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Abstract. We propose a method for estimating axonal fiber connectiv-
ity pathways (cerebral connectivity fibers) from Multi-Tensor Diffusion
Magnetic Resonance Imaging (MTD-MRI). Our method uses multiple lo-
cal orientation information provided by MTD-MRI for leading stochastic
walks of particles. We perform stochastic walks on particles with mass
which introduce inertia and gravitational forces that result in filtered tra-
jectories. Afterwards, the fiber bunches are estimated with a clustering
procedure based on terminal points that allows us to eliminate outliers.
The method’s performance is evaluated on MTD-MRI from realistic syn-
thetic data, a diffusion phantom and demonstrated in real human brain
data.
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1 Introduction

White matter tractography is a procedure for estimating axonal fiber bundle
in human brain to determine brain connectivity. Brain connectivity provides
important information on normal human brain development and spectrum of
neurological or neuropsychiatric disorders.

Axonal paths for in vivo brains can indirectly be estimated by measuring the
molecular water diffusion at each point x of the brain for a particular orientation;
we denote such a diffusion by the funcion Dx : R3 × [0, pi)3. Water diffusion is
the macroscopic effect of the molecular Brownian motion (microscopic motion)
restricted by tissue walls. Then samples of D(x, θ) can be obtained at each voxel,
x, and for particular orientations, θ, by means of Diffusion Weighted Magnetic
Resonance Imaging (DW–MRI) modality.



Tractography methods use the local diffusion orientations in order to esti-
mate global connectivity information. The most popular parametric model for
representing and analyzing DW–MRI is the named Diffusion–Tensor MRI (DT–
MRI). That technique fits a positive definite quadratic model to the logarithm
of the DW-MRI signal. The measure of water diffusion in DT-MRI images can
be computed from the Stejkal–Tanner [1] equation that relates only one tensor
at k–th voxel, the inherent partial volume effect is not treated.

Given the evident difficulty of DT-MRI for managing more than one diffu-
sion direction per voxel, there has been proposed more sophisticated parametric
models; see for instance Refs. [2][3][4]. In particular, Multi–Tensor Diffusion MRI
(MTD–MRI) can manage fibers that split, merge or cross [2]. For instance, Tuch
et al. [5] proposed to use the Gaussian Mixture Model (GMM) (1). This model
explains better the diffusion phenomenon for two or more fibers in a given voxel,
as:

Si,k = S0,k

J∑
j=1

βje
(−bgT

i Tj,kgi) (1)

where S0,k is the signal without diffusion at k-th voxel, b is a constant acqui-
sition parameter, gi is a unitary vector which gi = [gxi , gyi , gzi ] indicates the
direction on which is applied a independent magnetic gradient with i = 1, 2, ...L
and L is the total number of applied gradients, Tj,k is the j-th 3 × 3 tensor
matrix symmetric positive definite, Si,k is the DW-MR measured signal by the
application of gi, βj is the contribution of tensor Tj,k at the k-th voxel, with

βj ϵ [0, 1] and
∑J

j=1 βj = 1, and finally J indicates the total number of tensors
within the voxel. The equation (1) shows the relationship between the signal
without diffusion and the signal with diffusion on the direction gi at the k-th
voxel. This equation is difficult to solve because the number of tensors need first
be estimated and it is a highly non-linear system.

For solving (1), Ramı́rez–Manzanares et. al. [6] proposed a strategy for solv-
ing the inverse problem stated in (1). They relax the problem by using a fixed
set of Diffusion Basis Functions (DBF) Φ = [ϕ1, ϕ2, ..., ϕN ]. This set is not com-
plete because is a discretization on a orientational 3D space. In this model ϕj is
the diffusion weighted signal for the gradient vector gi and for the base (fixed)
tensor D̄j . By using this model it is possible to solve (1) by solving an linear
equation system with constrains. Next, for a tensor Tj,k the j-th fiber orientation
at the k-th voxel is estimated from the orientation of the first eigenvector, the
one associated with the largest eigenvalue of Tj,k. This orientation is known as
the Principal Diffusion Direction (PDD).

