (Papadogiorgaki et al. (2008)), and Katouzian et al.
(KAT) (Katouzian et al. (2008)). The details of each sequence and the number
of segmented frames provided by each group are listed in Table 2 3. The method
proposed in this paper was implemented using MATLABr employing the SVM
implementation provided in the libSVM library (Chang and Lin (2011)).

4.1. Parameter selection
We define the starting point for the first frame to be segmented by setting the

offset coefficient a0 to be equal to the mean of the radial coordinates of the blood

3The missing segmentation results were not provided by the corresponding authors.
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Algorithm 2 Probabilistic segmentation of IVUS sequences
Require: B-mode frames and total number of frames on the sequence Nf

Training:
1: Obtain Rl, Rn and χ from user annotations on f1
2: ∀ x ∈ {Rl, Rn}, generate ~Ex
3: Generate a training set T1
4: Compute c and γ using cross validation and grid search.
5: Train Π1 with T1 using c and γ

Deployment:
6: j = 1
7: for i = 1 to Nf do
8: ∀ x ∈ fi, generate ~Ex
9: ∀x ∈ fi, obtain k(x), P (l| ~Ex), and P (n| ~Ex) using Πj

10: Compute Aj
11: if Aj ≥ τ1 | i = 1 then
12: Set v̂l(x) = 1 ∀ x | r ≤ χ and v̂n(x) = 0 ∀ x | r ≤ χ.
13: Set v̂l(x) = 1∀x|r ≤ χ and v̂n(x) = 0∀x|r ≤ χ
14: Find ~C∗i by the minimization of Eq. 5
15: Return Fi(~C∗i )
16: else
17: Model adjustment:
18: Generate a class mask M using Fi−1(~C∗i )
19: Generate Tj+1 using randomly selected entries from Tj , and samples corre-

sponding to Rl and Rn in M
20: Train Πj+1 with Tj+1

21: ∀ x | d(x, ~Ci) ≥ wb and k(x) ∀ x | −wn ≥ d(x, ~Ci) ≥ −wb, obtain k(x) using
Πj+1

22: Compute Aj+1

23: if Aj+1 ≥ Aj then
24: j = j + 1
25: ∀x ∈ fi, obtain k(x), P (l| ~Ex), and P (n| ~Ex) using Πj

26: Go to 12
27: else
28: Go to 12
29: end if
30: end if
31: end for
32: Return MT=j
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Table 2: Information about the IVUS sequences and the number of segmented frames using our
method (MRK), Unal’s method (UNL), Papadogiorgaki’s method (PAP), and Katouzian’s method
(KAT).

Sequence information Number of segmented frames
ID IVUS system Frequency Subject MRK UNL PAP KAT
1 Volcano 20 MHz Human 50 50 50 48
2 Volcano 20 MHz Human 50 50 50 0
3 Volcano 20 MHz Human 50 50 50 0
4 Volcano 20 MHz Human 50 50 50 0
5 Volcano 20 MHz Human 50 50 50 0
6 Volcano 20 MHz Human 50 50 50 0
7 Boston Scientific 40 MHz Rabbit 50 50 50 48
8 Boston Scientific 40 MHz Rabbit 50 50 50 48
9 Boston Scientific 40 MHz Rabbit 50 50 50 48

10 Boston Scientific 40 MHz Rabbit 50 50 50 48
11 Boston Scientific 40 MHz Rabbit 50 50 50 48
12 Boston Scientific 40 MHz Rabbit 35 35 35 32

samples provided by the user. The values for the rest of the coefficients set to
{ai, bi} = 0.1 ∀ i > 0. The segmentation method parameters were set to λ = 0.4
and Nk = 5 since this values report a good tradeoff between the average frame
segmentation time and similarity with respect to the manual segmentations (Sec.
5.1.1). Considering that for more than 90% of the frames the largest radial dif-
ference is less than 20 pixels (Sec. 5.1.2) we set τ1 = 80 and wb = 20. We
empirically set wn = 50 in order to have a band of distance of 30 pixels corre-
sponding to non-blood region.

