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Abstract. This paper describes an original strategy for using a data-
driven probabilistic motion model into particle filter-based target track-
ing on video streams. Such a model is based on the local motion observed
by the camera during a learning phase. Given that the initial, empiri-
cal distribution may be incomplete and noisy, we regularize it in a sec-
ond phase. The hybrid discrete-continuous probabilistic motion model
learned this way is then used as a sampling distribution in a particle
filter framework for target tracking. We present promising results for
this approach in some common datasets used as benchmarks for visual
surveillance tracking algorithms.

1 Introduction

Visual target tracking has been the object of a very large amount of research
in the last two decades, mainly in the communities of computer vision, image
processing and networks. This is motivated in particular by a strong demand
of automatic tracking tools for applications such as video-conferencing, gesture
analysis, TV broadcasting, wildlife studies or video-surveillance, among many
others. Our work targets particularly tracking in video-surveillance applications,
which is characterized by a number of specific problems. First, tracking in that
case is in general limited to pedestrians or cars. Moreover, a scene monitored by
a surveillance camera typically contains many potential targets to track. They
are not known in advance and have to be detected automatically. Furthermore,
they generally undergo partial to complete occlusions, both from scene clutter
(walls, pillars, poles. . . ) or from other targets. Last, it is common in outdoors
scenes that the appearance of different targets is quite similar, i.e. it may be hard
to distinguish one target from another. In this difficult context and when dealing
with only one camera, the motion model, i.e. the a priori knowledge about how
objects move in the scene, helps to keep track of targets that are either ambiguous
(if their appearance is similar to the one of a neighbour target) or occluded. The
most simple and common motion models in the literature are constant velocity
or constant acceleration ones, but they may not handle the specificities of a
particular scenario: For example, because of the topology of one place, it may be
frequent that pedestrians make sharp turns, which cannot be handled by simple
motion models. Our contribution has been to infer a more complex probabilistic
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motion model, by using the low-level information collected by the camera. To
the best of our knowledge, this approach has not been proposed before, and
the results we present in Section 5 show how promising it is. We will detail the
construction of the prior in Section 3 and see how to use it in a tracking algorithm
in Section 4. After presenting experimental results, we make a conclusion and
give hints for future work in Section 6.

2 Related work

Much progress has been done recently in the literature for the design of efficient
tracking techniques. If early works have essentially imported filtering techniques
from the radar community (e.g., the Kalman filter), later works have heavily
relied on probabilistic models for the target appearance, e.g. Meanshift and
its variants [1], or color histogram-based models incorporated into particle fil-
ters [2]. The latest trend in the area of multiple target tracking is the paradigm of
tracking-by-detection [3, 4], i.e. the coupling of tracking with powerful machine
learning-based object detection techniques, that detect, by parts or as a whole,
objects from some given class of interest (in particular, pedestrians [5]) with
high confidence levels. The problem of tracking is then transformed into an op-
timization problem that finds a partition of space-time detections into coherent
trajectories. The main limitation of these approaches is that their success de-
pends essentially in the pedestrian detector. If it fails, the whole tracking system
becomes inefficient. The problem is that in presence of occlusions, as it occurs
frequently in our case, pedestrian detectors are likely to fail. Other detection-free
techniques have been proposed [6] more recently, but they share with detection-
based methods the need to wait for a given window of time before completing
the association problem.

Here, we use a more traditional approach for tracking, namely the particle
filter. We do not focus on the observation model, but rather on the other key
element of any probabilistic tracker, the motion model. Works related to ours,
i.e. based on developing new probabilistic motion models, is for example the one
of [7], where the authors use a database of 3D motions to design a probabilistic
model for tracking articulated objects. In this work, we aim at capturing the
complexity of 2D motion in a given scene into a probability distribution. Such
a complexity may be the consequence of specific physical elements (e.g., walls,
corridors. . . ) and it results in simple motion models being incorrect.

3 Learning motion transition models from sequences

This section describes our framework to learn motion priors from the low level
information extracted from video sequences.

