
Basis Pursuit based algorithm for intra-voxel recovering information in
DW-MRI.
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Abstract

In this work we apply the Basis Pursuit (BP) methodol-
ogy for recovering the intra-voxel information in Diffusion
Weighted MR Images (DW-MRI). We compare the BP ap-
proach with a Diffusion Basis Function Estimation (DBFE)
algorithm. DBFE approach was previously applied to re-
cover intra-voxel diffusion information in brain DW-MRI.
The intra-voxel information is recovered at voxels that con-
tain axon fiber crosses or bifurcations by means of a linear
combination of a known diffusion functions. We state the
DBFE solution in the signal decomposition context, i.e., the
measured DW-MRI signal is decomposed as a linear combi-
nation of signals that belongs to a Base of Diffusion Func-
tions (BDF). In this BDF, each signal is aM -dimensional
vector in which, each component indicates a coefficient of
water diffusion in a known three-dimensional orientation.
In this work, we analyze and compare the solution given by
DBFE method with a BP methodology. The BP methodol-
ogy is used in order to select the set of base signals (which
are taken from a dictionary) that best explain a given ar-
bitrary signal. Moreover, solution strategies used in the
BT and DBFE algorithm are compared and discussed. Ex-
amples in synthetic and real images are shown in order to
demonstrate the performance of the compared methods.

1. Introduction

A compact signal representation have been largely used
in signal processing problems [1, 2, 3] . In this context,
is desirable to represent a given signal by a set of coeffi-
cients associated with elements of a dictionary of functions.
The elements of such dictionary are calledatoms. Very of-
ten the used dictionary is redundant (or over-complete), in
the sense that the signal atoms are not orthogonal. In the
signal processing context it is common to select atoms as

Wavelets, Gabor dictionaries, Cosine Packets, Chirplets and
Warplets, among others. The idea is to select the atoms that
best match the signal structures, using a criteria for choos-
ing among equivalent decompositions.

A common using criteria is to accomplish with the basic
feature of sparsity, i.e., we want to recover a representation
with the fewest significant coefficients. Additionally, a de-
sirable feature of the algorithm is to spend a reasonable time
in achieve the decomposition.

The mathematical model that represents the decomposi-
tion of a signals ∈ <M as a linear combination of atoms
φ’s, each one of them belonging to a dictionaryΓ is

s =
∑

i∈Γ

αiφi + η = Φα + η, (1)

whereΦ is aM × N matrix composed byN atoms, each
atomφi is a column ofΦ. The α ∈ <N vector contains
the linear combination coefficients. The residualη grasp
the signal energy that can not be explained (or fitted) by the
dictionary. When the dictionary was selected such that it is
capable to represent all possible signals in the work domain,
we expect thatη captures the energy of the present noise in
the signal.

CommonlyN >> M , that makes the problem ill-posed:
we have only a few measuressi, i = 1, . . . ,M and we want
to select between a (normally) huge dictionary, the atoms
that best represent the signal as a linear combination. The
solution of (1) forα, given by the inversion of the pseudo-
inverse ofΦ is prohibitive in such case, and it does not allow
us to introduce prior information aboutα or lead the algo-
rithm to a solution with some desired propierties.

One important approach for solving this kind of problem
is the Matching Pursuit (MP) method [3]. This approach,
differently to a orthogonal expansion is a non-linear pro-
cess as is explained in the following. The method initial-
izes a residualR(0) = s and iterates by looking the atoms
that matches better with the signal and minimizes the resid-
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ual R(k). At iterationk, the method identifies the atomφj

that best correlates with the actual residual. The correla-
tion measure was proposed as the inner point between the
normalized atoms and the actual residual, and denotes the
value of the coefficient of the linear combination at the k-th
step, i.e.αk =< |φj |, R(k) >. The new residual is then,
the previous residual less the contribution of the selected
atom:R(k+1) = R(k) − αkφj . After m steps we obtain the
following representation:

s =
m−1∑
n=0

< |φn|, R(n) > |φn|+ R(m) (2)

Note that in this representation, the same atom could
be present several times in the reconstruction, this feature
makes that the interpretation of the decomposition could be
not clear in some applications where we want to decompose
s in different atoms. Since the MP is an algorithm that opti-
mizes in each step the amount of signal energy that it grasp,
very often the first selected atom globally fits several signal
structures, but is not best adapted to the signal local struc-
tures. The resultant is an algorithm that might choose first
wrongly and spend most of its iterations correcting the dif-
ferences with the original signal generated by the first few
terms, see [2].

