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Although one of the simplest and powerful approaches for the demodulation

of a single fringe pattern with closed fringes is the regularized phase tracking

(RPT) technique, this technique has two important drawbacks: its sensibility

at the fringe-pattern modulation and the time employed in the estimation. In

this paper we present modifications to the RPT technique which consist of

the inclusion of a rough estimate of the fringe-pattern modulation, and the

linearization of the fringe-pattern model which allow the minimization of the

cost function through stable numerical linear techniques. With these changes,

the demodulation of non-normalized fringe patterns is made with a significant

reduction in the processing time, preserving the demodulation accuracy of

the original RPT method. c© 2007 Optical Society of America

OCIS codes: 100.2650, 100.5070, 120.5050, 120.3940

1. Introduction

The main goal of fringe analysis techniques is to recover accurately the local modulated phase

from one or several fringe patterns;1 such phase is related to some physical quantities like

shape, deformation, refractive index, temperature, etc. The basic model for a fringe pattern

is given by

Ir = ar + br cos (fr) + ηr (1)
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where r = (rx, ry)
T ∈ L denotes a pixel position in the lattice L, ar is the background illumi-

nation, br is the amplitude modulation, ηr represents additive independent noise (generally

assumed with a Gaussian distribution) and fr is the phase map to be recovered.

There is a number of well-known techniques to estimate the phase term. In experiments

with controlled conditions, the first choice is to use a phase shifting technique for the phase

estimation.1 However, in some experiments like the investigation of transient mechanical

processes, it is difficult to acquire multiple fringe-patterns. In such situations, the phase

estimation has to be done with a single fringe-pattern that contains, in general, closed and

noisy fringes with large variations in the fringe modulation.

Several successful attempts can be found in the literature for the demodulation of a single

fringe pattern with closed fringes,2−3 where one of the simplest and powerful approaches is

the regularized phase tracking (RPT) technique.4−5 Despite their accurate phase-estimate,

a disadvantage of the RPT technique is its sensitivity at the fringe-pattern modulation. This

means that the fringe pattern has to be preprocessed to remove the background illumination

and amplitude modulation.

To correct this problem, it was reported an improvement of the RPT technique,5 which

consists in the addition of one term that models the fringe pattern modulation. With this new

term, the improved RPT technique can successfully estimate the phase of non-normalized

fringe patterns that the original RPT formulation fails to recover. However, the minimization

in this proposed cost function is still a nonlinear process which increases notably the time

employed in the phase estimation.

In this paper, we present modifications to the RPT technique which consist of the in-

clusion of a rough estimate of the fringe-pattern modulation, and the linearization of the

fringe-pattern model which allow the minimization of the cost function through linear tech-

niques. These modifications produce a significant reduction in the processing time using a

stable numerical minimization algorithm without any significant change in the demodulation

accuracy, allowing the demodulation of non-normalized fringe patterns.

The organization of the paper is a follows: Section 2 briefly describes the basic RPT tech-

nique. Section 3 explains the proposed modifications to the RPT technique and presents

an efficient numerical minimization algorithm. Section 4 shows the performance of the pro-

posed modifications on examples of synthetic and experimental fringes patterns, and section

5 offers concluding remarks.

2. Brief review of the Regularized Phase Tracking technique

The RPT technique assumes that the fringe pattern may locally be considered monochro-

matic.4−5 Consequently, it can be modelled as a cosinusoidal function (equation (1)) where

the phase term is assumed to be smooth and can be approximated locally by a plane. The
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basic cost function for the RPT technique is defined as4

U(pr) =
∑
s∈Nr

{[
Ih
s − cos (pr(s))

]2
+

[
Ih
s − cos (pr(s) + α)

]2
+ λ [fs − pr(s)]

2 ms

}
(2)

where the local phase, f , and the local frequencies, ω = (u, v)T , are estimated at the pixel

r; the fringe pattern Ih
s is a high-pass filtered version of the fringe pattern given by equation

