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Abstract 

In this paper, a method based on Bayesian estimation with prior MRF models for segmentation of 

range images of polyhedral objects is presented. This method includes new ways to determine the 

confidence associated with the information given for every pixel in the image as well an improved 

method for the localization of the boundaries between regions. The performance of the method 

compares favorably with other state of the art procedures when evaluated using standard benchmark. 

OCIS: 150.1135, 150.5670, 100.2960 

 

1 INTRODUCTION 

  

A range image is a representation of the distance from each point in a scene to a given 

reference point: the values of the pixels represent distances, which for representation purposes 

are showed as gray levels. Therefore, darker pixels represent points closer to the camera, 

while lighter pixels are more distant. Fig, 1 shows the difference between a range image and 

an intensity image taken with an ordinary CCD. 
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Although range cameras are nowadays available, they still are in development process and 

therefore expensive and limited in resolution. There are two main ways to obtain range 

images: Using a Laser Range Finder (LSR) or using a Structured Light Scanner (SLS). The 

Structured Light Scanner uses two optical paths, one for a CCD camera and other for a light 

projector. The distance is then computed by triangulation. The light projector uses fringe 

patterns of different widths. From one pattern to the next one, the frequency of the projected 

fringe pattern is doubled. For instance, if in the first pattern, half of the scene is not 

illuminated while the other half is illuminated, then the second pattern will have two bright 

fringes and two dark ones, and so on; usually, 8 patterns are used from which one obtains 

depth quantized in 256 levels [1]. Our work is focused in images of scenes with polyhedrons 

obtained by an ABW Structured Light Scanner [16]. 

 

For each Pixel in an ABW range image ( ),I i j , 512,0 ≤≤ ji  one can compute the 

corresponding 3D Cartesian coordinates (in millimeters) using the following formulas [2]: 
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Where scal , offset , c  and kf  are values obtained through the camera calibration.  

 

For the examples we are using, the origin of the coordinated system is in the center of the 

image, at 255 millimeters from the camera, the z  axis head in the direction of the camera, and 
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the x  and y  axis point to the top and right of the camera, parallel to the image. 

 

In industrial applications, the objects to be digitalized are often polyhedrons; in this case, 

the 3D models may be constructed by finding the equations of the planar faces of the 

polyhedron, and the lines that separate such regions. This particular instance of the problem 

has been studied by a number of researchers [7][10][11][12][13][14].  

 

The most usual approaches in this area are region growing and edge detection based 

algorithms. In the region growing based algorithms the main idea is to select a seed region 

(which can be a pixel) and keep adding nearby pixels, which fulfill some constraints, to the 

region until there are no more pixels to add. The different ways to choose a seed region and 

the properties that the pixels to be added to it should have result in different particular 

methods. The algorithms in [3][10] [18] [14] are instances of this approach. 

 

The edge detector methods focus in the search for the boundaries between regions applying 

a large diversity of procedures. Most of them use a pre-process to find the possible edge pixels 

and also a post-process to fill gaps in the detected edges. The algorithms in [3][11] are 

instances of this method. 

 

A different segmentation method using planes is presented by Li [8]. This method is based 

in the reconstruction of 3 piecewise smooth fields a, b and c, which correspond to the 

coefficients of the different planes. These fields are found by minimizing an energy function 

given by:  

 



 4 

 ∑∑∑
∈′

′′′ −+−+−+−++=
i Ni

iiciibiia
i

iiiiii

i

ccwbbwaawgdcybxafU ))()()(()()( 2222 λ

 (1.2) 

 

Where d  is the original image, aw , bw , and cw  are smoothness parameters and g  is a 

potential function. For range images, the author proposes 2( ) ln(1 )g η η= +  and a gradient 

descent method for the energy minimization. 

 

Although this method produces good results with synthetic images corrupted with white 

Gaussian noise, with real range images the results are not as good, mostly because 

quantization of the range data is not taken into account. Because of the way the range images 

are acquired they have a severe problem for any algorithm that tries to segment them in terms 

of planar regions. The images are quantized, usually to 256 different values; therefore they do 

not have piecewise constant derivatives in a given planar region; the quantization of a plane in 

the image results in a stair-like pattern; Fig. 3 shows a detail of a planar region in one image 

where one can see that the derivatives corresponding to a single plane are not constant, and 

hence, they cannot be used to detect the borders between the regions. To make a good 

segmentation it is necessary to detect the three kinds of borders illustrated in fig. 2. Because of 

the quantization effect the detection of the roof borders is especially difficult. There are noisy 

points too. They are produced by specular reflections at the moment of taking the images. 