More recently, a interesting approach have been pro-
posed, the method called Basis Pursuit (BP) [1] deal with
a very similar problem formulated as:

min ‖α‖1
subject toΦα = s (3)

where the constraint over the norm of theα vector con-
verts the problem in to one with unique solution. In this
way, BP has a interesting relationship to areas with ill-posed
problems. The problem above, can be transformed in a lin-
ear programming one (see [1]), and solved by the simplex
method. Although, in the presence of noise and depending
to the chosen dictionary, the constraint in (3) could not to be
accomplished given a over-constrained linear programming
problem. In those cases, we need to use a more adequate
minimization procedure, like a interior-point method which
tries to minimize the residual vectorrb = Φα− s (see [5]).
This method have shown a better performance with respect
to MP, with the drawback of the requirement of a more so-
phisticated minimization tool.

1.1. The Diffusion Weighted Intra–voxel Problem

Amongst the most challenging goals in neuroimaging
is the estimation of connectivity patterns in the brain in
vivo. For this purpose, a special magnetic resonance imag-
ing (MRI) technique named Diffusion Weighted Magnetic
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Figure 1. Schema of the measured s signals.
a) The signal s (continuous peanut shape)
when there is only one water diffusion ori-
entation D1 in a voxel. b) The shape of s (con-
tinuous concave shape) when there are 2 al-
most orthogonal diffusion directions D1 and
D2. The small circles indicates the distance
to the center, or the magnitude of s measured
at some 2D angles.

Resonance Imaging (DW-MRI) is used, allowing one to ob-
tain an estimation of the orientation of water diffusion in
the brain. Such diffusion is constrained by the direction of
axon nerve bundles. Such an information is very useful in
neuroscience research, due to the relationship of brain con-
nectivity with several diseases and, in general, with brain
development [10].

The physical relationship of the water diffusion process
for each image position, in a given orientation, was estab-
lished by the Stejskal–Tanner [13]:

si = S0 exp(−bgT
i Dgi) + ηi, (4)

whereS0 is the measured signal magnitude without diffu-
sion gradient,s is the attenuated signal in the tissue andb
is a constant directly proportional to the applied time and
magnitude of the directional gradients. The unitary vec-
tor gi = [gx, gy, gz]

T indicates thei–th direction in which
a directional independent magnetic gradient is applied,ηi

represents a residual (produced by an inadequate model as
well as for the present noise in the signal), and the diffusion
coefficients in all directions are summarized by the positive
definite symmetric3 × 3 tensorD. This model was used
in the Diffusion Tensor MRI methodology (DT-MRI) (see
[13] for more details).

A standard acquisition protocol for a single orientation
gi, gives a 3D image, where in each voxel, the signal inten-
sity indicates the grade of attenuation due to the diffusion, a
larger attenuation (Si small) indicates significant water dif-
fusion in the configured orientation. A 2D schematization
of the measured signals are shown in Figure 1.

In each brain position could be several diffusion orien-
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tations, for example in the case of axon fiber crossing or
bifurcations, and then, a more adequate model have been
proposed by Tuch et al. [12, 11] called High Angular Res-
olution Diffusion Imaging (HARDI) method, based on an
observation model in which the signals is built as a finite
mixture of tensorsDj :

si = S0

∑κ

j=1
βj exp(−bgT

i Djgi), (5)

whereκ denotes the number of significant fibers orienta-
tions within the voxel, the tensorDj explains each one of
these diffusion orientations, and the scalarβj indicates its
amount of presence.

If we want to recover the unknown tensorsDj (i.e. the
orientation and magnitude of the present diffusion) using
only the measured signals, all unknowns must be computed
(the numberκ of orientations, plus six unknowns per tensor,
plus the amountβj of each one), independently for each
voxel from a large set of acquired images{s}. This Dif-
fusion Multi–Tensor Magnetic Resonance Imaging (DMT–
MRI) technique allows one to recover the intra–voxel in-
formation that is not observed in the standard DT–MRI that
uses the model in equation (4) [11]. The drawbacks of the
DMT–MRI method are: the large number of additional dif-
fusion images{s} required (for instance, 126 diffusion 3D–
images are used in [11], 54 in [6]), resulting in a large ac-
quisition time, and algorithmic problems related to Equa-
tion (5); which is highly nonlinear. So, multiple restarts of
the optimization method are required to prevent the algo-
rithm from settling in a local minima. Furthermore, such an
algorithm is not stable for more than two fiber bundles, i.e.
for κ > 2 (see discussion on Ref. [11], Chap. 7). There
are another kind of works in this area [7, 8], that have re-
covered the DT–MRI intra–voxel information. Those works
have been used a spatial and intra-model regularization, in
order to decompose the DT in a multi-tensor one, though,
those works highly depend on the existing information in
the voxel neighborhood.

