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ABSTRACT

We present an algorithm for segmenting the white-matter
axon fiber bundles from HARDI images. We formulate the
segmentation problem as a Multi-Tensor Field segmentation
problem in which the compartments of each Multi-Tensor
may belong to different classes, allowing the algorithm to
handle crossing fiber tracts. Experimental results on two
publicly available synthetic datasets and the fiber-cup phan-
tom show that fiber crossings can be effectively separated
by using this approach, and preliminary results on real data
show that the segmentation obtained is consistent with known
anatomical structures.

Index Terms— Brain imaging; Image segmentation;
Tensor and vector field analysis

1. INTRODUCTION

Diffusion-Weighted Magnetic Resonance Imaging (DW-
MRI) is a technique that allows us to study the anatomical
structure of living tissues by quantifying the amount of water
molecules that move along a set of M diffusion directions
Q = {qi}Mi=1. When studying DW-MRI signals from the
brain, it is possible to extract useful information related to the
orientation of the axon fibers that pass through a given voxel,
which can further be used to identify larger anatomical struc-
tures in the brain. The identification of anatomical structures
of cerebral white matter from DW-MRI has been extensively
studied in recent years by the neuroscience community with
different objectives in mind [1–5]. Strategies for segmenting
the white matter fiber bundles may be classified into two main
categories: tractography-based clustering methods, and direct
volume segmentation methods. Tractography-based cluster-
ing methods consist on generating a large set of trajectories
(which is called tractography) that traverse areas of the brain
with high diffusivity coherence. The set of trajectories are
then grouped into clusters using a specific similarity met-
ric, and the volume segmentation may be finally performed
in terms of the number of classified trajectories that pass
through each voxel, see for example Wassermann et al. [11].

Most direct volume segmentation methods formulate the
problem as a binary segmentation problem, in which the bun-
dle of interest (foreground) is separated from the rest of the
volume (background), thus requiring a good initialization.
Lankton et al. [5] proposed an active-contour evolution algo-
rithm that uses local statistics to model the foreground data,
the bundle of interest is manually indicated by two endpoints
which are then connected using tractography, the pathway
is then dilated to initialize a level-set binary segmentation
method. Descoteaux et al. [2] used the coefficients of the
Spherical Harmonics representation of the diffusion Orienta-
tion Diffusion Functions (ODF) to compute a similarity mea-
sure between neighboring ODF’s. Then they used level-sets
to segment the volume into foreground-background. Çetingül
et al. [1] use manifold learning techniques to learn a sparse
representation of the ODF at each voxel. They then compute
a similarity matrix between pairs of voxels using the coeffi-
cients of the ODF’s sparse representations and apply spectral
clustering. The main drawback of most direct segmentation
methods is that the segmentation task is formulated at the
voxel level: each voxel is classified into one of the classes.
However, when two or more fibers cross at a voxel, it is nec-
essary to assign such a voxel to different classes. Hagmann
et al. [3], and Jonasson et al. [4] proposed to formulate the
segmentation problem on an extended space, called Position-
Orientation Space (POS). Under the POS model, the esti-
mated ODF’s across the volume may be regarded as a scalar
function S from a discretization of <3×S2 to <, where S2 is
the unit 2-sphere in <3. In POS, the classification task can be
solved by binarizing the 5-dimensional image S (high inten-
sity corresponds to the presence of a fiber while low intensity
corresponds to background). The main drawback of POS is
that the discretization of the 5-dimensional space produces
huge hyper-volumes which is highly memory demanding.

Our contribution is the development of an automatic fiber
bundle segmentation method with the following character-
istics: (i) It does not rely on tractography, (ii) It does not
require user initialization nor an anatomical atlas to guide the
segmentation (iii) Despite the high dimensionality involved,
it is computationally efficient.



2. MULTI-TENSOR FIELD REPRESENTATION OF
THE DW-MRI DATA

The DW-MRI signal Fv : Q → < at each voxel v ∈ Ω may
be represented as a vector Sv ∈ <M , where Ω is the set of all
scanned voxels, and the ith element of Sv is Sv,i = Fv(qi),
1 ≤ i ≤ M . One of the most widely used tools for model-
ing the DW-MRI signals is Diffusion Tensor Imaging (DTI),
which models the input signal as a diffusion function:

Sv,i = S0(v)exp(−τqTi Dvqi). (1)

where S0(v) is the standard T2 image at voxel v, Dv is a
symmetric positive definite tensor and τ is the effective diffu-
sion time. The most important limitation of DTI is that it is
unable to resolve axon fiber crossings. One of the most suc-
cessful approaches developed to overcome the limitations of
the DTI model is the Multi-Tensor (MT) Model developed by
Tuch et al. [10]. Under the MT model, each one of the nv
axon fibers passing through a given voxel v produces a single
diffusion function, as in eq. 1, and the observed signal Sv is
represented as a positive linear combination of those diffusion
functions:

