
Beta-measure for Probabilistic Segmentation

Oscar Dalmau1 and Mariano Rivera1
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Abstract. We propose a new model for probabilistic image segmentation with
spatial coherence through a Markov Random Field prior. Our model is based on
a generalized information measure between discrete probability distribution (β-
Measure). This model generalizes the quadratic Markov measure field models
(QMMF). In our proposal, the entropy control is achieved trough the likelihood
energy. This entropy control mechanism makes appropriate our method for being
used in tasks that require of the simultaneous estimation of the segmentation and
the model parameters.

1 Introduction

Image segmentation consists in partitioning the image into non-overlapping meaning-
ful homogenous regions i.e. flat regions, movement (stereo, optical flow), model-based,
texture, color, ... etc. Image segmentation has been widely used in different applications,
for example, in medical image [1,2,3], robot vision [4,5], image colorization [6] and im-
age editing [7]. Several techniques have been used to solve this problem. Among them
one can find variational approach [8,9], clustering techniques [10], the fuzzy c-means
(FCM) methods [11,12], graph theory [13,14] and Bayesian approach [15,16,2,17].
Recently Dalmau and Rivera presented a general framework for probabilistic image
segmentation [17]. Using this framework one can obtain new probabilistic segmentation
models by selecting a metric-divergence between discrete probability distributions [18].
Based on the previous framework, in this work we present a new model β-MMF (β-
Markov measure field) for probabilistic image segmentation. This model has theoretical
implications. First, it could be considered as a generalization of the quadratic Markov
measure field (QMMF) models [2]. Second, the model presented here is related with
fuzzy c-means [19,20] based-methods for image segmentation. Our model relies on
a generalized measure between discrete probability distributions [21]. We are going
to study the particular case of the β-MMF that produces a family of Half-quadratic
Markov measure field (HQMMF) models.

This paper is organized as follows. In Section 2 we make a brief review of the
Bayesian formulation for probabilistic segmentation. Also, we introduce the β-MMF
model and a half-quadratic version that allows us to solve this model efficiently. Sec-
tion 3 shows some experimental results and finally, in the last section, we present our
conclusions.



2 Mathematical Formulation

2.1 Review of Bayesian formulation for Markov Measure Field (MMF).

In general, the probabilistic image segmentation problem can be described as the com-
putation of the preference of a pixel to certain models or classes. Given K models
M = {m1,m2, · · · ,mK}, an observable vector measure random field Y , i.e. at each
pixel one observe a vector Y (r) = [Y1(r), Y2(r), · · · , YK(r)]T such that Yk(r) ≥ 0
and

∑K
k Yk(r) = 1, and a generative model

Ψ(Y (r),X(r),N(r)) = 0,∀r ∈ L, (1)

where the function Ψ should satisfy the hypothesis of the implicit function theorem,
i.e. there exists a function Γ such that N(r) = Γ (Y (r),X(r)), N(r) is a random
variable with known distribution and X is a hidden measure Markov random field. If
x, y are realizations ofX , Y respectively, the problem consists in finding an estimator
x∗. Using a Bayesian formulation, the MAP estimator x∗ can be computed as

x∗ = arg min
x
U(x;y)

def
= D(x;y) + λR(x), (2)

s.t.
∑
k

xk(r) = 1, xk(r) ≥ 0, ∀r ∈ L, (3)

where D(x;y) is the likelihood energy, R(x) is the prior energy, λ is a regulariza-
tion hyper-parameter and L is the regular lattice that corresponds to the pixel sites.
According to [17] D(·; ·) and R(·) are based on metric-divergence between distribu-
tions [21,18]. The variational model (2) and (3) is a generalization [17] of the particular
cases proposed in Refs. [15,16,2],

2.2 β-MMF

Based on the general formulation Eqs. (2)-(3) we present a new model for probabilistic
segmentation. Then, we need to define the likelihood and the prior energies. First, we
start with the prior energy. Here we use a very popular energy which relies on the
Euclidean distance, that is

R(x) =
∑
r∈L

∑
s∈Nr

ωrs‖x(r)− x(s)‖2, (4)

where ωrs is a weight function i.e. ωrs = γ
γ+‖G(r)−G(s)‖2 , γ = 10−3 and Nr is the

set of first neighboring pixels of r. The energy (4) promotes piecewise-smooth spatial
changes of the vector measure field x. This spatial smoothness is controlled by the
parameter λ > 0 in the functional (2). Therefore, if λ is very large then the segmented
regions tend to be large, and vise-versa, the smaller the value of λ the more granular
is the solution. We note that the prior energy (4) corresponds to the functional of the
Random Walker algorithm [22]. However, this energy has largely been used in different
image segmentation models, see Refs [15,16,23,2,17].