In this paper, we propose a novel method for estimating bundle axons fibers
from MTD-MRI data. Our method is based on stochastic walks of massive par-
ticle, i.e. particles with mass. The particles’ dynamic is governed by three com-
ponents; a deterministic inertia force, a deterministic gravitational force (that
results of the particles mass) and a stochastic medium selection. The stochastic
components consists of the sample of the available orientations determined by
the PDDs of the MTD model at each position. Multiple particles are seed at
the position we want to analyze. Then, the particles move according the pro-



posed dynamic. The stochastic path selection allows to explore multiple fibers
meanwhile the inertia and gravity promotes smoothness and compacity.

Vectors with the particle temporal positions represent the particle trajecto-
ries or paths. Afterwards, bundle fibers are computed with hierarchical clustering
method based on euclidean distances between terminal points of pairs of trajec-
tories. We demonstrate our method by experiment with synthetic data, a realistic
phantom and real in vivo brain human MT-MRI.

2 Methods

In the first part of this section, we introduce our procedure for computing
stochastic walks of massive particles. We explain in detail how the next position
for each particles is computer by taking into account the inertia, the gravitational
influence of the surrounding particles and the medium (a multi-tensor field). The
second part of this section explains our procedure for clustering random walks
into fiber paths and to eliminate outliers.

2.1 Stochastic Gravitational Tracktography.

First, we introduce our notation. Let N be the number of walking particles and
xt,m be the position of the m-th particle at the iteration (step) t. Thus,

xt+1,m = xt,m +∆dt+1,m (2)

is the new position (at time t+1) of them-th particle; where the motion direction
is denoted by the unitary vector dt+1,m and∆ is a fixed step size. In our approach
we compute this motion direction with the tree terms formula:

dt+1,m = γ1d
1
t+1,m + γ2d

2
t+1,m + γ3d

3
t+1,m (3)

where the positive parameters γi, for i = 1, 2, 3, weight the contributions of the
directional vectors: d1, d2 and d3, respectively. First direction, d1, is associated
with the medium where the particles are moving: it codifies the information
of the local fiber orientation and is stochastically selected from the PDDs of
the surrounding multi-tensor representation. Second direction, d2, introduces an
inertial component in the particle’s trajectory. Last direction, d3, is the resultant
gravitational effect of the surrounding particles and promotes the particle to have
a trajectory similar to the set. Before to explain the details for computing the
motion direction of the terms in (3), we introduce the procedure for the particle
initialization.

Particles Initialization. Given a seed pixel x̄, β∗ = argmaxβ βj(x̄) is asso-
ciated with most probable local orientation aligned with the unitary vector v,
then the particles position are randomly initialized in the plane normal to v,
with samples a two dimensional Gaussian centered at x̄ and with variance σ2:

1

2πσ2
exp

(
1

2σ2
(x− x̄)T (I − vvT )−1(x− x̄)

)
. (4)



Then, for all the particles, we set d20,1:N = v or d20,1:N = −v, i.e. one direction
of orientetion v.

Medium dependent direction (d1). The more important component of the
particle dynamic is the effect of the medium on the selection of the possible paths,
i.e. the local tissue structure. As we mentioned before, the computed tensors Tj

are associated with the local fiber paths and their respective mixture coefficients
βj , i.e. the proportion of the axonal fibers that are oriented with the PDD of each
tensor. Also, we note that the particles positions have real valued coordinates
(sub–pixel position). Thus, in general, a particle is in a neighborhood of eight
pixels locations with integer valued coordinates where we have estimations of
the multi–tensor model (1). Therefore, we introduce the hidden variables yj for
j = 1, . . . , 8 that represent the positions of the eight neighbor voxels in the cube
vertices containing xt,m.