4.2. IVUS data experiments
The performance of our method was evaluated by comparing our segmentation

results with the manual segmentation of the same frames by one observer. Specifi-
cally, we computed the Dice D similarity and the Jaccard index between the areas
reported by the different segmentations. In addition, we computed the Hausdorff
distances between the corresponding lumen curves. The agreement between the
areas corresponding to lumen according to each segmentation was evaluated using
linear regression, coefficient of determination and Bland-Altman analysis (Bland
and Altman (1986)). The number of times the model was computed along with
its total time, and the average time for segmenting each frame are listed in Table
3. The mean Dice similarity and standard deviation results for the comparison of
both manual segmentation and each automatic segmentation method are depicted
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as a box plot in Fig 8. The segmentation results corresponding to each of the se-
quences for the comparison of both observers, and the MRK, UNL, PAP, and KAT
methods and both observers, are listed in Tables 4, 5, 6, 7, 8, respectively.

Note that the results obtained with the MRK method are closer and more con-
sistent with the manual segmentation when compared with the other automatic
methods. Figure 9 depict the linear regression and Bland-Altman plots for the
comparison of the lumen areas corresponding to the segmentations of Observer 1
and Observer 2. Figures 10 to 17, depicts the linear regression and Bland-Altman
plots for the comparison of the lumen areas corresponding to the segmentation
of both observers segmentation with the segmentation obtained with the MRK,
UNL, PAP, and KAT methods respectively. Note that the linear regression results
indicate a good agreement between the luminal area detected by the MRK method
with the luminal area defined by the observers and less dispersion as compared by
the area detected by the other methods. Moreover, the MRK method reports a
higher coefficient of determination when compared with the other methods. From
the Bland-Altman plots it can be observed that MRK method perform with a low
mean bias and less dispersion when compared with the other methods. Figures 18
and 19 depict examples of the segmentation results for each method along with
the segmentation by the Observer 1.

To determine the statistical significance of the performance of the MRK method
compared with the other three methods, we perform three paired Wilcoxon signed
rank test analysis (MRK vs. UNL, MRK vs. PAP, and MRK vs. KAT). For this
analysis, we perform block-sampling from the set of all Dice coefficient results
for the comparison of each method with Observer 1 (one frame every five). Then,
runs test analysis was performed in order to verify independence within the sam-
ples as required for the signed rank test. We perform the Wilcoxon signed rank
test using the following hypothesis:

1. Null hypothesis: the median of the MRK method is equal to the median of
the compared method (UNL, PAP or KAT).

2. Alternative hypothesis: the difference of the medians of the MRK and the
compared method is larger than 0.

In addition, we performed a Levene’s test to assess the difference of variances
reported by each method using the following hypothesis:

1. Null hypothesis: the variance of the MRK method is equal to the variance
of the compared method (UNL, PAP or KAT).

2. Alternative hypothesis: the variance of the MRK method is different from
the variance of the compared method (UNL, PAP or KAT).
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Table 3: Average segmentation time per frame (ST), number of times that the SVM model was
trained (MT), total SVM model training time (TT), and total segmentation time (TS) for each
sequence.

ID ST (s) MT TT (s) TS (s)
1 3.04 1 3.38 155.30
2 3.43 1 4.13 175.63
3 3.42 1 3.21 174.21
4 3.14 1 7.23 164.23
5 2.71 1 2.38 137.88
6 4.21 1 9.45 219.95
7 5.11 1 8.52 264.02
8 7.08 2 33.2 387.20
9 5.75 1 9.54 297.04

10 5.15 2 24.31 281.81
11 5.16 1 13.12 271.12
12 4.55 1 13.02 172.27

For each test we employ a confidence level of α = 0.05 employing the Bonferroni
correction α̂ = α

m
, where m = 3 is the number of paired test.

The results for the signed rank test indicate that the null hypothesis is rejected
with p values of 2.19×10−9 for MRK vs. KAT, 4.15×10−11 for MRK vs. PAP, and
4.8× 10−7 for MRK vs. KAT. Similarly, the results for the Levene’s test indicate
that the null hypothesis is rejected with p values ≈ 0 for all the comparison cases.
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Table 4: Mean Dice similarity, Jaccard index, and Hausdorff distance and standard deviations (std)
for the comparison of the segmentation results of Observer 1 (O1) and Observer 2 (O2). The mean
is denoted by µ and the for the standard deviation by σ.