Because the structured light scanner uses two optical path ways, one for the projector and 

the other for the CCD, there are shadows in the images. These points do not give information 

about the bodies and must be eliminated as well. Another difficulty stems from the fact that, 

as can be noticed in (1.1), in the Cartesian coordinate system the grid of measured points is 

not regular. 



 5 

 

The goal of this work is to present a segmentation method for range images of polyhedral 

objects, which overcomes these difficulties and improves significantly the performance of 

published methods. It is based in 2 ideas: 

 

1)  A preprocessing stage in which the spurious information originated by the quantization 

is eliminated. 

2) A probabilistic approach to segment the images in terms of planar regions, using 

Bayesian estimation, which takes into account the polyhedral nature of the scene. 

 

The results produced by this method feature a better localization of the borders between 

regions, making the reconstruction qualitatively more similar to the ground truth in a number 

of experiments. These results are also quantitatively better than other state-of-the-art 

segmentation algorithms, according to standard metrics. 

 

In section 2 we present the algorithms used and the theory in which they are based. In 

section 3 we present the results obtained and make qualitative and quantitative comparisons 

with other published methods, and finally, give our conclusions.    

 

 

2  PROPOSED METHOD  

 

2.1 Bayesian estimation and hidden Markov random measure fields 
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The objective is to find a label field f  which indicates which plane is supported for every 

pixel in the image. In particular, the label ( )f r  for pixel r  will be equal to k  if and only if 

kr R∈ , where kR  is the region in the image that corresponds to plane k , which has 

parameters kθ . In our method we do not try to find this field directly. Using the Hidden 

Markov Random Measure field technique [4] we search for a field of probability measures p  

from which, according to this model, the labels are generated in an independent way for each 

pixel. In this way, ( )kp r  represents the probability that kr R∈  and the space dependency 

(granularity constraints) is encoded in the potentials for a prior Gibbs distribution for this 

hidden measure field, which in addition has to satisfy the constraints: 

 

 ( ) ( )
1

1 0 ,
K

k k
k

p r and p r k r
=

= ≥ ∀∑  (2.1) 

 

Where ( )p r  is the discrete probability measure that corresponds to pixel r  and K  is the 

number of regions in which the image is being segmented. 

 

According to the model derived in [4], the optimal estimator for the probability measure 

field is the one which minimizes the potential function: 

 

 ( ) ( ) ( )( ) ( ) ( ) 2

,

, log ,
r I r s
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∈
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Subject to the constraints (2.1), where ( ),v r θ  is the likelihood vector, in which: 

 



 7 

 ( ) ( )( )kkk RrrIPrv θθ ,|, ∈=  (2.3) 

 

And the second sum is over all the pairs of neighbors pixels r , s  of the image and λ  is a 

non-negative parameter. The likelihood can be any distribution which adapts for the problem, 

for example if a Gaussian distribution with variance 2σ  is assumed: 

( )
( ) ( )( )2

22
1

,
2

kI r m r

kv r e σθ
πσ

−
−

= . Where ( )km r  is the value of the model k  evaluated at the 

coordinates of pixel ( ),r i j= ; ( ) ( ) ( ), , ,k k k km i j a x i j b y i j c= + +  

Where ( ), ,k k k ka b cθ =  is the parameter vector associated to model k . 

 

The minimization of (2.2) is difficult, because of the high non linearity introduced by the 

log function. 

 

In [6] it is shown that when each probability vector ( )p r  has low entropy, the following 

approximation may be used: 

 

 ( ) ( )( ) ( )( ) ( )2
log log k k

k

v r p r v r p r⋅ ≈∑  (2.4) 

 

Using this approximation, the optimal estimator may be found by minimizing the following 

energy function which is quadratic with respect to p : 
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Where rN  are the neighboring pixels for r ; the up, down, left and right neighbor: 

{ }| 1rN s I r s= ∈ − = . The term ( )2

kp rμ  is added to control the entropy of p  so that the 

approximation (2.4) may be used, i.e. promotes p  to be as informative as possible. 