Thus, given the current position xt,m of the m–th particle at time (step) t
and its previous motion direction dt,m. Then, by assuming independency, the
probability density for the directions than the particle can follows has the form:

P (d1t+1,m = δi,j |dt,m, xt,m) ∝ Fδi,jFyi (5)

Then, the medium direction d1 is randomly selected among the PDDs of the
neighbor tensors taking into account the particle position and the current direc-
tion. Hence, the sampling of (5) is reduced to a random tournament. Now, we
present the details of the conditional probability in (5) and the function that
compute it.

First, let δi,j be the j-th PDD of i-th neighboring voxel (yi), then the prob-
ability weight being selected will depend on its likelihood with the previous
motion direction and its size compartment, βj,i:

Fδi,j (δi,j , βi,j) = βj,i|δTi,jdt,m|w (6)

where w is a positive parameter that controls the variance function. Note that
this function is maximum if the direction d and δi,j are parallels, as it is illus-
trated by Figure 1(a).

On the other hand, each probability of selecting a PDD direction of a tensor
in the neighborhood must be weighted by factors of how collinear xt,m and yi
are with respect to direction dt,m and how close is xt,m from yi. We write these
weights in the second function, Fyi ,in (5) as:

Fyi = Fyi(yi)
1Fyi(yi)

2 (7)

where

Fyi(yi)
1 =

(
|dTt,m(xt,m − yj)|

∥xt,m − yi∥

)z

(8)

weights the colinearity of previous step w.r.t. the orientation of neighbor yi,
where z is a positive parameter that controls the variance function. A neighbor
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Fig. 1. Examples 2D of the function that form the probability of choosing a new PDD.
(a) Factor of parallelism between dt,m with d′i,js. (b) Factor of colinearity between dt,m
with (xt,m − yi). (c) Factor of closeness between xt,m and yi.

voxel will have the largest value if it is aligned with the past trajectory, see
Figure 1(b). Moreover,

Fyi(yi)
2 = exp

(
− 1

2σ2
∥xt,m − yi∥2

)
(9)

is the function that weights to neighbor voxel yi by a factor of proximity w.r.t.
the current position. It depends on the Euclidean distance between the particle’s
position and neighboring voxel, as is illustrated by Figure 1(c).

Inertial force (d2). Second direction, d2, is exactly the previously used direc-
tion:

d2t+1,m = dt,m (10)

and it introduces an inertial component in the particle’s trajectory.

Gravitational effect (d3) The Newton’s Universal Law of Gravitation states
that the force exerted on a particle xa with mass ωa by another similar xb with
mass ωb is inversely proportional to the square of the distance between them
and directly proportional to product of their masses:

Fab = Ḡ ωa ωb
ûab

∥xa − xb∥2
, (11)

where ûab is the unit vector addressed from the particle xa to particle xb, Ḡ
the gravitational constant. Then, if we assume equal mass ω for the particles,
then the gravitational force exerted between the particle xt,m and the rest of the
particles is given by

gt,m = −G
N∑

i ̸=m


ûm,i

||xt,m−xt,i||2 if rmin < ||xt,m − xt,i||2 < rmax

ûm,i

rmin
if rmin > ||xt,m − xt,i||2

0 Otherwise

(12)



where rmin and rmax are the minimum and maximum distances respectively that
one particle is from another one and G = Ḡ ω2. We use this in order to keep the
system stability: when two particles are too close the term ||xt,m − xt,i||2 → 0
thus 1

||xt,m−xt,i||2 → ∞, and vice versa when ||xt,m−xt,i||2 have a high value the

gravitational force is close of zero. Thus, we use force (12) as the third component
in our dynamic formula in (3), i.e

d3t+1,m ≡ gt,m. (13)

Stop Criterion. We stop the walk of one particle if it reaches a voxel k with
Fractional Anisotropy (FA) of a DT-MRI lower than a given threshold τ ∈ (0, 1).
The FA (Basser et al. [1]) on a voxel is defined by

FA(Dk) =

√
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

2(λ2
1 + λ2

2 + λ2
3)

(14)

where λ1 ≥ λ2 ≥ λ3 are the eigenvalues of the tensor Dk. Thus, our global Stop
Criterion is reached when all the particle walks are stopped.

Summary. The algorithm 1 summarizes the random walks procedure.