Second, we obtain the β-Measure as a particular case of the
(
α β
γ δ

)
-measure between

two discrete probability distributions f ,h, i.e.
∑
k fk = 1, fk ≥ 0 and

∑
k hk =

1, hk ≥ 0, see Ref. [21]. This measure is defined as

I
(α,β)
(γ,δ) (f ,h) = (2−β − 2−δ)−1

∑
k

(fαk h
β
k − f

γ
k h

δ
k), (5)

where α, β, γ, δ > 0. The β-Measure is defined as the particular case

Iβ(f ,h)
def
= lim

α→0
I
(β,α)
(β,0) (f ,h), (6)

and therefore

Iβ(f ,h) = − 1
log 2

∑
k

fβk log hk. (7)

Using the previous measure in the likelihood term of the functional (2), we obtain the
β-MMF model:

x∗ = arg min
x
Uβ(x;y), (8)

s.t.
∑
k

xk(r) = 1, ∀r ∈ L, (9)

where the functional Uβ(·; ·) is defined in the following way

Uβ(x;y)
def
=
∑
r∈L

(∑
k

− 1
β
xβk(r) log yk(r) +

λ

2

∑
s∈Nr

ωrs‖x(r)− x(s)‖2
)

(10)

The parameters β, γ, λ could be trained, see Experiment Section, or can be manually
tuned. In interactive experiments we use β = 1.5, γ = 10−3 and λ = 106. Note that for
β ≥ 1 the previous functional is convex, so the constraint optimization problem (8)-(9)
has an unique solution, and for 0 < β < 1 the optimization problem is not convex.
Two interesting particular cases of the β-MMF models are obtained when β = 1 and
β = 2. If β = 1 then β-measure becomes the Kerridge’s measure [24], also known as
the Cross-entropy, and the likelihood energy in (10) is linear. If β = 2 then the β-MMF
models becomes the QMMF model [2].

2.3 Half-Quadratic MMF

The optimization problem β-MMF could be solved using gradient descent method [25].
However, here we present a more efficient alternative. When β ∈ (0, 2] we can mini-
mize (8)-(9) by using the half-quadratic approach introduced by Geman and Reynolds [26].
In Appendix A we present an outline of the proof, see Ref. [27] for details about half-
quadratic minimization technique. Therefore, the solution is computed by iterating until
convergence the following two steps (assuming a initial point for x):



1. Update dk(r)
def
= − 2

βx
β−2
k (r) log yk(r)

2. Solve, approximately, the quadratic programing problem:

min
x

1
2

∑
r∈L

(∑
k

x2
k(r)dk(r) + λ

∑
s∈Nr

ωrs‖x(r)− x(s)‖2
)
, (11)

subject to
∑
k xk(r) = 1, xk(r) ≥ 0, ∀r.

This half-quadratic technique produces an interactive scheme and the solution to(11),
at iteration t+1, can be obtained using the Lagrange multipliers method, see [28]. Here
we present two algorithms: one for the multi-class segmentation and the second one for
the binary segmentation problem.

– For multi-class segmentation we obtain the following iterative scheme

xk(r) =
π(r) + λ

∑
s∈Nr ωrsxk(s)

dk(r) + λ
∑
s∈Nr ωrs

, (12)

where the Lagrange multipliers are approximated with

π(r) =
1
K

∑
k

dk(r)xk(r) = EN (dN ), (13)

that is, π(r) is the expected value of dN ∈ {d1(r), d2(r), · · · , dK(r)} with respect
to N ∈ {1, 2, · · · ,K}, with discrete probability distribution x(r).
Note that if the previous solution at time t is positive then the obtained vector at
time t+ 1 is also positive, see expression (12).