3.1 Estimating empirical state transition priors

The idea of our approach is to learn information on state transitions, where the
state refers to the quantities that will be estimated during tracking, in our case
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position and velocity. We will denote these quantities as r = (x, y)T (position)
and v = (vm, vθ)T (velocity, decomposed in a magnitude vm and an orien-
tation vθ). From optical flow information computed in video sequences taken
by the same camera that will do the tracking, we collect statistics about the
temporal evolution of this state. It is done as compactly as possible, to make
the handling of these distributions tractable. For example, if we refer to the
time as t, we are interested in learning information about the joint distribution
p(vt+1, rt+1|vt, rt), that sums up the a priori knowledge about where and at
what velocity targets tend to be at time t+ 1, when their position and velocity
at t are given. Modeling this joint distribution in the continuous domain would
require parametric distributions (e.g. mixtures of Gaussian distributions) diffi-
cult to handle, e.g. in a regularization framework. Similarly, a fully discretized
distribution would require a lot of memory. Hence, we adopted a hybrid repre-
sentation, partly discrete, partly continuous. We factorize the probabilistic state
transition model as follows, by supposing conditional independence between the
two velocity components, given the previous state,

p(vt+1, rt+1|vt, rt) ≈ p(vmt+1|vt, rt)p(vθt+1, rt+1|vt, rt). (1)

For the first term, we adopt a simple, continuous Gaussian model, i.e. vmt+1 ∼
N (vmt , σ

2
m(vt, r)). For the second term, which is a priori more complex in nature,

as it represents potential direction changes, we use a discrete distribution. We
get estimates for these two distributions from optical flow data.

Collecting low-level information about state transitions. Our basic low-level data
are point tracks given by a sparse optical flow algorithm. In our implementa-
tion, we used the Lucas-Kanade (LK) algorithm [8]. Note that this algorithm
keeps track of only well-defined image points, i.e. points that are locally non-
ambiguous, and that have two large eigenvalues in their autocorrelation ma-
trix [9]. This makes the collected data a priori reliable as we do not take into
account textureless areas or edge areas (in which the aperture effect applies);
this would not be possible with a dense optical flow algorithm.

Furthermore, for the LK algorithm to be applied efficiently on long sequences,
our implementation uses an image discretization into cells – see below – and
refills each cell whenever the number of tracked points inside it goes below a
given threshold. This avoids to refill globally the image with new corners and
lose temporal state variations everywhere in the image at this moment.

Estimating the distribution of velocity amplitudes. Based on this sparse optical
flow, we can first estimate the variance parameter σ2

m(vt, r) of p(vmt+1, |vt, rt),
by calculating the empirical variance of consecutive velocity magnitudes.

Estimating the distribution of velocity orientations. As for the second term of
Eq. 1, we rely on a discrete representation of the (vθ, r) space. We discretize the
image into D × D pixels-wide cells (in our experiments, D = 30) and the set
of possible orientations into other 8 cells. Then, we build, for each of these 3D
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cells in the (vθt , rt) space, a discrete representation of p(vθt+τ(vm), rt+τ(vm)|vt, rt).
As space is discretized into cells, it is difficult to consider in that case motion
information at time horizon 1, as most tracked points stay in the same cell;
Instead, we collect temporal information, for each cell, at a time horizon that
would span some significative motion towards a neighbour cell. A good choice
for this time interval is τ(vm) = D

vm , that represents the average time to cross
the cell along a straight line. Hence, if a point is tracked by the LK algorithm,
with velocity vm at frame t, it contributes to the histogram at the 3D cell
(vθt , rt), into the bin (among 72 = 8 × 9 bins) corresponding to the observed
(vθt+τ(vm), rt+τ(vm)). This process is illustrated by Fig. 1, for a single point (in

blue) tracked over a few frames. The central green dot gives a contribution for
the cell representing its current state, based on its position τ(vm) frames later.
The corresponding bin is also depicted in green.

vθk

rk

Fig. 1. Priors for the transition model by discretizing the image+orientations space. For
one cell ck, characterized by (vθk, rk) (magenta), we model the distribution of (vθk′ , rk′),
i.e. the orientations and cells reached by the target after a “significant” amount of time
τ(vm). In green, one contribution from a point tracked on the blue path.