(1), that is Ih
s ≈ cos(fs); Nr = {s : s ∈ L, |r − s|M ≤ d} is the neighborhood region around

r with coordinates s = (sx, sy)
T where |z|M = |z1|+ |z2|+ ...|zn| is the Manhattan norm and

d is an integer parameter that determines the size of the neighborhood; ms is an indicator

field that is equal to one if the phase fs at the site s has already been estimated, and zero

otherwise, α is a constant value used to constrain the phase estimate to a smooth solution,

and λ is the regularizing parameter that controls (along with the size of Nr) the smoothness

of the detected phase.4 The value of λ is selected interactively because there is not a precise

method for the choice of the regularization values.6 The function

pr(s) = fr + ωT
r (r − s) (3)

is the planar model used for estimating the phase at the position s using the parameters

at position r. The fundamental idea in the RPT technique is that given the phase and the

local frequency at position r, the phase fs can be fitted into a small neighborhood around

pixel r with a plane assuming smooth phase field. To estimate the phase field with the RPT

technique, it is needed to minimize the cost function given in equation (2) at each point r with

respect to the local phase f and the local frequency ω. The estimated phase is continuous,

and, consequently, no further unwrapping process has to be done. Several variants of the

basic RPT technique can be found in the literature.4−5

3. Improvements in the Regularized Phase Tracking technique

3.A. Introducing a rough modulation estimate in the RPT technique

One drawback of the basic RPT technique is the need of the fringe-pattern normalization,

that is, Ih
s ≈ cos(fs) must be satisfied. This means that any deviation from normalized

fringes will generate errors in the phase estimation.5,3,7 An option to solve this problem is

to reduce the contributions of the terms a and b from equation (1) by means of a filtering

process before the phase estimation.7,8 The background term a can be removed without

difficulty,2 but the filtering process tends to fail especially in regions with noisy and low-

contrast visibility because the modulation is removed by a division of small values of b at

those sites.5
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Recently, an alternative was reported in reference 5 which consist of the addition of one

term that models the fringe pattern modulation. With this new term, the RPT technique

can successfully estimate the phase of non-normalized fringe patterns by only removing

the background term from the original fringe pattern. However, this modification increases

notably the time employed in the estimation process, and the results obtained in regions

with saddle points or very low frequencies are spurious.

A practical solution is to process the fringe pattern in such a way that a rough estimate

of the modulation can be obtained.3,7,8 Instead of removing the fringe-pattern modulation

using a division, it is included in the cost function given in equation (2) as

U(pr) =
∑
s∈Nr

{[
gs − b̂s cos (pr(s))

]2

+
[
gs − b̂s cos (pr(s) + α)

]2

+ λ [fs − pr(s)]
2 ms

}
(4)

where b̂ is the estimated modulation computed from a filtering process,7,8 and the fringe

pattern is assumed as

gr ≈ br cos (fr) (5)

where the background illumination term ar was removed using, for instance, a membrane

filter.2

With this simple modification shown in equation (4), the RPT technique improves sig-

nificantly the robustness of the phase estimation of fringe patterns with variations in the

fringe-pattern modulation, as it can be seen in the experiments shown in section 4.

3.B. Proposed half-quadratic cost function for the RPT technique

However, the minimization of the cost function (4) leads to solve a non-linear problem using

time consuming methods like the Broyden-Fletcher-Goldfarb-Shanno.9,10 Moreover, this kind

of methods does not guarantee uniqueness of the solution; as a consequence, a good initial

value must always be provided to avoid to be trapped into local minimums of the function.10

An alternative was published recently,3 where it is proposed a half-quadratic cost function

for the phase estimation, which consist of the linearization of the fringe-pattern model and

the minimization of the resultant cost function through alternate solutions of linear systems;

the robustness of the minimization process is improved by introducing a outlier detection

and rejection strategy.

Following the ideas expressed in reference 3, it is assumed that the phase term can be

expressed as

f = f̂ + f̃ (6)
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where f̂ is a known approximation of the phase f and f̃ is an unknown residual phase-value.

If the approximation f̂ is close enough to f , then first order Taylor series approximate very

well the fringe model given in equation (5).3 This can be expressed as

E(f̃r; f̂r) = gr − b̂r

[
cos

(
f̂r

)
− f̃r sin

(
f̂r

)]
≈ 0. (7)

As it can be observed, if a good approximation of both the phase value and modulation

estimate at the pixel r exist, then it is only needed to estimate the residual term f̃ , and

such minimization is a linear process. The robustness of such estimation is improved by

introducing an outlier detection and rejection strategy because it is common to have large

residuals at noisy regions, and, therefore, the pixels with large residuals need to be treated

as outliers.