– For binary segmentation: The kind of segmentation is very useful in many appli-
cations, for instance: organ segmentation, object tracking, foreground/background
or object/no-object segmentation. Although, we can use two classes in the multi-
class scheme, a more efficient approachcan be developed. Firts, the functional is
rewritten as follows

Uβ(x1;y1,y2) =
1
2

∑
r∈L

x2
1(r)d1(r) + (1− x1(r))2d2(r)

+λ
∑
s∈Nr

ωrs(x1(r)− x1(s))2,

Again, the solution can be obtained using the Lagrange multipliers method. This
produces the iterative formulas:

x1(r) =
d2(r) + λ

∑
s∈Nr ωrsx1(s)

d1(r) + d2(r) + λ
∑
s∈Nr ωrs

, (14)

where

d1(r) = − 2
β
xβ−2

1 (r) log y1(r), (15)

d2(r) = − 2
β
xβ−2

2 (r) log y2(r), (16)

x2(r) = 1− x1(r). (17)



We remark the for β ∈ (0, 1) the functional is non-convex and in general the solution
is a local minimum. To obtain a ‘good’ local minimum we can apply some kind of
Graduated Non-Convexity method [29]. If β ∈ (1, 2] the problem is convex and the
global minimum is guaranteed.

2.4 Observation modeling

The observation modeling depends strongly on the problem we are dealing with. Here
we present two examples. First, for the very popular interactive image segmentation
task and second, for model parameter estimation problem.

Interactive Segmentation In the interactive segmentation problem the observation
models can be represented by intensity or color histograms of user-marked regions [14,30].
This seed regions are known in the case of foreground/background segmentation as
trimap [30], and in the case of multi-objects segmentation as multimap.
Consider that some pixels in certain region of interest, Ω, are interactively labeled by a
user. If K is the class label set, we define the pixels set (region) that belongs to the class
k as Rk = {r : R(r) = k}, and

R(r) ∈ {0} ∪ K, ∀r ∈ Ω, (18)

is the label field (class map or multimap) where R(r) = k > 0 indicates that
the pixel r is assigned to the class k and R(r) = 0 if the pixel class is unknown and
needs to be estimated. Let g be an image such that g(r) ∈ t, where t = {t1, t2, . . . , tT }
with ti ∈ Rn, n = 1, 3. n = 1 in the case of gray level images (ti represents an
intensity value) and n = 3 in the case of color level images (ti represents a RGB color).
Let hk(t) : Rn → R be the empirical histogram on the marked pixels which belong to
class k, i.e. the ratio between the number of pixels inRk whose intensity (or RGB color)
is t and the total number of pixels in the region Rk. We denote as ĥk(t) the smoothed
normalized histograms (i.e.

∑
t ĥk(t) = 1), then the preference (observation) of the

pixel r to a given class k is computed with:

yk(r) =
ĥk(g(r)) + ε∑K

j=1

[
ĥj(g(r)) + ε

] , ε = 10−3, ∀k > 0. (19)

One can use more complex statistical models for defining the preference functions, for
instance parametric models such as Gaussian Mixture Models. However, in the exper-
iments we work with low dimension feature space (1 and 3 dimensions for gray and
color images respectively), so the smoothed normalized histograms are computation-
ally more efficient, i.e. they are implemented as look up tables. For higher dimension of
the feature space, parametric models are in general more appropriate.

Model Estimation In this case we consider that the preference measure of a pixel r
to some model k, or the preference to belonging to the region Rk, could be described



through a parametric model, i.e. yk(r) = fk(r, g, θk), k ∈ {1, 2, · · · ,K}. The prob-
lem consists in computing simultaneously the vector measure field x and the set of
parameters θ = {θ1, θ2, · · · , θK}.

(x∗, θ∗) = arg min
(x,θ)

Uβ(x;y(θ)), (20)

s.t.
∑
k

xk(r) = 1, ∀r ∈ L, (21)

In general, this is a very hard problem and commonly highly non-linear. One alterna-
tive to face these drawbacks is to use the two step Segmentation/Model estimation (SM)
algorithm [31,32]. First, we minimize with respect to x fixing the parameters θ (Seg-
mentation step). Second, we minimize with respect to θ fixing the parameters x (Model
estimation step). These two steps are repeated until a convergence criteria.
We illustrate this through an example. Consider the observations are given by Gaussian
functions: yk(r) = exp (−‖g(r)− θk‖2). In this case, for the segmentation step we use
the half-quadratic technique explained in Section 2.3. For the model estimation step we
obtain the following closed formula:

θk =
∑
r x

β
k(r)g(r)∑
r x

β
k(r)

.