Dice Jaccard Hausdorff
ID µ (%) σ(%) µ (%) σ(%) µ (%) σ(%)

1 94.17 2.42 89.07 4.24 8.51 3.43
2 92.92 1.86 86.84 3.23 12.88 4.11
3 90.10 3.11 82.13 5.15 15.69 4.59
4 92.73 2.96 86.58 5.04 14.35 4.24
5 92.53 3.06 86.24 5.23 14.05 5.73
6 92.53 1.79 86.15 3.06 25.09 6.51
7 96.58 1.11 93.40 2.06 7.05 2.23
8 97.67 0.51 95.45 0.98 7.56 2.12
9 96.45 1.04 93.16 1.92 12.97 4.94

10 96.35 0.96 92.97 1.78 10.54 3.68
11 97.84 0.52 95.77 1.00 5.57 1.34
12 96.46 1.03 93.18 1.92 11.99 3.59

Average 94.69 1.70 90.08 2.97 12.19 3.88

Table 5: Mean Dice similarity, Jaccard index, and Hausdorff distance and standard deviations (std)
for the comparison of the segmentation results of Observer 1 (O1) and Observer 2 (O2) with MRK.
The mean is denoted by µ and the for the standard deviation by σ.

MRK vs O1 MRK vs O2
Dice Jaccard Hausdorff Dice Jaccard Hausdorff

ID µ (%) σ(%) µ (%) σ(%) µ (%) σ(%) µ (%) σ(%) µ (%) σ(%) µ (%) σ(%)
1 92.70 1.19 86.41 2.06 10.43 2.43 92.40 1.80 85.92 3.09 9.35 2.63
2 92.19 1.48 85.55 2.53 12.02 2.78 89.64 1.93 81.27 3.15 16.05 3.27
3 92.44 2.82 86.07 4.54 12.64 4.39 90.92 3.57 83.53 5.72 13.65 4.51
4 93.21 1.98 87.35 3.44 13.93 3.34 92.55 2.14 86.21 3.64 14.24 2.87
5 93.08 3.38 87.23 5.59 13.49 5.68 92.17 2.90 85.61 4.91 14.11 4.92
6 94.65 1.32 89.88 2.35 13.98 3.26 89.83 1.48 81.57 2.44 26.61 4.39
7 92.81 3.18 86.75 5.34 11.42 4.64 92.19 3.35 85.68 5.57 11.30 3.95
8 93.85 1.48 88.45 2.60 15.49 3.87 93.58 1.50 87.97 2.62 14.84 3.80
9 93.57 1.20 87.94 2.12 13.69 3.56 93.78 1.19 88.31 2.09 12.96 3.59

10 93.16 1.81 87.25 3.18 16.37 4.27 93.10 2.00 87.15 3.49 16.02 4.17
11 92.30 1.50 85.73 2.58 12.99 3.11 92.93 1.10 86.81 1.92 11.72 2.85
12 95.50 1.96 91.45 3.45 13.74 4.58 95.22 1.87 90.93 3.32 14.32 5.28

Average 93.29 1.94 87.50 3.31 13.35 3.83 92.36 2.07 85.91 3.50 14.60 3.85
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Table 6: Mean Dice similarity, Jaccard index, and Hausdorff distance and standard deviations (std)
for the comparison of the segmentation results of Observer 1 (O1) and Observer 2 (O2) UNL. The
mean is denoted by µ and the for the standard deviation by σ.

UNL vs O1 UNL vs O2
Dice Jaccard Hausdorff Dice Jaccard Hausdorff

ID µ (%) σ(%) µ (%) σ(%) µ (%) σ(%) µ (%) σ(%) µ (%) σ(%) µ (%) σ(%)
1 90.24 1.80 82.26 3.02 13.94 2.86 89.78 1.42 81.49 2.34 15.53 2.65
2 90.18 1.90 82.17 3.12 20.14 5.86 90.39 2.81 82.59 4.60 20.74 6.98
3 93.26 2.75 87.50 4.73 12.11 4.56 88.31 3.40 79.23 5.48 16.94 4.18
4 96.25 1.02 92.79 1.88 9.42 2.30 93.42 2.96 87.79 5.02 13.04 4.58
5 94.79 4.30 90.36 6.73 11.14 6.01 93.00 3.89 87.15 6.40 12.23 5.70
6 92.50 2.31 86.12 4.01 24.00 6.24 95.51 1.74 91.46 3.13 13.87 5.42
7 95.59 1.17 91.57 2.15 8.34 2.13 95.65 1.19 91.69 2.17 8.03 2.09
8 91.16 9.56 84.88 13.15 21.43 23.21 90.43 9.53 83.63 12.94 22.59 22.95
9 91.22 2.42 83.94 4.07 20.98 7.59 91.25 2.57 84.01 4.33 20.77 8.38

