
Spatial Sampling for Image Segmentation

Mariano Rivera1, Oscar Dalmau1 and Washington Mio2

1 Centro de Investigacion en Matematicas A.C, Guanajuato GTO 36000, Mexico
2 Florida State University, Tallahassee FL 32306, USA

Abstract. We present a framework for image segmentation based on the ML
estimator. A common hypothesis for explaining the differences among image re-
gions is that they are generated by sampling different Likelihood Functions. We
adopt last hypothesis and, additionally, we assume that such samples are i.i.d.
Thus, the probability of a model generates the observed pixel value is estimated
by computing the likelihood of the sample composed with the surrounding pixels.

1 Introduction

Image segmentation consists in partitioning an image in regions with similar charac-
teristics: color, texture, local orientation, etc. Although there are many strategies for
segmenting images, we can classify such algorithms in hard and soft segmentation ap-
proaches. Hard segmentation methods try to directly estimate the label map, meanwhile
soft approaches compute a membership map. Given that, in a Bayesian framework, the
uncertainties can be represented by probabilities, then soft segmentation procedures are
commonly named Probabilistic Segmentation (PS) approaches.

We use the following notation: we assume that the observed image g : Ω → Rn
(n = 1 for gray scale images and n = 3 for color images) is generated by sam-
pling unknown probability density functions named models M = {Mk}Kk=1 with
parameters θ1, θ2, . . . , θK ; Ω denotes the set of all the pixels in a regular lattice and
K = {1, 2, . . . ,K} the label set such that the label field c : Ω → K indicates the source
for each pixel. Then the task is to solve the inverse problem: to segment the image g (to
estimate c) into K classes. This task may require one of estimating possible unknown
parameters θ. We denote by

vk(r)=P (g(r)|θk, c(r) = k). (1)

the likelihood of observing g(r) given the model k. This can be seen as the prefer-
ence of the data, g(r), for the model k. Thus the Maximum Likelihood (ML) estimator
(classification) is given by cML(r) = argmaxk vk(r). This Winner Takes All (WTA)
assignment is used as estimate of the true label, c(r). A disadvantage of the ML esti-
mator if its sensibility to noisy data that results in noisy segmentations. For improving
those segmentations of a noisy image one has two choices:

1. To increase the number of samples per pixel, i.e., to acquire a set of independent ob-
servations {gi(r)}Ii=1. The samples’ noise contributions are averaged and therefore
improving the ML estimator; where the likelihood is given by

vk(r) =
∏

i
P (gi(r)|θk, c(r) = k). (2)



2. To use prior knowledge that promotes smooth solutions. If this prior is coded as
the probability P (c), then, by using the Bayes’ rule, the MAP estimator can be
computed from the posterior probability:

cMAP = argmax
c

∏
r

∏
k
vk(r)P (c). (3)

Both strategies allows one to estimate simultaneously the segmentation and the model
parameter. This joint estimation can be implemented by an EM strategy [2]. Futher-
more, note that both strategies are not mutual exclusive: the likelihood in (3) can be
improved by the use of multiple samples. However from last two options, Bayesian
regularization is the preferred strategy given that, in general, we are limited to a single
image [3,7]. In such a case, one can find a vast literature for solving the optimization
problem stated in (3). Such techniques can be classified as combinatorial optimization
approaches (the ones that try to directly estimate the cMAP ) [3,1,5,9,6] and probabilistic
approaches (the ones for estimating a hidden real variable that represents the probability
that c(r) takes a particular label, a PS) [8,11,4].

2 Spatial Sampling

We present a method for improving the likelihood in the lack of multiple observations.
Our improved likelihoods can be used for directly compute the segmentation by means
of the ML estimator or used as prime matter for a Bayesian segmentation method that
solve (3). The general idea is simple, we assume that all the pixels are i.i.d. samples
of generative models and the source is determined by the label map c. Since the image
regions are relative large (this assumption is frequently codified as a prior in Bayesian
regularization), then the pixels in a small neighborhood are very likely samples of a
unique model. Thus the small pixel neighborhood can be assumed as multiple observa-
tions of the central pixel. This simple idea is actually the underlaying idea of all spatial
filtering techniques in image processing. Inspired on that, we purpose a novel and effi-
cient framework for image probabilistic segmentation. Our approach, differently from
those frameworks that regularize (smooths) the pixel values, regularizes the likelihood
density functions.