 

Assuming a Gaussian distribution for the error, the potential to minimize is: 

 

 ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )( )2 22

1 1

, ,
r

K K

k r k k k
k r L k r L s N

U p z r m r p r B r s p r p sθ δ μ λ
= ∈ = ∈ ∈

= − − + −∑∑ ∑∑∑  (2.6) 

 

In (2.6) we include new variables rδ  and ( ),B r s . Both terms are weights added to obtain 

better quality in the segmentation. The term rδ  weights the confidence of the information 

given by the value of the image in the pixel r : a pixel with relevant information will have a 

value of 1rδ =  while a pixel with spurious or irrelevant information will have a value close to 

0. The term ( ),B r s  weights the interaction between the pixels r  y s ; because a smooth 

probability field  is desired, a weight of 1 is given for the majority of the neighboring pixels; 

to improve the localization of the borders between regions, these weights are reduced in 

places were a border is likely to be found.  

 

During the energy minimization the constrains (2.1)  must be satisfied, to enforce this, the 

Lagrange multipliers method is used. The Lagragian is given by: 
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Once the optimal estimator for the p  field is found, the label field is estimated by taking 

the mode of every estimated ( )p r : ( ) ( ) ( )k if r k p r p r i k= ⇔ > ∀ ≠ . 

 

To start the minimization of (2.7) the computation of some terms is needed. A group of 

starting models for the segmentation must be calculated, at the same time, the initial value for 

K  must be obtained. The confidence of the information for every pixel has to be calculated to 

compute the δ  field. Also the field B  has to be calculated to define the interaction between 

pixels. In the followings subsections we describe the procedure for obtaining these terms.  

2.2 Computation of the rδ  field 

The main purpose of this stage is to eliminate the spurious information introduced by the 

quantization of the range images. The problem with an image of a quantized plane (see fig. 4) 

is that the gradient is zero in most points, and hence, it can neither be used to compute the 

plane parameters locally, nor as a criterion for determining the segmentation. In fact, even in 

the absence of noise, the true plane will pass only through a few points –labeled “corner 

points” in fig. 5. 

 

In one dimension, if the difference operators ( )x
D I−  and ( )x

D I+  are defined as: 

 

 ( ) ( )( ) ( ) ( 1) ; ( ) ( ) ( 1)
x x

D I x I x I x D I x I x I x− += − − = − +  (2.8) 

 

The corners points fulfill: 
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x x x x
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Using the same idea, the same operators may be defined for two dimensions: 

 

 
( ) ( )
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x x

y y
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= − + = − −
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To find the corner points in two dimensions the points have to satisfy the conditions (2.9) 

in two directions, i.e. they have to be corner points in x and y. The corresponding conditions 

are: 

 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( , ) ( , ) ( , ) ( , ) 0

( , ) ( , ) 0 , ( , ) ( , ) 0

x x y y

x x y y

D I x y D I x y D I x y D I x y

D I x y D I x y D I x y D I x y

+ − + −

+ − + −

⋅ = ⋅ =

+ > + >
 (2.11) 

 

Using only the corner points, a local plane may be fitted to quantized data with an error that 

depends only on the noise and not in the quantization, as can be seen in figure 6. 

 

The process for finding the corner points is crucial to the method presented in this paper, 

because this helps to obtain the parameters of the initial models in which the image will be 

segmented and gives the values for rδ . 1rδ =  is assigned if r  is a corner point and a small 

value of rδ  is used if it is not (we use 610rδ −= ). 

 

It is also necessary to eliminate the pixels in shadowed areas from the computation. A pixel 
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is considered to be in a shadowed area if ( ) 3I r < . 

2.3 Initial estimation of plane’s parameters 

This procedure consists in successively sweeping the entire image with a window, looking 

for corner points which are in a plane. The process needs three parameters: an initial window 

size (initsiz), a minimum number of points in the window (minp) and the maximum distance 

between the points and the plane in the fitting process (maxdist). The process is presented in 

algorithm 1: 

 

for i =initsiz/2 to #columns-initsiz/2 

 for j =initsiz/2 to #rows-initsiz/2 

  { 

  Center the window in ( ),i j ; 

  if inside the window there are minp or more corner points 

   { 

   Fill the matrix (2.12) with the information of the corner points inside the window; 

   Solve the system to obtain the parameters of the plane; 

   while all the corner points inside  the window are at a distance less than maxdist 

    { 

    Increase the window size; 

    if the calculated plane has not be added to the list of planes 

     add the current calculated plane to the list; 

    else 

     change the plane calculated before for the actual plane in the list of planes; 

    Fill matrix (2.12) with the information of the corner points inside the window; 
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    Recalculate the plane parameters solving the system; 

    } 

   if the plane was added to list of planes 

    Delete all the corner points used to calculate the plane; 

   } 

  Return the window size to initsize; 

  } 

Algorithm 1 

 

With this method one can compute an approximation for the planes in the scene and a 

value for K . 