10 88.33 8.31 80.01 12.57 32.14 23.46 88.49 7.83 80.16 11.90 31.45 22.05
11 93.52 1.10 87.84 1.93 9.73 1.29 94.07 0.57 88.82 1.02 8.68 1.18
12 95.32 1.08 91.07 1.96 13.52 3.16 96.23 1.24 92.77 2.27 11.78 3.57

Average 92.69 3.14 86.71 4.94 16.41 7.39 92.21 3.26 85.90 5.13 16.31 7.48

Table 7: Mean Dice similarity, Jaccard index, and Hausdorff distance and standard deviations (std)
for the comparison of the segmentation results of Observer 1 (O1) and Observer 2 (O2) with PAP.
The mean is denoted by µ and the for the standard deviation by σ.

PAP vs O1 PAP vs O2
Dice Jaccard Hausdorff Dice Jaccard Hausdorff

ID µ (%) σ(%) µ (%) σ(%) µ (%) σ(%) µ (%) σ(%) µ (%) σ(%) µ (%) σ(%)
1 70.87 3.52 54.99 4.15 46.70 5.43 70.99 3.49 55.13 4.08 48.19 6.48
2 85.62 2.95 74.97 4.50 25.68 4.34 86.41 2.53 76.15 3.89 26.18 4.91
3 89.55 2.78 81.18 4.60 16.17 3.61 88.21 2.52 79.00 3.99 18.77 4.71
4 94.66 0.89 89.87 1.60 13.07 3.14 91.11 2.73 83.77 4.46 18.63 4.27
5 92.69 10.11 87.40 11.08 14.10 21.13 92.45 9.73 86.95 11.32 13.98 20.48
6 88.74 2.03 79.82 3.19 26.51 4.78 93.47 2.67 87.85 4.51 17.75 6.16
7 85.45 9.45 75.45 10.73 25.42 31.31 84.16 9.25 73.44 10.31 26.72 31.41
8 64.08 15.80 49.05 16.77 72.30 33.58 63.53 15.75 48.41 16.51 73.77 33.19
9 86.59 13.87 78.35 16.88 43.90 64.46 87.82 14.40 80.48 17.54 39.22 65.81

10 90.09 8.83 82.84 11.22 25.53 27.87 89.45 8.78 81.77 11.16 26.64 27.43
11 90.96 7.34 84.01 9.16 20.38 30.71 91.36 7.54 84.73 9.50 19.65 31.02
12 93.60 9.91 89.06 12.23 17.11 25.18 93.30 9.95 88.56 12.29 18.28 24.96

Average 86.07 7.29 77.25 8.84 28.91 21.30 86.02 7.45 77.19 9.13 28.98 21.74
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Table 8: Mean Dice similarity, Jaccard index, and Hausdorff distance and standard deviations (std)
for the comparison of the segmentation results of Observer 1 (O1) and Observer 2 (O2) with KAT.
The mean is denoted by µ and the for the standard deviation by σ.

KAT vs O1 PAP vs O2
Dice Jaccard Hausdorff Dice Jaccard Hausdorff

ID µ (%) σ(%) µ (%) σ(%) µ (%) σ(%) µ (%) σ(%) µ (%) σ(%) µ (%) σ(%)
1 82.73 4.19 70.75 5.82 25.36 4.11 82.87 4.64 71.00 6.50 22.32 3.39
2 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
3 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
4 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
5 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
6 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
7 90.21 3.38 82.33 5.53 14.75 4.23 89.49 3.50 81.15 5.69 15.43 4.69
8 89.32 4.07 80.93 6.54 23.83 9.42 88.99 4.01 80.39 6.49 25.35 9.10
9 89.62 1.67 81.23 2.74 25.59 3.59 90.73 1.94 83.08 3.26 23.53 4.69

10 88.69 3.94 79.88 6.15 22.67 9.24 88.68 3.80 79.87 5.96 24.11 9.12
11 93.32 2.17 87.54 3.77 11.77 2.50 93.93 1.78 88.60 3.13 11.22 2.04
12 89.49 2.50 81.06 4.08 23.47 5.81 88.68 2.81 79.77 4.55 24.62 6.06

Average 89.05 3.13 80.53 4.95 21.06 5.56 89.05 3.21 80.55 5.08 20.94 5.58
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(a) (b)

(c) (d) (e)

Figure 6: Examples depicting (a) the first frame of a sequence, (b) the corresponding user anno-
tation for blood and non-blood (red and blue, respectively), (c) the corresponding polar B-mode
representation, and the likelihood estimates for (d) lumen and (e) non-lumen. The star in (c) in-
dicates the radius coordinate χ of the outer-most trace of the ringdown artifact selected by the
user.
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(a) (b) (c)

Figure 7: Examples depicting (a) the lumen segmentation result of a frame, (b) the next consecu-
tive frame, and (c) the class mask which defines the regions considered as blood and non-blood.