Let Nr be a neighborhood of pixels centered at r and Gr = {g(s) : s ∈ Nr}
their corresponding pixels values. For the moment, we assume the simple neighbothood
Nr =

{
s : ‖r − s‖2 ≤ ρ

}
, —in section 3 we discuss the neighborhood selection. We

can note that Gr is a sample with mixed likelihood:

P (Gr|θ, c, π) =
∑

k
πk(r)

[∏
s∈Nr

P (g(s)|θk, c(s) = k)
]

=
(
πT ṽ

)
(r); (4)

where we define the spatial likelihood

ṽk(r)
def
=
∏

s∈Nr

vk(s) (5)

and π(r) ∈ SK is a vector whose components are unknown mixture coefficient. Where
we denote by SK the simplex with all the positive vector that sum one: z ∈ SK ⇐⇒



z ≥ 0,
∑
k zk = 1 for k = 1, 2, . . . ,K. Thus πk(r) is the fraction of the sample Gr

generated with the kth model.
Then, the image segmentation can be estimated from an estimator of π if an appro-

priated Nr is selected, subsection 3. Next we investigate two estimators of π:

1. A hard segmentation can be computed by the maximization of (4), a Linear Pro-
gramming problem. It is easy to prove that the ML estimator is the indicator vec-
tor: p(1)(r) = ek∗ , where ek is the kth basis vector and k∗ = argmaxk ṽk(r) =
argmaxk v̂k(r); where the normalized spatial likelihood is given by

v̂k(r) = ṽk(r)
/∑

i
ṽi(r). (6)

2. A soft estimation of π can be computed by the maximization: p(2)(r) = argmaxπ
(πT v̂)(r)

/
‖π(r)‖‖v̂(r)‖; that results in p(2)(r) = v̂(r).

Therefore, in any of the last two cases, the estimation of π is reduced to the computation
of v̂k(r): spatial products of individual likelihoods, or sums of log-likelihoods:

v̂k(r) ∝
∏

s∈Nr

vk(s) = exp
(∑

s∈Nr

log vk(s)
)
. (7)

Now we extend the above introduced probabilistic segmentation to the case of mul-
tiple sources, i.e., to combine independent segmentation from different clues. After that,
we will be in the capability of presenting the neighborhood choices and their algorith-
mic implications. First, we note that (7) can be written as

v̂k(r) ∝ vk(r)v̄k(r) with v̄k(r) =
∏

s∈Nr\{r}
vk(s). (8)

Eq. (8) can be understood as the combination of two independent sources: the likelihood
estimated from the observed value, vk(r), and the likelihood, v̄k(r), estimated with the
neighbor pixels except r. We can give a further step by generalizing (8) to J independent
sources and introducing their confidence factor. Then αj is our grade of confidence in
the jth–source (the v(j) likelihood) and it holds α ∈ SJ . So that αj = 1 means that
the jth–source has the largest possible confidence and it becomes irrelevant as αj → 0.
Thus:

v̂k(r) ∝
∏J

j=1

[
v
(j)
k (r)

]αj

= exp

(∑J

s=1
αj log v

(j)
k (s)

)
; (9)

Eq. (9) is a simple form of combining a set of likelihoods (probabilistic segmentations).
The different PS (sources) can result from the use of different clues as, for instance,
color and local statistical descriptors for texture.

3 On the Neighborhood Selection

An accurate segmentation depends on selecting a pixel neighborhood such that its ma-
jority belongs to the correct class. Note that the right side of (9) defines a spatial filter-
ing in the log-space of the likelihoods. Our derivation for distinct filters, both linear and



Fig. 1. ML segmentation with a squared neighborhood (Nr = {s : ‖r− s‖∞ ≤ ρ}) for different
values of ρ. The data corresponds to a binary map (left) corrupted with Gaussian noise [N(m=
0, σ=0.7)] and the segmentations to ρ = 0, 2 and 4.

nonlinear, constructs on the assumption that each neighbor pixel s ∈ Nr is an indepen-
dent source for estimating the likelihood at the pixel of interest, r.
Homogeneous Windows (HW). The simplest neighborhood is a regular window cen-
tered at the pixel r:Nr = {s : ‖r − s‖m ≤ ρ}, where the parameter ρ controls the sam-
ple size and ‖·‖m is a given metric. For instance, the L∞ norm leads to a square–shaped
neighborhood( (7) is reduced to a box–filter in the logarithmic space). The segmenta-
tions based on the ML estimator for different values of ρ. are shown in Fig. 1. Large
ρ–values reduce the granularity but at the same time over–smoothed small details .
General Homogeneous Windows (GHW). The use of the previous HW is equivalent
to apply a box-shape linear filter in the log-domain. This result can be generalized to
any arbitrary linear filter if each neighbor pixel is considered an independent source
[10,12,7]. . Then, similar to (9), the sources (neighbor pixels) are combined with a con-
fidence factor that depends on its spatial distance to the central pixel r:

v̂k(r) ∝
∏

s∈Nr

[vk(s)]
α(s)