Sv,i = S0(v)

nv∑
j=1

β
(v)
j exp(−τqTi D(j)

v qi). (2)

where the positive coefficients
{
β
(v)
j

}nv

j=1
indicate the volume-

fraction of the voxel v that is occupied by the correspond-
ing fiber. If we denote by I = {1, 2, ...,K}, where K =
max {nv : v ∈ Ω}, we can think of the set C = Ω × I of
compartments as an extension of the volume Ω obtained by
“splitting” each voxel v inK parts, and each non-empty com-
partment represents the presence of a fiber bundle passing
through the corresponding voxel. In our experiments, we
used the Diffusion Basis Functions Model (DBF) proposed
by A. Ramı́rez et al. [8] to fit the multi-tensor model to the
data. Under the DBF, a fixed dictionary of N possible diffu-
sion functions is used for all voxels in the volume, so that the
model can be fit to the data by solving a non-negative least
squares problem:

β∗ = min
β∈<N

||Φβ − Sv||22, s.t. β ≥ 0, (3)

where Φ = [φ1, φ2, ..., φN ] is the dictionary of diffusion func-
tions evaluated at the set Q of diffusion directions, and hence
may be regarded as M−dimensional vectors. Each column
φj is then characterized by one tensor Dj . The set of eigen-
values of Dj (which is known as the diffusivity profile) is as-
sumed to be constant and of the form Λ = (λL, λR, λR),
where λR is the radial diffusivity and λL > λR is the longitu-
dinal diffusivity. Therefore, each column φj is totally charac-
terized by Λ and the principal diffusion direction (PDD) pj of
Dj . The DBF model has been shown to be a trusty approach
in recent comparative studies 1.

1http://hardi.epfl.ch/static/events/2012 ISBI/

3. MULTI-TENSOR FIELD SPECTRAL
SEGMENTATION

Since, under the DBF model, the diffusivity profile is con-
stant, the DBF representation of the input signal Sv (eq. 2)
is totally characterized by the set of positive coefficients{
β
(v)
j

}nv

j=1
, and the set of principal diffusion directions of

the tensors
{
D

(j)
v

}nv

j=1
. After fitting the DBF model to all

voxels of the volume, we obtain a Multi-Tensor Field (MTF),
which may be regarded as a function T : C → <3, that
assigns a scaled PDD (a vector in <3) to each compartment
where the length ||T (v, j)|| = β

(v)
j encodes the positive

coefficient and the unit vector T (v,j)
||T (v,j)|| encodes the PDD cor-

responding to the jth tensor in the DBF representation of the
signal Sv at voxel v. This representation is also convenient to
encode the empty compartments: T (v, j) = 0 indicates that
the compartment (v, j) is empty. A segmentation of the MTF
can therefore be defined as a function L : C → L that assigns
an element from a set of labels L = {1, 2, ..., `} to each com-
partment (v, j) ∈ C in such a way that the MTF T is homoge-
neous (in some sense) along regions of C sharing the same la-
bel. The requirement that T is homogeneous along regions of
the same class, needs to be defined more precisely by defining
a notion of proximity (or neighborhood) between elements of
C and a notion of similarity (or distance) between elements
of the range of T . In our representation, a fiber bundle is
formed by a set of nearby tensors with locally coherent orien-
tation, thus a reasonable similarity metric between elements
in the range of T should consider both, spatial proximity
and orientation. We used the dissimilarity measure given by
D((v, r), (w, s)) = ||v−w||2

d20
+ ](r,s)

θ0
, and the similarity mea-

sure given by S((v, r), (w, s)) = exp (−D((v, r), (w, s))),
where d0, θ0 > 0 are constant parameters and ](·, ·) denotes
the angle between the non-zero vectors given as argument.

Given two neighboring voxels v, w ∈ Ω we first com-
pute the best assignment of compartments in v to com-
partments in w, by minimizing the sum of the dissimilar-
ities between paired tensors. Only paired tensors may be
neighbors of each other. We say two paired compartments
(v, i), (w, j) ∈ C are neighbors if ](r, s) < θmax, where
r = T ((v, i)), s = T ((w, j)) and θmax ≥ 0 is a constant pa-
rameter. The main difficulty in the segmentation of the MTF
is that there is no simple way of modeling the variation of T
(a vector field) along each class (a fiber bundle). Thus, in-
stead of modeling such variations, we define a transformation
(“embedding function”) F : C → <d for a fixed d > 0, such
that tensors that are close to each other according to the above
distance D are mapped to nearby points in <d. This kind of
transformation is used in several dimensionality reduction
and perceptual grouping algorithms. We used the algorithm
proposed by Meila and Shi [7], which consists of comput-



ing the d eigenvectors
{
z(1), z(2), ..., z(d)

}
of the n × n

similarity matrix corresponding to its d largest eigenvalues.
The embedding of the i−th compartment is then computed
as (z1i , z

2
i , ..., z

d
i ) ∈ <d. In our case, n is the number of

non-empty compartments, which may be very large, however
since each compartment is only connected to a subset of its
neighbors in the volume lattice, the resulting similarity matrix
is very sparse. Thus, it is possible to compute the required
eigenvectors using efficient algorithms such as Arpack [6],
which we used in our experiments.