 

To obtain the correct plane parameters, it is very important to use the mapping to Cartesian 

coordinates given by Eq. (1.1), so that the least squares estimator for the parameters is 

obtained by solving the system: 

 

( )
( )

( ) ( )
( )

( )
( )

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( ) ( )

( ) ( )
( )

( ) ( )
( )

( )
( ) ⎟

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∑

∑

∑

∑∑∑

∑∑∑

∑∑∑

=
∈

=
∈

=
∈

=
∈

=
∈

=
∈

=
∈

=
∈

=
∈

=
∈

=
∈

=
∈

1
,

1
,

1
,

1
,

1
,

1
,

1
,

1
,

2

1
,

1
,

1
,

1
,

2

,

,

,

,,,

,,,

,,,

,

,,

,,

1,,

,,,,

,,,,

ji

ji

ji

jijiji

jijiji

jijiji

Wji

Wji

Wji

k

k

k

WjiWjiWji

WjiWjiWji

WjiWjiWji

jiz

jizjiy

jizjix

c

b

a

jiyjix

jiyjiyjiyjix

jixjiyjixjix

δ

δ

δ

δδδ

δδδ

δδδ
 (2.12) 

 

Once the initial models and the value for K  are obtained, the segmentation process can be 

initialized. 

 



 13 

To initialize the search of the probability field, we use a field of uniform distributions, i.e., 

we set ( ) 1
,kp r r k K

K
= ∀ ≤ . 

2.4 Estimation of the B  field 

This field should be equal to 1 where the neighboring pixels should have an interaction and 

0 where they do not, because a region border is there. 

 

Three kinds of borders should be detected: Step, roof and the combination of both (see Fig. 

2). The step and combination borders can be detected using a threshold in the difference 

operator used before, i.e., if r  is the pixel at the left of the pixel s ; we set ( ), 0B r s =  if  

( )( )x
D I r α+ > , where α  is a parameter to be adjusted. In all the experiments reported here 

we used the value α =6. The same is done in the vertical direction. At the same time the 

shadow pixels have to be disconnected from the pixels used for the segmentation, so we set 

( ), 0B r s =  if r  or s  are shadow pixels. 

 

The roof border detection is more complicated. These borders are in the intersection of the 

planes, but not all the planes intersections make a roof border in the image. Only the pixels in 

the intersection of two planes that are close to the interface between regions corresponding to 

the same planes should be disconnected.  

 

The interface between the regions kR  and lR  is defined as the set of pixels that belong to 

either one of the regions, and that have at least one neighbor that belongs to the other one,  
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To detect roof borders -and hence, to set the corresponding ( ), 0B r s = - the following 

procedure is used: 

 

1. – Select a pair of planes km  and lm  with their respective regions kR  and lR  

2. – Search for the interface between regions is kR  and lR . If it is empty, go to 5. 

3. – Compute xmin , xmax  , ymin  and ymax  as the coordinates of the corners of the 

smallest rectangle that contains this interface (see fig. 7).  

 

4. – Search for the roof border inside the rectangle. Because of the mapping to Cartesian 

coordinates, the intersection between the planes cannot be found directly. To do this all the 

pixels ( ),i j  inside the rectangle have to be checked one by one. The equation of the 

intersection line is obtained equating the equations of the planes and solving for one of the 

variables:
( ) ( )

( )
k l k l

k l

a a x c c
y

b b

− + −
=

−
. If a point ( ),x i j  corresponding to a pixel ( ),i j  is 

evaluated in the line, the value of the coordinate y  in the intersection line is obtained. If the 

value of ( ),y i j  is subtracted to this y  value, the sign of the result shows if the pixel is over 

or under the intersection line. Doing the same to a neighboring pixel, one can determine the 

intersection of the planes passes between the two pixels. This is done for all pixels inside the 

rectangle: 
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 (2.13) 
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5. – If all the pairs of planes have been checked, stop, if not, go to step 1. 

 

2.5 Minimization of the energy function 

Once all the terms of function (2.7) have been calculated, one may use Gauss-Seidel 

method for the minimization with the following update rule: 
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Where: 

 

 ( ) ( ) ( )2, , ( ( ) ( )) , ,
x x x x

x x

k k k k x k k
s N s N

M B x s p s I x m x D B x s
K

μλ δ λ μ
∈ ∈

= − Δ = − = Δ + −∑ ∑  (2.15) 

 

To satisfy the non-negativity constraint of the probabilities, after every update, all negative 

probabilities are set to zero and normalization is done if needed. 