= exp
(∑

s∈Nr

α(s) log vk(s)
)
. (10)

The Gaussian filtering results of choosingα(s) ∝ exp
(
−(r − s)TΣ−1(r − s)

)
,where

Σ is a covariance matrix and the simple homogeneous membrane is implemented as

d∗ = argmin
d:Ω→RK

∑
r:C(r)=0

{
‖d(r)− log v(r)‖2 +

λ

2

∑
s∈Nr

‖d(r)− d(s)‖2
}
. (11)

Spatially Adapting Windows (SAW). The shape neighborhood can be adapted by de-
pending on the local properties of the image.

4 Experiments

We developed an interactive procedure for multiclass image segmentation based on ML
segmentation. The models are empirically initialized from user marked data (scribbles)
on the image. The purpose is to demonstrate that the final segmentation is improved by
combining multiples sources (likelihood vectors) and the source combination is natu-
rally implemented in our proposal.

In interactive image segmentation the user’s scribbles define the multimapC : Ω →
{0} ∪ K such that C(r) ∈ K indicates that the pixel r is labelled as member of class



Fig. 2. Original image (first column). Segmentation using: just color distribution (second column)
and with multiple clues (last column).

k and C(r) = 0 if such a pixel is unlabeled and hence its label needs be estimated.
The segmentation procedure is as follows. Let g = {gi}3i=1 be the original image (in
RGB space), then we computed for each pixel and color layer the local structure tensor
Σg = {Σ1, Σ2, Σ3}; where

Σi(r) =

[
gi11(r) gi12(r)
gi12(r) gi22(r)

]
for i = 1, 2, 3. (12)

is a symmetric semi–positive definite matrix: Then we group the original data and ten-
sor’s coefficients in four feature sets that will be consider four independent segmenta-
tion sources: g = {gi}, g11 = {gi11}, g12 = {gi12}, and g22 = {gi22}; for i = 1, 2, 3.
The additional feature sets [ g11, g12 and g22] codify the local texture information. Af-
terward, we compute four Spatial Likelihoods {v(j)}4j=1. The Likelihood Functions are
estimated by histograms with 64× 64× 64 bins and the dynamic range of each feature
image is linearly mapped into the interval [1, 64].

The confidence factor of a Likelihood Function set (says the jth set) is its capability
for predict the correct pixel class. In our interactive scheme, such a confidence αj is
large if the likelihoods of the hand-labeled pixels are large for their respective models
(and small for the other ones). In particular the confidence of the jth source for of the
kth class is αjk =

∑
r v

(j)
k (r)δ(k − C(r))

/∑
r δ(k − C(r)). Figure 2 shows images

segmented with the proposed procedure. The confidence scores are shown in Table 1.
This Table shows in bold font the more confident source for each image. Note that if
the color source is the one with largest confidence, then the color based segmentation
is qualitatively as good as the one with four sources, these are the case of the Elephant
image. However, the accuracy of the single source (color) segmentation is reduced as
the confidence on such a source is reduced. Indeed, in all our experiments the best
segmentation was computed with the proposed integration of all the sources. The filter
used was the simple homogeneous membrane (11) with λ = 20.

5 Conclusions

The presented probabilistic segmentation strategy computes the uncertainty (probabil-
ity) associated to each particular label. We start our development by noting that the



Table 1. Confidence factor to combine the probabilistic segmentations, see Fig. 2

Image g g11 g12 g22

Cheetah 0.2284 0.2714 0.2411 0.2592
Elefant 0.3280 0.2270 0.2156 0.2294

spatial sampling is an alternative to the lack of multiple pixels‘ observations. Differ-
ently from multiple observations, the pixel neighborhood is a mixed sample and the
estimated mixture coefficients can be used as the probability for the labels. We have
noted that the neighborhood selection is an important issue to obtain a good segmenta-
tion. Our strategy allows us to combine multiple sources (probabilistic segmentations)
in a natural way and is general enough to be applied in the development of algorithms
for different computer vision applications.
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