After embedding the points in <d it is possible to ap-
ply any standard segmentation algorithm, since the mod-
els in the embedded space are constant vectors in <d. We
initialized the segmentation with K-means, and then apply
Entropy-Controlled Quadratic Markov Measure Field (EC-
QMMF) [9] to obtain the final segmentation. EC-QMMF is
suitable for parametric segmentation (i.e., to compute both
the segmentation and the model parameters, which in our
case are constant vectors in <d), and provides for each data
point, a discrete distribution indicating the probability of the
given point to belong to each of the classes.

4. EXPERIMENTS

We performed experiments at three levels of difficulty. The
objective of the first experiment is to show the segmenta-
tion obtained when the true MTF is known (thus, the MTF
estimation is not required), this experiment was performed
on the publicly available 2012 HARDI Reconstruction Chal-
lenge dataset1. The second experiment was performed on the
publicly available fibercup phantom2. In this case the bun-
dles can be visually identified, but the MTF must be estimated
from the input DW-MRI. The third dataset was obtained from
a healthy human brain in realistic clinical conditions. In this
case, the objective is to show that our proposal can be applied
on realistic HARDI data, and that it is reasonably efficient
computationally.

4.1. Synthetic data

The dataset consists of two 16 × 16 × 5 synthetic phantoms,
one was provided for training, and the other was provided for
testing. The segmentation results are depicted in figures 1 and
2, respectively. The angle between crossing fibers in the train-
ing set (figure 1) is relatively large compared to those of the
testing set (figure 2). Although the true segmentation is not
available for either of the datasets, the obtained segmentation
is visually correct.

2http://www.lnao.fr/spip.php?rubrique79

(a) (b)

(c) (d) (e)
Fig. 1: MTF segmentation obtained on the phantom provided for training at
the 2012 HARDI Challenge. The phantom consists of two straight- and one
circular- fibers crossing at several regions. (a) Input MTF colored according
to tensor orientation. (b) Segmentation obtained. (c-e) Volume segments
obtained.

(a) (b)

(c) (d) (e) (f) (g)
Fig. 2: MTF segmentation obtained on the phantom provided for testing at
the 2012 HARDI Challenge. The phantom consists of (presumably) five fiber
bundles that join in several ways. (a) Input MTF colored according to tensor
orientation. (b) Segmentation obtained. (c-g) Volume segments obtained.

4.2. Phantom

The data were acquired with a 3T Tim Trio MRI system. We
used the subset consisting of three 64 × 64 slices scanned
along 64 diffusion orientations at a resolution of 3mm, with
a b-value of 1500s/mm2. The segmentation is depicted in
figure 3. We can observe that the main difficulties occur at
kissing and bifurcating bundles (green and blue in figure 3),
which will likely be merged as a single bundle. Notice that
this behavior is also present in Hagmann’s approach [3], since
kissing and bifurcating bundles join even in POS space. How-
ever, these segments may be further processed individually by
subdividing them into smaller segments or by running trac-
tography constrained to each individual segment.

4.3. Real data

The data were acquired with a Siemens Trio 3T scanner with
the following parameters: single-shot echo-planar imaging,
five images with b=1000 s/mm2, 64 unique diffusion orienta-



(a) (b)

(c) (d) (e)
Fig. 3: MTF segmentation obtained on the fiber-cup phantom. (a) Esti-
mated MTF colored according to tensor orientation. (b) Segmentation ob-
tained. (c-e) Volume segments obtained.

tions, TR = 6700ms, TE = 85ms, voxel dimensions equal
to 2 × 2 × 2mm3. The SNR is approximately 26. We first
computed the MTF from the full dataset and then applied our
segmentation algorithm to a Region of Interest (ROI) consist-
ing of 21 central (axial) slices of the brain (approximately
30% of the data). The MTF estimation took 12 minutes and
the QMMF-spectral segmentation of the ROI took 2 minutes,
for a total of 14 minutes on a 1.7 GHz lap-top using one sin-
gle core. In figure 4 we show the segmented MTF in input
space and embedded space. In this case, we first performed a
segmentation in 8 classes and then each class was subdivided
in 2 subclasses, illustrating the idea that each segment may be
further processed.

5. CONCLUSION

We presented a method for segmenting the cerebral white
matter fiber bundles from HARDI images. We formulated the
problem as a MTF segmentation problem, which allows us
to handle fiber crossings. Experiments conducted on publicly
available artificial datasets show that using this approach it
is possible to effectively separate crossing fibers, and pre-
liminary experiments conducted on a dataset acquired from a
healthy human brain showed that the segmentation obtained
is consistent with known anatomical structures.
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