Aprendizaje Automático

Mariano Rivera

Licencia Creative Commons Aprendizaje Automático, Mariano Rivera, CIMAT © 2022

Para citar esta página ver abajo.

Contenido

I Python

1. Introducción a la Programación Científica con Python

1.1. Python para uso científico
1.2. Mas Python y uso de módulos (bibliotecas) numpy, scipy,
1.3. Programación simbólica con Python (SymPy)
1.4. Broadcasting
1.5. Manejo de excepciones

II Optimización

2. Fundamentos de Optimización

2.1. Cálculo para Optimización
2.2. Optimización Convexa
2.3. Condiciones de Optimalidad de 1er Orden
2.4. Condiciones de Optimalidad de 2do Orden

3. Algoritmos de Optimización de Descenso

3.1. Descenso de Gradiente, (GD)
3.2. Descenso de Gradiente Estocástico (SGD)
3.3. Descenso Acelerado de Nesterov (NAG)
3.4. Descenso con Inercia (momentum)
3.5. Gradiente Adaptable (AdaGrad)
3.6. Método AdaDelta
3.7. ADAM
3.8. Métodos de direcciones alternadas (Gauss-Seidel)

4. Algoritmos de Optimización para Problemas con Restricciones

4.1. Problema con Restricciones de Igualdad
4.2. Método de Multiplicadores de Lagrange Aumentado
4.3. Método del Lagrangiano Aumentado con Direcciones Alternadas (ADMM)
4.4. Gradiente Proyectado Descafeinado para QP con Restricciones de Cota (Decaf-PG)

III Tópicos de Aprendizaje Automático

5. Regresión

5.1. Mínimos Cuadrados
5.2. Logística
5.3. Regularización: Ridge (L2), Lasso (L1) y Elastic Net (L2+L1)

6. Clasificación

6.1. K-vecinos Más Cercanos
6.2. K-Medias Difusas
6.3. Árboles y Bosques Aleatorios
6.4. Máquinas de Vectores de Soporte (SVM)
6.5 Agrupamiento Espectral (Spectral Clustering)

7. Reducción de dimensión

7.1. Análisis de Componentes Principales (PCA)

IV Aprendizaje Profundo (DL)

8. Introducción al Redes Neuronales y Aprendizaje Profundo

8.1. Introducción parte A (presentación1)
8.2. Introducción parte B (presentación2)
8.3. Revisión de la Regresión Logística

9. Redes Neuronales

9.1. El perceptrón
9.2. Backpropagation
9.3. Backpropagation en Numpy; Perceptrón multicapa simple con una capa oculta.
9.3. Redes Multicapa; Red básica, capas densas, lectura de datos, codificación one-hot
9.4. Métricas de Desempeño; accuracy, sensitivity, sensibility, precision, F1-score
9.5. Perceptrón Multicapa en PyTorch

10. Redes Profundas de Convolución (ConvNN)

10.1. Operador de convolución y Pooling (ejemplo adicional en Pytorch)
10.2. Aumentación de Datos
10.3. Dropout y mas Aumentación
10.4. Transferencia de conocimiento
10.5. Variaciones en arquitecturas de NN (múltiples entradas, salidas, ramas)

Técnicas de Visualización

11.1 GradCAM; VGG16, Resnet50, EfficienNet
11.2 Visualización de Filtros
11.3 Deep Dream
11.4 Maximización de Activación

12. Redes Profundas Recurrentes

12.2. Incrustación de Datos (Embedding)
12.3. Redes recurrentes Profundas (RNNs)
12.4. Redes de Memoria Larga para Términos Cortos (LSTM) LSTM, GRU
12.5. Problema del Gradiente Evanescente (Vanish Gradient Problem)
12.6. Transformación de Secuencias (Seq2Seq)

13. Avances en ConvNN

13.1. Redes Residuales
13.2. Unet para Segmentación de Imágenes; Capas: Lambda, Concatenacion, UpSampling; API Keras
13.3. Autoencodificador Variacional (Variational Autoencoder, VAE) ; truco de la parametrización, pérdida personalizada
13.4 Autodificador Variacional Convolucional; CelebA, Datasets, Modelos derivados, train_step

14. Redes Generadoras Antagónicas (GANs)

14.1. Redes Generadoras Antagónicas, GAN
14.2. Redes Generadoras Antagónicas Convolucionales, DCGAN
14.3. Transformación de imagen a imagen, Pix2Pix; sobrecarga de fit
14.4 Como entrenar tu VAE ArXiv, ArXiv.html, Código

15. Representación Implícita

15.1. Introducción a SIREN

16. Modelos de Difusión

16.1. Derivación del Modelo de Difusión, DDM

V Otros Temas (ML-DL)

20. Campos Markovianos

20.1. Filtro quadrático
20.2. Filtro Variación Total

21. Máquinas Extremas de Aprendizaje (ELM)

21.1 Implementación de una ELM en Numpy


Para citar

Esta página

Mariano Rivera 2022, Tópicos de Aprendizaje Automático, CIMAT, accessed 1 September 2022, http://personal.cimat.mx:8181/~mrivera/cursos/temas_aprendizaje.html.

Un documento dentro de esta página (ejemplo)

Mariano Rivera 2022, Tópicos de Aprendizaje Automático: Pix2Pix para texturizar imágenes, CIMAT, accessed 1 September 2022, http://personal.cimat.mx:8181/~mrivera/cursos/aprendizaje_profundo/pix2pix/pix2pix.html.