3 Experiments

3.1 Image Binary Segmentation

We evaluate the performance of the β-MMF model using the binary segmentation prob-
lem. First, we have 4 data-sets, three of them composed by the letters of English alpha-
bet in three fonts. The last one is composed by 65 maps of different countries. The
images are normalize into the interval [0, 1], and we add, to each data-set, 5 levels of
Gaussian noise with zero mean and standard deviation in {0.2, 0.4, 0.6, 0.8, 1.0}, see
Fig 1. Finally we renormalize each data-set into [0, 1]. In summary, we obtained 20
data-sets with a total of 715 noisy images. The original data-sets, without noise, is the
groundtruth. To measure the segmentation quality we use mean square error (MSE)
between the groundtruth (t) and the segmented image (s) using the β-MMF model, that
is:

MSE(s, t) =
1
|L|
∑
r∈L

(s(r)− t(r))2 (22)

The observations are modeled using Gaussian functions, see Section 2.4. We made
two kind of experiments. One with fixed models between [0, 1], in the experiment we
use θ1 = 1

16 , θ2 = 15
16 as the mean of the models. And the other using parameter

model estimation. Then, we have two set of parameters: the parameters of the models
θ and the hyper–parameters of the algorithm Θ = [β, λ, γ]T . In order to obtain the best
results of the algorithm, i.e the ones with less MSE error, we train hyper–parameter set



Fig. 1. Representative image of each noisy data-set. First row: Andale mono font, Sec-
ond row: Constantia font, Third row: Courier bold font and Fourth row: Maps. From
left to right: images with different levels of Gaussian noise with zero mean and stan-
dard deviations in {0.2, 0.4, 0.6, 0.8, 1.0}.

Table 1. The best parameters obtained after training the β-MMF with Andale Mono
Dataset.

noise Fix models Model estimation
std dev λ γ β training error λ γ β training error

0.2 0.52 0.08 0.64 0.01 0.54 0.02 0.90 0.01
0.4 0.52 0.12 0.81 0.20 0.22 0.06 1.08 0.21
0.6 0.57 0.08 0.97 1.41 0.47 0.07 1.48 8.01
0.8 0.51 0.14 0.97 11.54 0.47 0.09 1.52 16.20
1.0 1.06 0.11 0.97 18.36 0.53 0.08 1.39 22.18



Table 2. The best parameters obtained after training the β-MMF with Constantia
Dataset.

noise Fix models Model estimation
std dev λ γ β training error λ γ β training error

0.2 0.52 0.10 0.62 0.01 0.53 0.02 0.92 0.01
0.4 0.52 0.09 0.89 0.32 0.52 0.02 0.94 0.34
0.6 0.50 0.12 0.91 3.53 0.47 0.04 1.56 8.30
0.8 0.52 0.13 0.97 11.25 0.55 0.05 1.48 14.47
1 0.51 0.12 0.96 19.50 0.31 0.20 1.33 18.10

Θ using the Nelder–Mead method [33,34]. In particular, we use the implementation in
the Numerical Recipes [34]. The results of the training, for all data-sets, are shown in
Tables 1, 2, 3, 4. We note that while the level noise increases the training error also
increases. Obviously, this is what one expects. For noise standard deviation less than
0.6 the results are in general good, see Fig 2. However, for noise standard deviation
greater than 0.6 the result is poor, see Fig. 3. This could be explained through the Fig 4.
This figure shows the histograms of the images of first row in Fig 1. When the standard
deviation is 0.2 we can distinguish two models. However, when the standard deviation
increases the parameter of the models collapse.

Table 3. The best parameters obtained after training the β-MMF with Courier Bold
Dataset.

noise Fix models Model estimation
std dev λ γ β training error λ γ β training error

0.2 0.53 0.10 0.57 0.01 0.54 0.01 1.08 0.01
0.4 0.52 0.10 0.86 0.24 0.53 0.01 0.90 0.24
0.6 0.51 0.11 0.93 0.71 0.51 0.01 1.05 0.67
0.8 0.48 0.12 0.97 8.96 0.48 0.08 1.63 8.16
1 0.46 0.16 0.95 13.99 0.47 0.02 1.61 10.11

Table 4. The best parameters obtained after training the β-MMF with Maps Dataset.

noise Fix models Model estimation
std dev λ γ β training error λ γ β training error

0.2 0.60 0.02 1.08 0.03 0.56 0.01 0.63 0.03
0.4 0.54 0.05 0.90 0.36 0.57 0.01 0.92 0.37
0.6 0.52 0.09 0.97 0.87 0.19 0.05 1.02 0.71
0.8 0.55 0.13 0.97 4.40 0.22 0.35 0.88 1.81
1 0.55 0.11 0.97 10.73 0.48 0.08 1.45 6.48



Fig. 2. Segmentation of selected images with noise standard deviation 0.6. First row:
noisy images to be segmented, second row: soft segmentation, second row: hard seg-
mentation.