1.2. Diffusion Basis Function Estimation

Recently, a solution method for equation (5) based on a
dictionary of functions have been proposed in [9]. In this
approach the atoms are called Diffusion Basis Functions
(DFB) and are defined as

Φij = exp(−bgT
i T̄jgi), (6)

where eachΦij should be understood as the decay factor
due to a fixed tensor̄Tj in the i–th directiongi. As in the
MP and BP methods the set ofΦij values define a matrix
such that each vector columnΦ,j is an atom, generated with
the signal measured in all the orientationsgi for a fixed ten-
sorT̄j . By using the dictionaryΦ (in [9]), with cardinality
N , the composition of the signals was established as:

si = S0

∑N

j=1
αjΦij + ηi (7)

wereα = [α1, α2, ..., αj , ..., αN ]T is a vector, such that the
scalarαj ≥ 0 denotes the contribution of thej-th atomΦj

to all theSi measures in different gradient directions, i.e.
the contribution to linear mixture at a particular voxel. Note
that the dictionary is not complete, due to the fact that the
contained orientationsj = 1, . . . , N in the basis are a dis-
cretization of the 3D space, leading to a remanent scalar for
each measurement denoted byηi. By increasing the cardi-
nality, we can diminish this remainder, so that, it becomes
insignificant and therefore could be attributed to the noise
in the signal.

The use of the model in (7), with a large dictionary, allow
us to have a high angular resolution, only by computing the
α vector in each brain position. The solution proposed in
[9] was derived by the minimization of the following error
function

E(α) = ‖Φα− s‖22
s.t. αj ≥ 0 , ∀j (8)

The minimization was achieved in [9] by the derivation
of (8) with respect to a eachαk, and by equalize to zero
each derivative. The solution is obtained by application of
a Gauss-Seidel approach with the projection of the negative
αj values to zero in each iteration. This minimization ap-
proach has the drawback that it requires several iterations to
achieve the realα value.

2. Basis Pursuit Adaptation

In this paper we propose to solve the problem stated by
(7), by the modification of the the minimization problem in
(8) in a BP methodology.

We propose to compute theα-coefficients in (7) by solv-
ing the BP problem:

min ‖α‖1
subject to Φα = s

αj > 0 , ∀j (9)

Since we constrained already the sign of theα compo-
nents, (9) can be formulated in the following linear program

min
∑

j αj = êT α

subject to Φα = s

αj > 0 , ∀j (10)
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whereê is a vector with all its components equal to one. The
above linear programming carry us to solve the following
problem stated in a matrix form

min êT α

subject to

[
Φ 0
I −I

] [
α
γ

]
=

[
s
0

]

(11)

whereI is a N × N identity matrix,γ ∈ <N is a slack
variable vector (see the simplex method in [5]) and0’s de-
notes a matrix or a vector with all the components equal to
zero, and with dimensions corresponding to their positions
in (11). This linear program, could be solved, in theory,
with the simplex method, but, the signals contains noise
that converts the linear problem in a over–constrained one,
that means that we expect to have the remanentηi differ-
ent from zero. For this reason we solve it with a power-
ful interior-point minimization method. In the experiments
we used the predictor-corrector Merhotra’s algorithm (see
[4, 5]) that gives results in a fraction of the computational
effort that requires the method described in Section 1.2.

3. Results

This section shows experimental results and a perfor-
mance comparison of the DBFE and the BP methods.

3.1. Synthetic Experiments

In order to test the performance of the proposed method
for recovering the diffusion signalsφj that best composed
the observeds, we generate several synthetic examples. In
the first example we generated a signals which is exactly
composed by a linear combination of two atom signals,
s = 1

2φi + 1
2φj . Then we used a different number of mea-

suresM and we compare the norm of the error betwen the
obtained solution and the known real one. The dictionary
was composed byN = 36 atoms and we usedb = 1000 in
(6). The comparison between the method DBFE reported in
[9] and the one that uses BP proposed in Section 2 is shown
in Figure 2. Note that the error diminishes in both methods
by increasing the number of measuressi. However note
that the error for the method BP is smaller and requires less
measures (only 4) for obtaining the exact result.