From now on, we will refer to each cell as ck = (vθk, rk), with k indexing the
set of cells, and h(ck) being the normalized histogram formed at that cell.

3.2 Regularization of velocity orientation distributions.

Let B be the number of bins in the histogram, h(ck)i the value of the i-th bin in
the normalized histogram, and log h(ck) the histogram made of the logs of the

entries of h(ck), i.e. [log h(ck)]i
def
= log [h(ck)i].

Now, as we will see later, given the high dimension of the space on which
are defined all local distributions (72) and the relatively few data we have to
estimate them, we need to estimate a regularized version l(ck) of log h(ck) with
the optimization scheme described hereafter.l(ck)
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The objective function we will minimize is the following one:

U(l) =
1

2

∑
k∈K

∑
i,j

Wij([li(ck)− log hj(ck)]2 + λ
∑

l∈N(k)

[li(ck)− lj(cl)]
2). (2)

We can make several observations on this objective function. First, note that
the searched optimum should reside in the manifold made of the concatenation
of the logs of normalized histograms, i.e. for any cell ck, l(ck) ∈ L = {l ∈

RB s.t.
B∑
i=1

eli = 1}. Then, the first term of the function is a data term, that fits

the l’s to the empirical data. The second term is a smoothness constraint, that
makes the histogram at one cell ck similar to the cells cl of its neighbourhood
N(k). These neighbourhoods include the spatial vicinity, of course, and the an-
gular vicinity. Also note that λ is the regularization factor, and K ⊂ N is the
set of considered cells. We will see below that we do not necessarily consider all
the cells, but only the most informative ones.

Last, the terms Wij are weights that encode the similarity between different,
but close histograms bins, i.e. they soften the binning effect; they also include
the particular fact that angle histograms are cyclic. For this purpose, we use
the von Mises distribution with the angle between the direction vectors, which
represent the bins i and j.

By developing a bit more the expression of U(l) in Eq. 2,

U(l) = C +
1

2

∑
k∈K

(l(ck)TW(1) log h(ck) +
∑

l∈N(k)

l(ck)TW(2)(ck, cl)l(cl)),

with C a constant, and

W
(1)
ij = −2λWij ,

W
(2)
ij (ck, cl) =


−2λWij if k 6= l{

(1 + 2V λ)
∑
l

Wil − 2λWii if i = j

−2λWij otherwise.
if k = l.

Expressed this way, the problem of Eq. 2 is quadratical in the vector formed
by all l and can be solved with classical numerical optimization techniques. We
adopted a Gauss-Seidel scheme on the gradient of the objective function, in
which after each iteration the new estimate for l is projected on the manifold
L ⊂ R|K|B (i.e. re-normalization) [10]. In our experiments, approximately 40
iterations were necessary to ensure convergence, depending on the value chosen
for the regularization parameter λ.

An example of regularized prior is shown (partially) in Fig. 2. It sums up
the histograms l(ck) obtained with the optical flow data collected among several
of the PETS’2009 video sequences, which is a dataset of common use in the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. A glimpse on the learned distribution p(vθt+1, rt+1|vt, rt), for vθt = π
2

(down-
ward motion, in white): each image corresponds to a spatial displacement (i.e., rt+1)
indicated by the bold arrow on the bottom-left corner, and the colored arrows give the
orientation (i.e., vθt+1) with the highest bin among those corresponding to this rt+1.

evaluation of tracking algorithms [11]. The discretization being 3D, we depicted,
for one particular initial orientation vθt = π

2 (i.e., a downward motion, in white),
the main orientation observed at each of the potential arrival cell. Each image
corresponds to a potential arrival cell (which one is indicated by the bold arrow
in the bottom-left corner), and the colored arrow at each cell indicates the most
frequent orientation for that cell, its length indicating the value of the corre-
sponding bin. A remarkable element, justifying not to use too simple motion
models, is that for this vertical orientation, there is nearly no support for the
cell immediately downward (Fig. 2(h)). From this camera, vertical trajectories
are seldom observed, downward velocities correspond generally to trajectories
oriented to the south-west (Fig. 2(g)) or to the south-east (Fig. 2(i)). Finally,
in Fig. 3, we show more synthetic views of the transition distributions, through
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(a) (b)