For the particular case of the RPT cost function, the model phase given in equation (3)

is approximated using the approach described previously. In the same way that the phase

term was expressed in equation (6), the frequency is approximated as

ω = ω̂ + ω̃ (8)

where ω̂ (as f̂) is a known approximation of the frequency and ω̃ is an unknown residual.

Thus, by defining

p̂r(s) = f̂r + ω̂T
r (r − s) (9)

and

p̃r(s) = f̃r + ω̃T
r (r − s) (10)

the model for the fringe pattern is rewritten as

b̂s cos (pr(s)) = b̂s cos (p̂r(s) + p̃r(s))

≈ b̂s [cos (p̂r(s))− p̃r(s) sin (p̂r(s))]

= b̂s

[
cos

(
f̂r + ω̂T

r (r − s)
)
−

(
f̃r + ω̃T

r (r − s)
)

sin
(
f̂r + ω̂T

r (r − s)
)] (11)

As it can be seen in the previous equation, if an estimation of the modulation is available,

and a good approximation of the phase and the frequency at the pixel r exits, it is only

needed to estimate the residual terms. In the same way that equation (7), the estimation of

such terms becomes a linear process; that is

E(f̃r, ω̃r; f̂r, ω̂r) = gr − b̂r [cos (p̂r(s))− p̃r(s) sin (p̂r(s))] ≈ 0. (12)
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We introduced the approximation shown in equation (12) and the estimated modulation,

b̂, in the RPT cost function. The proposed cost function for the RPT technique consists of

computing the residual terms f̃r and ω̃r, and the outlier detector ls. They are the minimizers

of the following regularized half-quadratic cost function

U(f̃r, ω̃r, ls) =
1

2

∑
s∈Nr


l2s

[
gs − b̂s cos (p̂r(s)) + p̃r(s)b̂s sin (p̂r(s))

]2

+ l2s

[
gs − b̂s cos (p̂r(s) + α) + p̃r(s)b̂s sin (p̂r(s) + α)

]2

+ λ [fs − p̂r(s)− p̃r(s)]
2 ms + µ (1− ls)

2

 (13)

where ls ∈ [0, 1] act as an indicator variable that weighs the individual contribution of

the data, and µ is a positive parameter that control the outliers detection. The values of

µ and λ are selected interactively because there is not a precise method for the choice of

the regularization values.6 The rest of the terms are equivalent to the definitions given in

equations (2) and (4).

3.C. Minimization of the proposed cost function

The proposed RPT cost function shown in equation (13) is half-quadratic in the sense that it

is quadratic with respect to the residual terms f̃r and ω̃r when the outlier detector ls is fixed,

and it is convex with respect to ls when f̃r and ω̃r are fixed.11−12 So, given initial values for

f̂ and ω̂, the residuals terms and the outlier term are estimated in two steps. In the first

step, the outlier term ls is estimated using the following equation, resultant of equating the

partial gradient of (13) with respect to ls,

ls =
µ

µ + E2
0 [pr(s)] + E2

1 [pr(s)]
(14)

where E0 [.] and E1 [.] are defined in equation (A5) in Appendix A. Note that ls ≈ 1 for those

sites where the difference between the input data and the estimate are small with respect

to µ, and ls ≈ 0 for those pixels where the model does not fit the model very well, so the

regularization term µ has more control over the computation of the residual terms f̃r and

ω̃r.

Once the outlier term was estimated, the linear system that results of equating the partial

gradient of (13) with respect to the residual terms f̃r and ω̃r is solved. The second step

consist of updating the values f̂ and ω̂ by the estimated residual terms, that is f̂r = f̂r + f̃r

and ω̂r = ω̂r + ω̃r.