Figure 8: Box plot of the Dice similarity coefficient for the comparison of the segmentation results
in all the sequences of the proposed method (MRK), Unal’s method (UNL), Papadogiorgaki’s
method (PAP), and Katouzian’s method (KAT) with the manual segmentation of two observers.
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4.3. Results on a sequence with changes in appearance
To evaluate the robustness of the MRK method respect to changes in the B-

mode reconstruction parameters and large lumen shape changes, we performed
an experiment using a modified version of Sequence 7 where we applied first a
90◦ rotation and then changes in the dynamic range compression every 10 frames.
Figure 20 depicts the segmentation result on the first frame of each modified sub-
sequence. In this case the average frame segmentation time was 4.51 s, the model
was computed four times, and the total model computation time was 63.88 s.
The mean Dice similarity of the comparison with the manual segmentation was
92.84% with a standard deviation of 2.19%. This results indicates the robustness
of our method with respect to possible changes in appearance within an IVUS
sequence due to changes in the B-mode reconstruction parameters, catheter rota-
tions, or the natural changes on the physiology of the vessel.

5. Discussion

While the results obtained with the UNL method are comparable with the
results our method, note that the MRK method presents a consistently smaller
standard deviation which means that our method is more stable. In addition, the
significance test determined that the results obtained with the MRK method are
significant when compared with the other methods. In contrast to other methods,
the MRK method does not require any supervised parameter tuning when chang-
ing between sequences with different IVUS frequencies or B-mode reconstruction
parameters. Most of the frame segmentation time is used by the computation of
the Law’s texture energies. However, considering that this code was implemented
in a MATLABr, we believe that the segmentation process time can be dramati-
cally reduced by implementing the method using a lower level language such as
C++.

5.1. Sensitivity analysis
5.1.1. Lumen contour parameters

As mentioned in Sec. 3.2, the sharpness of the transition between classes is
controlled by the parameter λ. The value of this parameter may have an impact in
the accuracy of the segmentation curve. On the other hand, the number of Fourier
coefficientsNk determines the smoothness of the curve. To evaluate the sensitivity
of our method with respect to these parameters, we performed segmentation of all
the frames from the available IVUS sequences using different values for λ and
Nk, and computed the similarity of the results with the manual segmentation of
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(a)

(b)

Figure 9: (a) Linear regression and (b) Bland-Altman plot for the comparison of the lumen areas
segmented by Observer 1 (O1) with the areas segmented by Observer 2 (O2).
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(a)

(b)

Figure 10: (a, b) Linear regression and (c,d) Bland-Altman plot for the comparison of the lumen
areas segmented by Observer 1 (O1) with the areas segmented with the MRK method.
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(a)

(b)

Figure 11: (a, b) Linear regression and (c,d) Bland-Altman plot for the comparison of the lumen
areas segmented by Observer 2 (O2) with the areas segmented with the MRK method.
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(a)

(b)

Figure 12: (a, b) Linear regression and (c,d) Bland-Altman plot for the comparison of the lumen
areas segmented by Observer 1 (O1) with the areas segmented with the UNL method.
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(a)

(b)

Figure 13: (a, b) Linear regression and (c,d) Bland-Altman plot for the comparison of the lumen
areas segmented by Observer 2 (O2) with the areas segmented with the UNL method.
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(a)

(b)

Figure 14: (a, b) Linear regression and (c,d) Bland-Altman plot for the comparison of the lumen
areas segmented by Observer 1 (O1) with the areas segmented with the PAP method.
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(a)

(b)

Figure 15: (a, b) Linear regression and (c,d) Bland-Altman plot for the comparison of the lumen
areas segmented by Observer 2 (O2) with the areas segmented with the PAP method.
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(a)

(b)

Figure 16: (a, b) Linear regression and (c,d) Bland-Altman plot for the comparison of the lumen
areas segmented by Observer 1 (O1) with the areas segmented with the KAT method.
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(a)