Fig. 3. Segmentation of selected images with noise standard deviation 1.0. First row:
noisy images to be segmented, second row: soft segmentation, second row: hard seg-
mentation.
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Fig. 4. From left to right: Image histograms from first row of Fig 1 with Gaussian noise
with zero mean and standard deviations in {0.2, 0.4, 0.6, 0.8, 1.0}.

3.2 Interactive Segmentation Application

Fig. 5 depicts an application of the probabilistic segmentation methods for interactive
image editing task. In this example we use the editing scheme proposed in Ref. [7] and
the β-MMF model, Sections 2.2, 2.3. The likelihood is computed using the scribbles
provided by a user, first column of Fig. 5, and following Section 2.4. The first column
shows scribbles on the image to be edited, the second column shows the segmented
image, and the third and fourth columns show edited images. In the horses image, first
row, we blend three images, one source image per class, see [7] for details. The used
parameters for this experiment are β = 1.5, γ = 10−3 and λ = 106.

Fig. 5. Interactive image editing using the models β-MMF and the probabilistic editing
framework proposed in Ref. [7]. First column: Scribbles made on the original image,
Second column: segmented images, Third and fourth columns: edited images using
several source images (one per class).

4 Conclusions

We presented a new model for probabilistic segmentation (β-MMF). This model gen-
eralizes the Quadratic Markov Measure Field model (QMMF) and can be seen as a
Half-Quadratic variant that keeps convex the energy for low entropy promotion. As it



is demonstrated in our experiments, this is an important characteristic of the β-MMF
models for the task of simultaneous model estimation and image segmentation. In par-
ticular, this model presents good results for binary image segmentation. The β-MMF
models can be used for other applications, as for instance: image editing. In future work
we will focus in improving our method for model parameter estimation in the case of
corrupted images with high variance noise.
Acknowledges. This work was supported by the Consejo Nacional de Ciencia y Tec-
nologia, Mexico: DSc. Scholarship to O. Dalmau and Grant 61367-Y to M Rivera.

Appendix A.

Here we show that the optimization problem (8)-(9) can be solved using the half-
quadratic [26,27] technique. Here we follow the notation and methodology described
in Ref. [27]. Then, one needs to find the conditions that the function ρ(x) = xβ should
satisfy to be used in a half-quadratic regularization. According to [27]

ρ(x) = min
z
x2z + Ψ(z), (23)

where

Ψ(z) = φ((φ′)−1(z))− z(φ′)−1(z), φ(x2)
def
= ρ(x).

Based on the previous definition, one obtains that

ψ(z) =
2− β

2

(
2
β
z

) β
β−2

.

As the optimization problem (23) should have a minimum at z = φ′(x2) = ρ′(x)
2x =

β
2x

β−2, see Ref. [27] for details1, then the coefficient of ψ(z), i.e. 2−β
2 , should be

positive, and therefore β ≤ 2. Another way to obtain the previous result is using the
condition that the function φ(x) should be convex, that is φ′′(x) ≤ 0.

φ′′(x) =
β

2
β − 2

2
x
β−2

2

then, β2
β−2

2 ≤ 0 and again we conclude that β ≤ 2.
Observe also that for 1 ≤ β ≤ 2 the function φ(x) satisfies

lim
x→0

φ′(x) =∞, lim
x→∞

φ′(x) = 0, (24)

that is, the function φ(x) does not satisfy the condition limx→0 φ
′(x) = 1, which is

very important to define a bounded weight function z = β
2x

β−2 for x > 0. Note,
however, that the φ-function of Total Variation (TV), i.e. ρ(x) = |x|, satisfies the

1 The same result is obtained if one compute the derivative with respect to z of the function in
Eq. (23) and set it equal to zero.



conditions (24). So, similar to TV [35] we can redefine the ρ-function in the follow-

ing way ρ̃(x) = 2
β ε

1− β2
(
x2 + ε

) β
2 , where ε > 0 is a small real value, for instance

ε = 10−6. For this ρ-function, the corresponding weight function is z = φ′(x2) =
ρ̃′(x)
2x = ε1−

β
2
(
x2 + ε

) β
2−1

. Now the function φ(x) satisfies:

lim
x→0

φ′(x) = 1, lim
x→∞

φ′(x) = 0, (25)
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