2.6 Implementation Details 

Because the values for the parameters for the initial models may be inaccurate, it is 

necessary to adjust them as the segmentation goes on. Thus, in our proposal, the plane 

parameters are re-computed using least squares every 10 Gauss-Seidel iterations, considering, 

for fitting plane km  only the corner points x  with ( ) 0.5kp x > . There, for example, instead 
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of the upper left term ( )
( )
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,
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,
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i j W

x i j

δ
∈
=
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,

2
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,
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i j
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x i j

δ
>

=

∑  and the same 

for the remaining terms. 

 

Note that it is possible that in the course of the iterations, the support of a plane k , i.e., the 

set ( ) ( ){ }, | , 0.5ki j p i j > , is empty for some k . This may happen, for example, when the 

initialization process generates a spurious plane, or more than one instance of a given plane. 

In these cases, the planes with empty support are eliminated to avoid numerical errors and to 

accelerate the process. 

 

It is also possible, however, that 2 instances of the same plane, generated in the 

initialization phase, continue to survive during the iterations with non empty support. To fuse 

these 2 instances into a single plane, the following criterion is used: 

 

a) The planes should be almost parallel. This happens if the angle ijθ  between planes i  

and j  satisfies: ( )cos 0.97ij i jn nθ = ⋅ >  where in  and jn  are the unit normal 

vectors to the planes. 

b) The planes should have compatible supports. To detect this, we define iclose  as the 

number of corner points at a distance less than 1 from plane i  and ijclose  as the 

number of corner points at a distance less than 1 from planes i  and j . We the say 

that 2 planes i  and j  have compatible support if  2
0.9ij

i j

close

close close

×
>

+
. 

 

If both conditions are satisfied, the plane with higher average probability for the points in 
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the support of the planes is allowed to continue the process and the other plane is eliminated. 

 

After the plane parameters have been re-computed and the number of models has been 

updated, the B field is also re-computed, using the procedure of section 2.4. 

3 EXPERIMENTS  

 

To make a comparison of our algorithm we used the image database from the web page of 

the Image Analysis Research Laboratory of the University of South Florida [15]. 

 

This database consists of 30 images, obtained with a ABW structured light scanner, 

together with the ground truths and the best segmentation obtained by this group.  

3.1 Quantitative Evaluation 

To evaluate the images we use the method in [3], which we transcribe here to make this 

paper self-contained. 

 

This method classifies the regions obtained in the machine segmentation images in 5 

groups: 

 

- Correctly detected regions: A region in the machine segmentation which corresponds 

exactly to a region in the GT. 

- Under-segmented regions: A region of the machine segmentation which corresponds 

to a group of regions in the ground truth. 

- Over-segmented regions: A group of regions in the machine segmentation which 

correspond to a single region in the ground truth image. 
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- Missed regions: Regions in the ground truth image which does not correspond to any 

region in the machine segmentation. 

- Noise regions: Regions in the machine segmentation which do not correspond to any 

region in the ground truth image. 

 

Because making two regions to correspond exactly is very difficult, a tolerance value T  is 

defined. This tolerance value controls the strictness of the evaluation and takes values 

between 0 and 1, which have the meaning of the overlapping between regions. The evaluation 

was performed with a tolerance of 95% for all test images. Table I shows the number of 

region correctly detected (labeled Correctly), over segmented regions (Over), under segmented 

regions (Under), missed regions (Missed) and noise regions (Noise) for every image, for both, 

our method (labeled CIMAT) and the method in [3] (labeled UE), which is the algorithm 

which has the best evaluation in [3][17][10] and is considered one of the state of the art 

methods in this area. 