Fig. 3. Raw and regularized transition fields for an upward initial direction (vθt = −π
2

).
We depict, before and after regularization, the 3D cell having the maximal bin value,
with a first arrow pointing to rt+1 and a second arrow having orientation vθt+1.

the sole maximal bins attained, for a given initial orientation, which is the up-
ward direction in this case. The three arrows displayed correspond to the initial
orientation, the direction to the attained new cell, and the final orientation. On
the left side, we depict the non-regularized version, and on the right side its
regularized counterpart. As in Fig. 2, one can note that vertical motions are
generally not followed along straight line: They tend to bend either to the left
(for example in the bottom-right corner) or to the right (upper-right corner).
This reflects the physical constraints present in the scene for pedestrians.

To complete the regularization process, we have also tried to fill in incomplete
information. As written before, because of the lack of data, some cells have no
information at all, or nearly no information: For example, areas that are not
accessible to pedestrians or areas hidden behind occluding clutter, such as the
central pole at Fig. 3. Hence, we adopted a strategy to fill in these gaps: First
we generate a binary image from data with not enough information and we
decompose it into convex regions. We estimate the boundaries of two regions that
are spatially close and sample a point in each region. The pair of points must
have an Euclidean distance inferior to a threshold (i.e. we assume that points
far away are not physically attainable). Then we sample an orientation at each
point and interpolate positions/orientations by a cubic polynomial. Finally, we
generate histogram entries according to the polynomial curvature. This strategy
helps completing the missing information in some areas. We will see in Section 5,
that it helps preserving the trajectories continuity.

4 Using the learned motion models during tracking

With this acquired knowledge about how pedestrians tend to move in the scene,
we can now define a corresponding probabilistic motion model for performing
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target tracking, i.e. not only the low-level tracking of a single point as LK does,
but the one of a complex target. One of the most flexible techniques for per-
forming such a tracking task is the particle filter (PF), as it allows to integrate
in an elegant way a probabilistic model on what we should observe from the
target in the current image (observation model), and a probabilistic model on
what we know about how this targets moves (motion model). Above all, it makes
no strong assumption about these probability distributions, the only constraints
being, in the simplest form of PF, that one could evaluate the observation model
at any state, and that one could sample the motion model from any state.

4.1 Particle filter-based visual tracking

Formally, we will index the targets to track with indices m, and associate one
individual filter to each target. Any of these filters estimates the 4−D Markov
state of its associated target at time t, Xm

t = (rmt ,v
m
t )T from the sequence of

images I1, . . . , It. In practice, for the problem of tracking, the state contains the
target Region of Interest position and its velocity. We will suppose, as other
authors [12], that we have a rough knowledge of the position of the camera with
respect to the scene, so that, at one possible position for the target in he image,
the corresponding scale of the target bounding box is known. To do the target
state estimation, the PF uses the recursive application of Bayes rule, that leads
to

p(Xm
t |I1, . . . , It) = p(It|Xm

t )

∫
Xm

t−1

p(Xm
t |Xm

t−1)p(Xm
t−1|I1, . . . , It−1)dXm

t−1.

To get an approximate representation of this posterior from the previous
equation, PF uses a Monte-Carlo approach, with a set of weighted samples (or

“particles”) from the posterior distribution, {(Xm,(n)
t , ω

m,(n)
t )}n, where n indexes

the particles [13]. At each time t, these samples are generated from a proposal
distribution q(Xm

t |Xm
t−1, It), and their weights are recursively updated so that

they reflect how much the particles consecutive states evaluate under the poste-
rior distribution. When, as we do here, the proposal distribution is precisely the
probabilistic motion model, i.e.

q(Xm
t |Xm

t−1, It) = p(Xm
t |Xm

t−1),

then the weight update rule is simply ω
m,(n)
t = p(It|Xm,(n)

t )ω
m,(n)
t−1 . A resam-

pling step is applied whenever the number of significative particles (measured
by 1∑

n(ω
m,(n))2

) becomes inferior to a threshold.