These two steps are iterated until convergence which is guaranteed if the computed residual

terms f̃r and ω̃r are small so that
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∥∥∥gr − b̂r cos (p̂r(s))
∥∥∥ ≥

∥∥∥gr − b̂r [cos (p̂r(s))− p̃r(s) sin (p̂r(s))]
∥∥∥

≈
∥∥∥gr − b̂r cos (p̂r(s) + p̃r(s))

∥∥∥
For our minimization problem, each step of the minimization process is achieved by a

Gauss-Seidel scheme.13 Given that the cost function (13) is half-quadratic, the Gauss-Seidel

scheme converges to the global minimum of the subproblems corresponding to each step

previously mentioned. Therefore, each iteration reduces the cost function value, and the

convergence to a local minimum, at least, is guaranteed because the cost function (13) is

bounded by zero.3,10,13

The practical details of the minimization of the half-quadratic cost function (13) are given

in the Algorithm 1, where we define

Ars
def
= l2s b̂

2
s

[
sin2 (p̂r(s)) + sin2 (p̂r(s) + α)

]
+ λms (15)

and

Brs
def
= l2s

[
gs − b̂s cos (p̂r(s))

]
b̂s sin (p̂r(s))

+ l2s

[
gs − b̂s cos (p̂r(s) + α)

]
b̂s sin (p̂r(s) + α)

− λms [fs − p̂r(s)]

(16)

Algorithm 1 shows the Gauss-Seidel scheme for the minimization of the proposed RPT

technique. The derivation of the Gauss-Seidel formulas are shown in Appendix A; note that

such formulas are simplified to those in Algorithm 1 if the coarse parameters, f̂r and ω̂r, are

updated after each residual is computed.

Step 6 in Algorithm 1 can be implemented by different ways, the most successful one

consist of constraining the search to a single fringe choosing at each iteration the pixel r

with the largest fringe pattern irradiance.14−5,15

4. Experimental Results and Discussion

To illustrate the performance of the proposed RPT cost function, some experiments were

made in a 1.5-GHz-Intel-Pentium-M PC with one GB of main memory. In these experiments

the performances of the improved RPT method reported in reference 5, the RPT cost func-

tion defined in equation (4), and the proposed cost function defined in equation (13) are

compared. In each experiment, the parameters values and the seed position were the same

for all methods, and the fringe modulation of the experimental fringes were estimated using

Fourier filtering.7

In the first experiment, we compared the performances of the above RPT techniques in the

demodulation of a synthetic fringe-pattern with 256 x 256 pixels shown in figure 1, panel (a).
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Panels (b) and (c) show the synthetic modulation and phase, respectively, used to generate

the fringe pattern. The synthetic modulation shown in panel (b) was used as the term b̂

in equations (4) and (13). The resultant demodulations are shown in figure 2. The time

employed and the estimation errors are shown in table 1 where the parameters were λ = 1,

α = 0.1π, and the neighborhood region was a 9 x 9 window (d = 4) for the cost functions

given in equations (4) and (13). In the case of the RPT method reported in reference 5, the

neighborhood region was a 11 x 11 window (d = 5) because it is necessary to increase the

window size to track the frequencies of the fringe-pattern modulation.5

From the results shown in figure 2 and table 1, we can stress some points: the original

RPT technique shown in equation (2) always fails to recover the phase term from a non-

normalized fringe pattern, even in the case of very smooth modulation like the shown in

figure 1, panel (b). This situation was solved partially by the method reported in reference

5 because it can accurately estimate the phase in most of the fringe pattern, except at the

center of the fringe-pattern given that the method can not detect the low frequency of this

region.

An accurate phase-estimate is obtained when an estimation of the modulation in the

RPT cost function is included, equation (4). In this case, the computation of the phase is

successfully made with accuracy as it can be seen in the results reported in table 1 and figure

2. Most of the errors can be founded at the center fringe-pattern due to the neighborhood

region is not large enough to detect the low frequency. Additionally, the time employed in

the phase estimation is significatively reduced using the proposed cost function defined in

equation (13), without any major change in the demodulation accuracy.

A second experiment was made with the fringe pattern shown in figure 3, panel (a). This

synthetic fringe pattern was generated using the phase term shown in figure 1, panel (c) and

the synthetic modulation shown in figure 3, panel (b). The resultant demodulations and the

time employed are shown in figure 3 and table 2, respectively. The same parameter of the first

experiment was used here. As it can be seen in the resultant estimates, the great performance

of the proposed cost function is maintained even in situations with large variations of the

modulation as it can be seen in the modulation shown in figure 3, panel (b).