In fact, Figure 3 give us insights about the reason of the
large error of the DBFE method. In this experiment we gen-
erated a synthetic signals that is composed by 2 diffusion
orientations in a 2D plane,63o and157o respectively. The
dictionary is composed by diffusion signals that splits the
2D orientation in intervals of10o, i.e., the set of orientation
was [0o, 10o, 20o, . . . , 170o]. This, dictionary can not ex-
actly represents the signals. The result obtained with the

Figure 2. Comparison for both methods, of
the error generated by the variation of the
number of measures M , see text.

DBFE algorithm is shown in panel 3a, and the result for
the BP method is shown in panel 3b. In both figures thex
axis corresponds to the orientation of theN = 18 atoms
(or diffusion signals in the dictionary) and they axis indi-
cates the value of the associatedαj value. As can be seen,
the result obtained by the DBFE involves more coefficients
than the needed, and the result given by the BP method uses
only the necessary number of coefficients, i.e., in the case
of BP, the signalφ7 associated with60o have the biggest
α coefficient, and join with the coefficient associated to70o

(a small one) fits good enough the diffusion measured in the
63o orientation. In the same way, the second diffusion is fit-
ted only by the combination of the atom associated to160o

and 150o in this order, and all the others coefficients are
zero. The BP method required 12 iterations of the Mehro-
tra minimization method. On the other hand, the method
DBFE was iterated 1300 times, and the obtained result con-
tains more coefficients that the needed for representings.
Note that the solution given by DBFE is almost right, i.e.,
indicates with the biggestα coefficient the diffusion func-
tion that best explains the signal, altough, the solution given
by BP is sharper, thus, better defined, indicating better the
magnitude of the coefficients of the linear combination, and
for the medical purposes its solution is better.

Additionally, we tested the robustness of both methods
to the noise in the measured signal. Figure 4 shows the ob-
tained results. We generate a synthetic signal and then we
added independent Gaussian noise with zero mean and dif-
ferent standard deviations. Thex axis indicates the SNR
ratio and they axis shows the norm of the difference be-
tween the obtained solution vectorα and the real one. As
can be seen, the error of the method BP is the smallest one.
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a)

b)

Figure 3. α coefficients obtained in the case
where the diffusion orientation was not in the
dictionary. a) For the DBFE method, b) for the
BP method, see text.

Figure 4. Variation for both methods of the
error in the results by the SNR variation in
the synthetic signal, see text.

3.2. Experiments with real DW-MRI data

The results obtained with brain DW–MRI are shown in
figure 5. In this case, we used the DW images that are in-
cluded in the BioTensor software, provided by the web site
of the Scientific Computing and Imaging Institute of the
University of Utah (http://software.sci.utah.
edu/archive/archive_main.html ). Which are
constructed to2.0×2.0×2.0mm3, and have volume dimen-
sions of75 × 109 × 29. The DW data haveM = 12 mea-
surements per voxel in independent directionsgi, b = 1000.
The dictionary of diffusion functions was composed by
N = 33 equidistant orientations. Panel 5a depicts the brain
map (a sagital slice) with the region of interest marked with
a white square. Panel 5b shows the classical orientations
given by the Diffusion Tensor (see [13] for details) that give
us a reference for the orientations. We show in panel 5c the
computed orientations, weighted by its associatedα coef-
ficient, recovered by the DBFE method. Finally, the com-
puted orientations, weighted by its associatedα coefficient,
with the BP method are shown in Panel 5d. It is impor-
tant to note that this results are congruent with the a priori
anatomical knowledge for this region which corresponds to
the braincorona radiata. Note that in the center of the slice
there is a fiber cross (depicted in the DT–MRI representa-
tion in panel 5b with no predominant orientation tensors,i.e.
balls) and the orientations recovered shown in panel 5c and
5d indicates the crossing by means of almost orthogonal dif-
fusion orientations. Note that, in some regions, the recov-
ered orientations by the BP method are more defined and
contrasted, i.e. there are some brain positions where only
one diffusion direction was detected instead of two, like in

5



the DBFE result.
We measured the computational time for both methods,

they were implemented in the same language and were exe-
cuted in the same computer. BP approach is about 40 times
faster than the DBFE approach.

4. Conclusions

In this paper, we stated the problem of intra-voxel diffu-
sion estimation in DW–MRI in the context of signal decom-
position, such decomposition is composed by atoms that be-
longs to a dictionary. The BP methodology was appplied,
demonstrating that the obtained results are better compared
with the DBFE methodology, that represents the state of the
art in this approach. The obtained results are better in the
sense that the uncertainty in the diffusion orientation was di-
minished and the required computational effort was lesser.
Such a differences can be explained, in part, because the
BP-like approach uses a objective function based in the L-1
norm (that is known to be a robust potential) and the DBFE
uses a non-robust L-2 based cost norm.
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