(b)

Figure 17: (a, b) Linear regression and (c,d) Bland-Altman plot for the comparison of the lumen
areas segmented by Observer 2 (O2) with the areas segmented with the KAT method.
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Figure 18: Examples of automatic segmentation results for 20 MHz sequences along with the
segmentation of Observer 1 (yellow line). The images correspond to the original frame and the
segmentation results with the MRK, UNL, PAP, and KAT methods, from left to right, respectively.
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Figure 19: Examples of automatic segmentation results for 40 MHz sequences along with the
segmentation by Observer 1 (yellow line). The images correspond to the original frame and the
segmentation results with the MRK, UNL, PAP, and KAT methods, from left to right, respectively.

41



Figure 20: Segmentation results on the first frame of each modified subsequence.

an observer using the Dice coefficient (Fig. 21(a)). Note that as the value of
Nk increases, the segmentation results improve. However, since the number of
variables of the cost function of Eq. (5) is related with the value of Nk, the time
required to minimize the cost function that provides the segmentation depends on
the value of Nk. Figure 21(b) depicts the average segmentation times for all the
sequences using different values of Nk. Note that as the value of Nk increases,
the average time required to segment a frame also increases. Note that the value
of the parameter λ does not significatively affect the segmentation results as the
value of Nk increases.

5.1.2. Consecutive frames similarity
The proposed gray-level distribution change detection of the proposed MRK

method is based on the assumption that the shape of the lumen of two consecutive
frames is very similar. In order to quantitatively verify this observation and to
determine the values of wb and wn we computed the Dice similarity coefficient
Dice (1945) between the region defined as lumen by an observer for each pair of
consecutive frames corresponding to the validation sequences described in Table
2. Figure 22(a) depicts the histogram of the obtained Dice similarities coefficients
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for the comparison of all the consecutive frames. Note that the similarity between
consecutive frames is most of the time above 97% which supports our assumption.
Similarly, we computed the maximum difference between the radial coordinate r
in of the pixels corresponding to the same angle θ belonging to the lumen contour
on each pair of consecutive frames max(Si(r, θj, ~Ci)−Si+1(r, θj, ~Ci+1)) ∀j. Fig-
ure 22(b) depicts the empirical distribution function of the maximum differences
for all the frames of the validation set described in Table 2. Note that, for more
than 90% of the frames the largest radial difference is less than 20 pixels.

5.2. Results on IVUS images with artifacts
Shadows may appear on the IVUS images as dark regions representing of low

acoustic impedance. In general these artifacts are generated by calcified plaque
or a region of tissue with low acoustic impedance proximal to the vessel. Shad-
ows represent a challenge for 20 MHz sequences because the low echogenicity of
blood at this frequency generates gray level distributions on similar to those re-
gions corresponding to shadows. However, since in our approach the lumen region
is constrained by a curve it is not affected by these artifacts as long as there is a re-
gion with texture different from the lumen. Figures 23(a), 23(b) and 23(c) depicts
a 20 MHz cases presenting shadows proximal to the vessel lumen. Note that, the
MRK method was able to provide an accurate segmentation because the existence
of regions between the lumen and the shadow which constrain the evolution of the
curve. Similarly, Fig. 23(d) depicts a 40 MHz case which presents a large shadow
proximal to the vessel lumen. Note that for this case, the MRK method was able
to provide an accurate segmentation because of the evident difference between
the texture of the lumen and the shadow region. In general, shadow artifacts do
not represent a challenge for 40 MHz sequences since the gray level intensities of
the speckle present in blood are different from the homogeneously dark shadow
regions.

Side branches are identified as the opening formed when the vessel being im-
aged bifurcates. This is visualized as an area with similar texture extending from
the lumen in the near field towards the far field. Side branches represents a chal-
lenge for any segmentation method and in some cases even for observers because
of the lack of an apparent change in the regions that indicates a change of inter-
face. For these cases, the MRK method is not capable of providing a segmentation
result similar with the segmentation of an observer. Figure 24 depicts an example
of one case presenting a side branch with origin in the lumen. In this example,
the curve that defines the lumen/wall interface of the MRK method move through
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this region because it is designed to keep inside the contour as much region with
texture of blood as possible.