The third experiment shows the importance of the modulation estimate in the performance

of the proposed cost function. We generated some synthetic fringe-patterns with different

levels of modulation using the phase field shown in figure 1, panel (c). For every fringe

pattern, we estimated roughly the modulation using a Fourier filtering7 and this estimate

was included as the term b̂ in the equation (13). The fringe patterns and the estimate of

the modulation are shown in figure 4, panels (a) to (f), and the resultant phase-estimate

are shown in panels (g) to (i). In the case of the first column of the Figure 4, an accurate

phase-estimate was obtained using a low fringe-pattern modulation, with the exception of
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the errors due to low frequencies, as it was previously explained. This is due to the good

estimation of the modulation, as it can be seen in the panel (d) of Figure 4. The erroneous

phase-estimate due to the modulation are in the second and third columns of the Figure

4, where it is evident that the errors are located only in regions with a very low or nearly

to zero fringe-pattern modulation, as it can be seen in the panels (e) and (f) of Figure 4.

As it may be observed, an accurate phase-estimate will be obtained with the proposed cost

function defined in equation (13) only if the fringe pattern has levels of modulation that can

be detected by the modulation-estimation technique.

The advantage of the fast estimation without significant change in accuracy is evident in

the processing of experimental fringe patterns with large size. The last experiment was the

demodulation of an experimental fringe pattern shown in figure 5, panel (a). An estimate of

the modulation was obtained by Fourier filtering7 and used as the term b̂ in equations (4)

and (13). The resultant demodulations are shown in panels (b) to (d) and the time employed

is shown in table 3. The parameters used for this experiment were λ = 0.5, α = 0.1π, and the

neighborhood region was a 13 x 13 window (d = 6) for the cost functions given in equations

(4) and (13). In the case of the RPT method reported in reference 5, it was a 15 x 15 window

(d = 7). As it can be seen in the results of this experiment, the difference in time are evident

when it is necessary to process large images or to increase the size of the neighborhood region

Nr to detect the slope terms of the plane model.5

5. Conclusions

In this paper we present a modified RPT technique for the fast demodulation of non normal-

ized fringe patterns which consist of the inclusion of a rough estimate of the fringe-pattern

modulation, and the linearization of the fringe-pattern model that allow the minimization

of the cost function through linear techniques.

The changes allow the demodulation of non-normalized fringe-patterns with a significant

reduction in the processing time, preserving the demodulation accuracy of the original RPT

method. These are shown on examples of demodulation of synthetic and experimental fringe-

patterns. Additionally, we include the details of the minimization algorithm in the Algorithm

1 and the Appendix A.
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Appendix A. Gauss-Seidel Updating Formulas

From the chain rule we have that

∂U (p̃r(s))

∂f̃r

=
∂U (p̃r(s))

∂p̃r(s)

∂p̃r(s)

∂f̃r

and

∂U (p̃r(s))

∂ω̃r

=
∂U (p̃r(s))

∂p̃r(s)

∂p̃r(s)

∂ω̃r

.

Therefore

∂U (p̃r(s))

∂p̃r(s)
=

∑
s∈Nr

[
f̃r + ω̃T

r (r − s)
]
Ars + Brs;

where Ars and Brs are defined in equations (15) and (16), respectively.

Now, given that ∂p̃r(s)

∂f̃r
= 1, we have the Gauss-Seidel iteration formula by equaling to zero

the partial derivative and solving for f̃r

f̃r =
−

∑
s∈Nr

[
ω̃T

r (r − s)Ars + Brs

]∑
s∈Nr

Ars

. (A1)

On the other hand:

∇wr p̃r(s) =

[
∂p̃r(s)

∂ũr

,
∂p̃r(s)

∂ṽr

]T

= [rx − sx, ry − sy]
T .