 

 Total Correctly Over Under Missed Noise 
 Regions UE CIMAT UE CIMAT UE CIMAT UE CIMAT UE CIMAT 

ABW Test 00 30 12 13 0 0 0 0 18 17 18 22 
ABW Test 01 26 13 16 1 1 0 0 12 9 9 9 
ABW Test 02 24 12 13 0 0 0 0 12 11 10 11 
ABW Test 03 16 11 12 0 0 0 0 5 4 2 3 
ABW Test 04 22 12 13 0 2 0 0 10 7 9 7 
ABW Test 05 21 10 11 0 0 0 0 11 10 10 11 
ABW Test 06 19 11 12 0 1 0 1 8 4 5 4 
ABW Test 07 20 8 11 0 0 0 0 12 9 11 9 
ABW Test 08 24 15 11 0 2 0 0 9 11 9 11 
ABW Test 09 20 8 10 0 0 0 0 12 10 11 12 
ABW Test 10 13 7 7 0 1 0 0 6 5 3 5 
ABW Test 11 12 6 6 0 1 0 0 6 5 4 5 
ABW Test 12 25 9 6 0 1 0 0 16 18 15 19 
ABW Test 13 20 10 14 0 0 0 0 10 6 10 6 
ABW Test 14 20 10 13 1 3 0 0 9 4 6 5 
ABW Test 15 20 8 10 0 1 0 0 12 9 10 9 
ABW Test 16 12 7 9 1 0 0 0 4 3 3 4 
ABW Test 17 12 5 8 0 0 0 0 7 4 6 4 

ABW Test 18 20 10 12 0 1 0 0 10 7 10 8 
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ABW Test 19 26 11 9 0 0 0 0 15 17 13 18 
ABW Test 20 18 10 13 0 0 0 0 8 5 7 6 
ABW Test 21 12 8 7 0 0 0 0 4 5 4 12 
ABW Test 22 14 5 4 0 1 0 0 9 9 8 8 
ABW Test 23 18 8 11 0 0 0 0 10 7 10 11 
ABW Test 24 19 8 11 0 1 0 0 11 7 11 8 
ABW Test 25 14 8 9 0 0 0 0 6 5 5 5 
ABW Test 26 13 7 7 0 0 0 0 6 6 6 7 
ABW Test 27 12 5 7 0 0 0 0 7 5 6 4 
ABW Test 28 9 6 9 0 0 0 0 3 0 4 0 
ABW Test 29 12 5 7 0 1 0 0 7 4 7 4 

TOTAL 543 265 301 3 17 0 1 275 223 242 247 
 

 As one can see, the performance of our algorithm is better with respect to the number of 

correctly detected and missed regions. The number of over and under-segmentated regions is 

slightly higher in our procedure; this is due to very small or thin regions that appear mainly in 

larger regions, such as the wall and floor. This problem is produced in places where the noise 

is high and there is are no corner points nearby. In fig. 8 we show a typical example of two 

regions evaluated as over-segmented due to this problem. 

 

3.2 Visual Comparison 

 

Fig. 9 shows an example of the results obtained with our algorithm compared with those in 

[15] (Labeled UE). As one can see, our results looks more similar to the ground truth, 

particularly in the neighborhood of borders between regions. This may be better appreciated in 

the close-up presented in fig. 10. Because the focus of this work is the segmentation of 

polyhedral bodies, we believe that the correct detection of the borders is particulary important. 
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4 CONCLUSIONS 

 

We have presented a method for the segmentation of range images of polyhedral objects, 

which is based in Bayesian estimation theory with a prior Markov random field model. The 

key elements for the success of this approach are the following: 

 

1. The detection of corner points, and hence, the elimination of spurious information for 

fitting the planar models. This step is crucial for the correct initialization and updating 

of the models parameters. 

2. The use of an appropriate geometrical model for the global Cartesian coordinates 

associated with each pixel in range image (Eq. (1.1)). 

3. The use of a Quadratic Markov Measure Field model for the segmentation, which 

includes a confidence field (δ ) and a spatially varying potential (based on the B  

field) that takes into account the analytic formula for the intersection of neighboring 

planes. 

 

The performance of the resulting method compares favorably with other published 

approaches, both quantitatively and qualitatively. 
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Fig. 1. Intensity Image and range image of the same scene 

 

 

 

 

 

Fig. 2. The three kinds of borders: Step, roof and mixture. 

 

 

 

 

 

Fig. 3. Zoom of a Range Image  
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Fig. 4. A synthetic plane and its quantization. 

 

 

 

 

Fig. 5. Corner Points in one dimension  

 

 

  

 

Fig. 6. Corner points of the plane in fig. 4 and the fitted plane (fitted with a small error). 
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Fig. 7. Interface between regions 

 

 

 

  

 

Fig.8 Example of the regions evaluated as Over-Segmentation, the regions produced by the noise are inside the white ellipses. Left: 

range image; right: segmentation produced by our method. 
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Fig. 9 

 

 

Fig. 10. Proposed segmentation, Ground Truth and UE segmentation  


