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Abstract : This letter presents a technique for filtering and normalizing
noisy fringe patterns which may include closed fringes, so that single-frame
demodulation schemes may be successfully applied. It is based on the con-
struction of an adaptive filter as a linear combination of the responses of a set
of isotropic band-pass filters. The space-varying coefficients are proportional
to the envelope of the response of each filter, which in turn is computed us-
ing the corresponding monogenic image (Felsberg and Sommer, IEEE TIP,
49(12):3136-3144, 2001). Some examples of demodulation of real ESPI pat-
terns are presented.
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The demodulation of single–frame fringe patterns containing closed fringes
is an interesting problem, which has applications, for example, when the
fringes are used to study fast transient phenomena. The difficulty of this
problem stems from the fact that, although the absolute value of the local
phase may be estimated from local (linear) operators – e.g., from the normal-
ized intensity gradient – the determination of the phase sign requires tracking
the local direction across the image, therefore is a global property [1, 2, 3, 4].
For this reason, demodulation algorithms are very sensitive to noise and local
contrast variations, since even a small “bad” region may send the algorithm
off track and have disastrous global consequences. This is true even when
robust schemes, like the ones in [1, 4] are used for the demodulation of real
noisy patterns, such as the ones obtained from ESPI. The purpose of this
paper is to present an algorithm for producing, from real ESPI patterns with
strong contrast variations, “clean”, normalized patterns, which may be de-
modulated with existing procedures.

Given a locally monochromatic pattern, i.e., a pattern that locally looks
like A cos(ω0 ·x+φ), where A,ω0 and φ are constants, corrupted with a white
(wide-band) noise process, a narrow band band-pass filter tuned at ω0 will
effectively eliminate noise; moreover, if a quadrature filter pair is used (such
as a complex-valued Gabor filter), one may obtain the local contrast A as
the magnitude of the complex filter output, and hence, normalize the pattern
by dividing it by A. It is possible that the local frequency has a substantial
variation across the image, then a single filter will produce unreliable results
in most places.

In theory, one may construct an adaptive filtering scheme by selecting a
set of Gabor filters whose responses cover one half of the frequency plane,
and constructing the output as a weighted combination of the real part of the
responses of each filter, where the weights depend on the amplitude of the
corresponding response; the problem is the passband of the filters must be
narrow enough to have good noise reduction, but this scheme would require
too many filters to have of practical use.

As an alternative, one may use isotropic bandpass filters that have annu-
lar frequency responses (see Fig. 1-a), so that the frequency plane may be
covered using only a small set (we select, 5) of them. In this case, to ob-
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tain the local amplitude, one must use 2 companion filters whose frequency
responses have odd symmetry (Figs. 1-b and 1-c). In particular, one may
express the 2-D frequency vector ω = (ω1, ω2)

T in polar coordinates (ρ, θ),
so that ω = (ρ cos θ, ρ sin θ)T ; in this case, the 3 filters of Fig. 1 may be
expressed in polar–separable form as:

H0k(ρ, θ) = G(ρ − ρk) (1)

H1k(ρ, θ) = −iG(ρ − ρk) sin(θ)

H2k(ρ, θ) = −iG(ρ − ρk) cos(θ)

where G(ρ) is a bell–shaped function and ρk is the tuning frequency. The
vector valued function Hk = (H0k, H1k, H2k)

T is the frequency response of
the kth monogenic filter, and the vector-valued image Fk = (F0k, F1k, F2k)

T

that is obtained as the output of this filter is called the monogenic image [5].
One may easily verify that if a fringe pattern is locally monochromatic at
pixel x, with local frequency ω0 = (r0 cos t0, r0 sin t0)

T , the kth isotropic filter
output will be F0k(x) = G(r0 − ρk)A cos(ω0 · x + φ), and the kth monogenic
image at this pixel will be a vector with magnitude Mk(x) = G(r0 − ρk)A,
this is independent of the orientation angle t0. Taking K monogenic fil-
ters whose overlapping frequency responses covering the region of interest
in the frequency plane (see Fig. 2), an adaptive filter can be constructed,
whose output is a linear combination of the responses of the isotropic filters
{H0k, k = 1, . . . , K}, with coefficients (weights) that depend on the corre-
sponding magnitudes. The same weights may be used to find an “equivalent
magnitude” that normalizes this output, obtaining the normalized pattern
F as:

F (x) =

∑K
k=1 wk(x)F0k(x)

∑K
k=1 wk(x)Mk(x)

(2)

The weights wk are computed as:

wk(x) =

(

Mk(x)

Mmax(x)

)p

(3)

where Mmax(x) = maxk Mk(x) and p is a positive constant chosen so that
wk(x) is close to 1 if Mk(x) ≈ Mmax(x), and is close to 0 otherwise. We have
found that the results are practically insensitive from a precise value of p, as
long as it is large enough (e.g., p > 5). All the results reported in here were
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obtained from experiments with p = 10.