Similarly, for cases presenting regions of the vessel wall adjacent to the lu-
men contour with texture similar to the texture depicted in the lumen, the lack
of an apparent change in the regions represents a challenge for automatic any
segmentation method and observers. The MRK method may produce inaccurate
segmentation results in this cases. Figure 25 depicts an example of two 40 MHz
frames in which the texture of the lumen is similar to the texture of a region of the
wall. In these cases the MRK method performed incorrectly.

Guidewire artifacts are produced by the reverberation of the guidewire when
interacting with the ultrasound beam. Depending on the location of the guidewire
with respect to the ultrasound transducer, these artifacts appears in the IVUS im-
ages as bright thick spots or as series of partial rings followed by more distant
shadowing behind the wire posing a challenge for the segmentation methods.
Figure 26 depicts the segmentation result using MRK on images that present
guidewire artifacts. Note that the MRK method is capable to provide accurate
segmentation results (Figs. 26(a), 26(b), and 26(c)). However, for some cases
where there is a region of the lumen occupied by the artifact the MRK method
may perform incorrectly (Fig. 26(d)).
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(a)

(b)

Figure 21: (a) Sensitivity analysis the MRK method with respect to λ and Nk. (b) Average time
required to perform the segmentation for different values of Nk.
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(a) (b)

Figure 22: (a) Histogram of the Dice similarities, and (b) normalized cumulative histogram of the
maximal radial lumen contour differences for consecutive frames.
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(a) (b)

(c) (d)

Figure 23: Segmentation results examples of (a, b, c) 20 MHz and (c) 40 MHz IVUS images with
shadow artifacts. The arrows indicate the regions corresponding to shadows. The Dice similarity
score for each frame is: (a) 93.78%, (b) 94.72, (c) 94.32%, and (d) 95.64%.
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Figure 24: Segmentation results examples of (a) a 20 MHz and (b) a 40 MHz IVUS images depict-
ing side branches. The Dice similarity score for each frame is: (a) 91.48% and (b) 86.66%.

(a) (b)

Figure 25: Example of two frames of a 40 MHz sequence in which the texture of the lumen is sim-
ilar to the texture of a region of the wall. The red line corresponds to the automatic segmentation,
while the yellow line corresponds to the manual segmentation by the expert observer. The Dice
similarity score for each frame is: (a) 88.72%, (b) 77.23%.
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(a) (b)

(c) (d)

Figure 26: Segmentation results example of 40 MHz IVUS images with guidewire artifacts. The
arrows indicate the guidewire artifact. The Dice similarity score for each frame is: (a) 94.32%, (b)
95.22%, (c) 93.38% and (c) 93.38% and (d) 89.21 %.
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5.3. Limitations
Our method has three known limitations. The fist limitation is that it is not

fully automatic since it requires samples from blood and non-blood regions in the
first frame of the sequence. We could transform it to fully automatic by perform-
ing the computation of the SVM models using blood and non-blood samples from
a large training data set of different IVUS images. However, the main limitation
of fully automatic methods is that they rely on the use of large training sets for es-
timating the models of the gray intensity levels of the regions of interest. In order
for these models to be robust, it would be necessary that this training database is
large enough to account for all the different appearances that an IVUS image can
have, including different visualization parameters.

The second limitation is its dependence on the accuracy of the annotations on
the first frame of the sequence to segment. These samples should be representative
of the different gray level intensities and texture of the regions of lumen and non-
lumen. Incorrect samples may result in an incorrect segmentation. Therefore, this
initialization must be performed by an observer familiarized with the IVUS data.
It is recommended to select at least 50% of the region corresponding to lumen and
most of the region adjacent to the lumen corresponding to non-lumen (Fig. 6).

The third limitation of our method relates with the inaccuracy of our method
in the presence of artifacts in the IVUS images as discussed in Sec. 5.2

6. Conclusion

We have presented a probabilistic approach for the segmentation of the lumi-
nal border on IVUS images. The proposed method incorporates texture informa-
tion by using the prediction of an SVM classifier model. This step enable the
segmentation of IVUS images from different frequencies (i.e., 20 and 40 MHz)
without the need of adjusting any parameter, and it makes it robust to the problem
of variability of IVUS image B-mode reconstruction settings. The results indicate
that the segmentation results obtained with our method are comparable with the
segmentation performed by observers.

The robustness with respect to side branches by the prior detection of them
(e.g., (Unal et al. (2008))), the exploration of additional texture descriptors and
classification methods, the segmentation of the media/adventitia contour, and mak-
ing the method fully automatic is subject to future work.
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