Here, we have used such a particle filter with a rather simple and common
observation model, based on existing works on visual tracking [2]. It combines
two main visible features of the target, its color distribution and its motion dis-
tribution along the video sequence. The first feature (color) is encoded through
3 H, S, V histograms defined in each of two sub-regions defined over the target
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region of interest, the upper one and the lower one, for a total of six histograms.
The choice of dividing the target region into two comes with the idea of asso-
ciating some spatial information to the appearance model, in addition of the
pure color data. As pedestrians clothes have generally quite different color dis-
tributions in their upper and lower parts, this observation model gives a much
more discriminative power. The second feature (motion) is also encoded into a
histogram, that contains the distribution of grey value differences between the
current and the previous images in the sequence. For all of these histograms
(color and motion), we store a reference histogram at the first frame where the
target is detected, which is further updated along the video sequence with a
simple exponential decay rule. As all of these features have the same form, the
overall likelihood takes the form

p(It|Xm
t ) ∝

∏
f

exp

(
−
d2(hmf (Xm

t ),hm∗f )

2σ2
f

)
,

where d is a distance between histograms (Bhattacharya distance), hm∗f is
the reference histogram for feature f (among 7 features) and hmf (Xm

t ) is the

histogram computed at the target position Xm
t . σ2

f the variance on the error on
the histogram distance, which is a set of parameters for the algorithm.

4.2 Using the learned motion model

Now, given the learned motion model, we define a proposal definition based on it.
We will refer to the underlying state transition model as π(Xm

t+1|Xm
t ). To draw

samples from this distribution, conditionally to the state at t of the particle n,

X
m,(n)
t , we use the following steps:

1. Determine the 3D cell ck = (vθk, rk) (position+velocity direction) the particle

X
m,(n)
t corresponds to;

2. From the learnt distribution, p(vθk′ , rk′ |vθk, rk), sample a cell ck′ where the
tracked target could probably go after some time, with its future orientation;

3. Sample a velocity amplitude v
m,(n)
t+1 from p(vmt+1, |v

m,(n)
t , r

m,(n)
t );

4. From the pairs of cells, and their corresponding orientations, build a cubic
curve joining the center cells and tangent to the initial and final orientations
(i.e. Hermite interpolation);

5. Translate this curve on the 2D position of the particle X
m,(n)
t and sample a

point on it around the position given by the velocity amplitude v
m,(n)
t+1 . To

make any neighbor configuration reachable from one initial configuration,
we also add a lateral noise along the polynomial curve.

This way, we can sample from π(Xm
t+1|Xm

t ). Now, we may also define a more
classical constant velocity model, that we will refer to as p(Xm

t+1|Xm
t ), and a

mixture regulated by a parameter γ.

π′(Xm
t+1|Xm

t ) = γp(Xm
t+1|Xm

t ) + (1− γ)π(Xm
t+1|Xm

t ). (3)
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PETS’2009, γ = 1
2

SFDA ATA N-MODP MOTP

0.40 0.42 0.51 0.51
0.36 0.39 0.49 0.49
0.39 0.45 0.50 0.51
0.40 0.46 0.52 0.52

PETS’2009, γ as quality
SFDA ATA N-MODP MOTP

0.40 0.42 0.51 0.51
0.38 0.43 0.50 0.50
0.41 0.47 0.52 0.52
0.43 0.48 0.54 0.53

CAVIAR, γ as quality
SFDA ATA N-MODP MOTP

0.10 0.10 0.23 0.58
0.14 0.12 0.37 0.62
0.14 0.13 0.40 0.68
0.15 0.13 0.40 0.70

Table 1. Performance evaluation of tracking. Results using PETS’2009 and CAVIAR
datasets: First row (of each table) show the results for a classic SIR particle filter, with
a constant velocity motion model. The last three rows are our results using motion
prior with raw data, regularized data and with the strategy of filling incomplete data.
Note : All results are the median value of 30 experiments. On the right, γ is taken
variable, as the quality measure of the filter; on the left, it is fixed.