Therefore, the Gauss-Seidel iteration formulas for updating the local frequency are:

ũr =
−

∑
s∈Nr

[(
f̃r + ṽr(ry − sy)

)
Ars + Brs

]
(rx − sx)∑

s∈Nr
Ars (rx − sx)

2 . (A2)

and

ṽr =
−

∑
s∈Nr

[(
f̃r + ũr(rx − sx)

)
Ars + Brs

]
(ry − sy)∑

s∈Nr
Ars (ry − sy)

2 . (A3)

Finally, the outlier rejection field iteration formula is obtained from ∂U(p̃r(s))

∂l̃s
= 0:

ls =
µ

µ + E2
0 [pr(s)] + E2

1 [pr(s)]
(A4)

where

E0 [pr(s)]
def
= gs − b̂s cos (p̂r(s)) + p̃r(s)b̂s sin (p̂r(s))

E1 [pr(s)]
def
= gs − b̂s cos (p̂r(s) + α) + p̃r(s)b̂s sin (p̂r(s) + α)

(A5)
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Table 1. Time employed to demodulate the fringe pattern shown in

figure 1

Method Time employed (seconds) RMS error(rad)

Equation (2) 54.2 3.76

Equation (4) 60.3 0.87

Equation (13) 13.6 0.89

Method from reference 5 135.7 1.12
The root mean square (RMS) error is computed by the difference between the estimated phase and the

phase used to generate the fringe pattern
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Table 2. Time employed to demodulate the fringe pattern shown in

figure 3

Method Time employed (seconds) RMS error(rad)

Equation (4) 57.27 0.86

Equation (13) 16.94 0.97

Method from reference 5 129.98 1.13
The root mean square (RMS) error is computed by the difference between the estimated phase and the

phase used to generate the fringe pattern
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Table 3. Time employed to demodulate the fringe pattern shown in

figure 5

Method Time employed (seconds)

Equation (4) 205.2

Equation (13) 103.1

Method from reference 5 516.5
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Algorithm 1 Gauss-Seidel Minimization Scheme

1: Set the initial parameters λ, µ;

2: Set f̃r = 0, ω̃r = 0, mr = 0, for all r ∈ L;

3: Using equation (4), compute an initial phase f and an initial frequency ω at pixel r0 and

setM← {r0} and mr0 = 1;

4: Give the tolerance ε > 0;

5: while M 6= L do

6: Choose a pixel r ∈ L\M such that Nr

⋂
M 6= ∅;

7: repeat

8: Update the outlier rejection variable

ls =
µ

µ +
[
gs − b̂s cos p̂r(s)

]2

+
[
gs − b̂s cos(p̂r(s) + α)

]2 for all s ∈ Nr;

9: Compute Ars and Brs with (15) and (16), respectively;

10: Set fo = f̂r;

11: Compute the residual phase with

f̃r =
−

∑
s∈Nr

Brs∑
s∈Nr

Ars

;

12: Set f̂r = f̂r + f̃r and then f̃r = 0;

13: Compute the residual horizontal frequency with

ũr =
−

∑
s∈Nr

Brs(rx − sx)∑
s∈Nr

Ars(rx − sx)2
;

14: Set ûr = ûr + ũr and then ũr = 0;

15: Compute the residual vertical frequency with

ṽr =
−

∑
s∈Nr

Brs(ry − sy)∑
s∈Nr

Ars(ry − sy)2
;

16: Set v̂r = v̂r + ṽr and then ṽr = 0;

17: until |f̂r − fo| < ε;

18: Set mr = 1 andM =M
⋃
{r};

19: end while
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Fig. 1. (a) Synthetic fringe pattern. (b) Modulation, and (c) phase fields used

to generate the fringe pattern. The phase field is wrapped for purpose of illus-

tration.
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Fig. 2. Resultant phase estimate using: (a) equation (2), (b) method from ref-

erence 5, (c) equation (4), and (d) equation (13). Phase estimates are wrapped

for the purpose of illustration.
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Fig. 3. (a) Synthetic fringe pattern. (b) Modulation field used to generate the

fringe pattern. Resultant phase estimates using: (c) method from reference 5,

(d) equation (4), and (e) equation (13). The phase field is wrapped for purpose

of illustration.
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Fig. 4. (a)-(c) Synthetic fringe patterns with different levels of modulation.

(d)-(f) Estimated modulation from fringe patterns shown in panels (a)-(c),

respectively. (g)-(i) Resultant phase estimates using fringe pattern from panel

(a)-(c) and the modulation from panels (d)-(f), respectively. The phase field

is wrapped for purpose of illustration.
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Fig. 5. (a) Experimental fringe pattern. Resultant phase estimate using: (b)

method from reference 5, (c) equation (4), and (d) equation (13). Phase esti-

mates are wrapped for the purpose of illustration.
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