It is important to note that in ESPI patterns, since speckle noise is multi-
plicative, bright fringes are more affected by it than dark ones. The filters we
are proposing are linear — which implies that they manage bright and dark
fringes in the same way — it is necessary to pre-process the image before
they are applied, in a way that noise over bright fringes could be reduced.
One simple way to do this is by means of a max-filter, whose output at pixel
x is defined as:

IM(x) = max
y∈W (x)

I(y)

where I is the input image, and W (x) is a 3× 3 window centered at pixel x.
This filter has the effect of approximating the (upper) envelope of the pattern,
and hence, reducing noise over the clear fringes. Also it has the unwanted
effect of reducing the local contrast, however this is effectively counteracted
by the adaptive filtering and normalization implemented by (2).

The detailed implementation of the monogenic filters is : As a first step,
the frequency dynamic range [α, β] of the input image (in rad/pixel) is found
by setting α = π/maxw and β = π/minw, where maxw, minw are the
widths (in pixels) of the widest and narrowest fringes of the pattern, respec-
tively. We have developed a graphical interface where these values may be
easily specified by the user, pointing at the limits of the desired fringes. Of
these 2 values, the most critical is maxw: if it is too large, some narrow
fringes may be lost in the reconstruction, and if it is too small, noise elimina-
tion over wide fringes may be incomplete. Note that if this filtering method
is used in conjunction with a robust demodulation algorithm, such as [4], this
residual noise will be futile for the final result, since it will be eliminated in
the demodulation phase. In practice, one finds that underestimating maxw
up to an 80% of its true value, still produces good results, which means that
an slightly underestimation in the interactive procedure could be safer. Note
that these are the only parameters that the user has to specify. As a next
step, for the bell-shaped function G we use:

G(ρ) =
1

2

[

1 + sin

(

(h + 2ρ)π

2h

)]

, for ρ ∈ [−h, h] (4)

= 0 , otherwise
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where h = (β − α)/(K − 1) (we take K = 5 filters in all cases). The filters
are then computed using (1), with ρk = α+h(k− 1), k = 1, . . . , K. (when α
is very small (4) has to be slightly modified, to guarantee that the responses
of all filters are 0 for ρ = 0). Filtering is performed in the frequency domain,
and the output magnitudes {Mk} are smoothed with a Gaussian kernel (with
σ = 6) before computing the weights using (3).

In figure 3 we present the results of the monogenic adaptive filtering and
normalization of a sequence of ESPI patterns that correspond to the thermal
deformation of a computer monitor. The processing time for the complete
filtering and normalization procedure, for a 1024 X 1024 pixel image, was
done in 50 sec. on a 3GHz workstation. To illustrate how this filtering effec-
tively helps in the demodulation process, we also include the output (wrapped
phase) of a state-of-the-art robust demodulation procedure, namely, the one
in [4], applied to these filtered and normalized patterns. This method, which
is, to our knowledge, the most robust demodulation procedure available for
closed-fringe interferograms, starts by estimating the phase on a subregion
of the image with relatively high quality open fringes, and iteratively ex-
tends this region using a variational approach, along directions where the
fringes are better defined (highest quality regions). In this way, the phase
in difficult regions, such as saddle points, or places where the fringes are
too noisy or have gaps, are left undefined until there is enough information
around them to interpolate reasonable values. This demodulation method is
capable of recovering the correct phase, even when the fringes produced by
the proposed preprocessing step are noisy or incomplete in small regions; if
a simpler filtering and normalization preprocessing is applied, however, the
method will fail. Thus, in Fig. 4 we depict the output of the same demodu-
lation procedure applied to the first and last input images (first row of Fig.
3), after smoothing them with a Gaussian kernel and re-scaling their inten-
sity to the interval [−1, 1] (the results for the other images of the sequence
are similar). Note that the standard filtering and normalization applied in
this case cannot prevent the demodulation algorithm from getting an incor-
rect reconstruction (the recovered wrapped phase does not show 2π jumps
at each fringe, as expected), which means that the proposed filtering and
normalization procedure effectively increases the range of applicability of de-
modulation schemes for closed-fringe ESPI patterns, and may be very useful
as a pre-processing step for other fringe pattern processing algorithms.
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Figure 1: (a) Frequency response of an isotropic bandpass filter. (b) and (c)
Imaginary part of the frequency response of the companion odd components
of the monogenic filter.

Figure 2: Magnitude of the response of the set of monogenic filters as a
function of frequency magnitude.
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Figure 3: First row: sequence of ESPI patterns. Second row: filtered and
normalized images. Third row: Output of a robust demodulation procedure
(wrapped phase) applied to the second row.
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Figure 4: Output (wrapped phase) of the same robust demodulation proce-
dure applied to the first and last images of the first row of fig. 3.
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