Through this mixture, we have evaluated several ways to use the prior: as a
fixed mixture proposal (γ = 1

2 ), or as a proposal to be used whenever the filter
undergoes difficulties, e.g. because of occlusions. In that case, the prediction from
the constant velocity model is made risky, since the state estimation is poor.
In this last case, the coefficient γ weighting the two distributions is a quality
measure evaluating the current estimation by the particle filter. One simple way
to define it is as the average likelihood after the observation model is taken into

account:
∑
n p(It|X

m,(n)
t )ω

m,(n)
t .

5 Experimental results

We evaluated our proposal on two public datasets: CAVIAR and PETS’2009.
The first one has a ground truth but the second one has not, so we have manually
generated one for the occasion. To evaluate our results quantitatively, we used
a now standard methodology developed by the PETS community [11]. Tracking
quality is not always easy to quantify, hence several metrics have been proposed,
and we use four of them: (1) Normalized Multiple Object Detection Precision
(N-MODP), which reflects the target detection rate and precision; (2) Multiple
Object Tracking Precision (MOTP), that measures the tracks precision; (3) Se-
quence Frame Detection Accuracy (SFDA), and (4) Average Tracking Accuracy
(ATA), which measures tracks precision but takes more into account the short-
ening of trajectories. These four indicators take values in the interval [0, 1] (1
being for high quality).

The table 1 presents some results obtained for these indicators, on the two
aforementioned datasets. In each case, the first row gives the indicator levels
obtained with a classical SIR particle filter using a constant velocity motion
mode. Then, the next three rows give results for the same SIR trackers using
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Fig. 4. Performance evaluation of tracking proposed by other authors and our proposal
in set S2.L1 (view 1) of PETS 2009 dataset, for the four quality indicators. The last
four results use our tracking system with linear motion model, motion prior model with
raw data, a motion prior model with regularized data and a motion prior model with
the strategy of filling zones with incomplete information. Other authors results have
been reported in [11].

(1) the raw motion fields as probabilistic motion models; (2) the regularized
motion fields and (3) the regularized motion fields with the hole filling strategy
mentioned above. In all cases the results are improved, in particular for the first
two indicators, that are sensible to the continuity of trajectories. Note that the
results for the CAVIAR sequence are low, and this can be explained by the
low sensibility of motion detection in that case (we used the OpenCV motion
detector), that makes the tracker initialization long to occur, and makes the
indicator levels drop in that case. Also note that we have compared two policies
for the choice of γ, the policy setting it as a fixed value (γ = 1

2 , left column), and
the policy of using the filter average likelihood as a measure. The best results are
observed when taking the quality measure, i.e. when this proposal is really used
when the filter is not tracking well the target. Last, Fig. 4 shows a comparison of
our own results for the PETS’2009 sequence with results of other authors from
PETS 2009 and 2010 conferences. As it can be noticed, the overall performance
of our approach for the four indicators locates it among the best entries.

6 Conclusions and future work

We have presented a particle-based approach for visual tracking in video-surveil-
lance sequences that relies, more than on a particularly efficient observation
model, on a probabilistic motion model that is learned from sequences grabbed
by the same camera. This way, the particle filter sampling is done in areas
corresponding to paths that are much more likely to be taken by pedestrians
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than what would be obtained with more traditional motion models (for example,
the constant velocity motion model). Experiments on classical datasets of video-
surveillance data and evaluation through standard indicators have shown that
such an approach could be quite promising in obtaining better tracking results
(where the term “better” may cover a complex reality, which is the reason why
different tracking quality indicators have been used).

We plan several extensions for enhancing particle filter-based tracking: first,
we plan to incorporate more scene-related elements in the regularization frame-
work, i.e. to integrate boundaries (i.e. road limits) that should be taken into
account, so as not to smooth motion fields through these boundaries; second, we
plan to use this framework in an incremental way, so that no explicit learning
phase would be required, and the model could be updated on a regular basis.
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