Algorithm 1 Compute fibers paths.

Require: A seed point x̄, step size ∆, values γ′
is, number of particles N , the gravity

force G, threshold τ , a Multi-tensorial field and FA values.
1: Set β∗ = argmaxβj βj(x̄) and v as its corresponding PDD of β∗.
2: Seeding N particles.
3: t ⇐ 0
4: Asign d0,1:N = +v or d0,1:N = −v.
5: while N > 0 do
6: for m = 1 a N do
7: Compute next direction dt+1,m.
8: xt+1,m ⇐ xt,m +∆dt+1,m

9: if FA on xt+1,m < τ then
10: The m-th particle is stopped.
11: N ⇐ N − 1.
12: The particles are reindexed.
13: end if
14: t ⇐ t+ 1
15: end for
16: end while

2.2 Clustering and Outlier Rejection

In order to estimate axonal fibers we need to cluster the fibers paths and dis-
card the outliers paths. Note the high dimensionality of the data: one path have



dimension from R3×M , assuming M steps. Each path has an initial point, a
trajectory and an ending point. According with our experiments, the most im-
portant feature for clustering particles paths are their final position (end–points).
This can easy be understood from the cat that the initial particles points are
fixed and as they spread as the number of iterations increases. Thus, we clasify
the set of recovered pathways by means of a non parametric clustering method
named hierarchical clustering. Hierarchical clustering algorithms usually are ei-
ther agglomerative (“bottom-up”) or divisive (“top-down”). For our clustering
method, we use agglomerative algorithms, which starts with each element as a
separate cluster and merge them into successively larger clusters[7]. We also use
single linkage, also called nearest neighbor, as the method for compute the dis-
tance between clusters. Single linkage uses the smallest distance between objects
in the two clusters, c1 and c2 as:

d(c1, c2) = min(dist(x̂c1,i, x̂c2,j)), i ϵ (1, ..., nc1), j ϵ (1, ..., nc2)

where x̂q,l is an element l of the cluster q with nq elements and dist(a, b) is
a distance measure (we use the Euclidean distance), in our case the x̂′s are
terminal points. Thus if d(c1, c2) < c, c1 and c2 are joined, where c is a certain
threshold of distance.

Once we compute the clusters, we discard the false clusters if they are com-
posed by a percentage of pathways which is lower than a given percentage φ,
namely, if the cluster contains few fibers it is eliminated.

Summary. The particle walks clustering is summarized in the Algorithm 2.

Algorithm 2 Clustering and Outlier Rejection.

Require: The particles end–points of the walks of the Algorithm 1, thresholds φ and
c.

1: Cluster the fibres using hierarchical clustering with distance parameter c.
2: Let Q as the number of clusters.
3: for q = 1 to Q do
4: Set ncq the number of fibres of cq.
5: All walks are averaged to obtain an estimate of the path of a bundle of axons.
6: if ncq < φ then
7: The cluster cq is eliminated.
8: end if
9: end for

3 Experiments and Results

In order to show the performance of our method we use three different types of
DW Data:

Synthetic data The DW-MRI signal was synthesized from the GMM (1).
The DT principal eigenvalue was set to 1 × 10−3 mm2 / s and the second and



(a) (b)

Fig. 2. Multi-Tensorial fields. (a) Synthetic data, (b) Diffusion Phantom data.

(a) (b) (c)

Fig. 3. Seed points of the differents data types. (a) Synthetic data: mark blue. (b)
Diffusion Phantom data: red marks (c) Brain Human Data: blue mark and the corpus
callosum.

third tensor eigenvalues were 2.22× 10−4 mm2 / s, FA= 0.74. The above values
were taken from a sample of tensors observed in the brain data from a healthy
volunteer. Rician noise was added to each measurement to produce SNR = 9.
For these data, we have 1 repetitions. See Figure 2(a).

Data from a diffusion phantom. We used data acquired from a diffusion
phantom [8]. Layers of hydrophobic acrylic fibres were interleaved and stack in
each other to build fibre crossing configurations. Diffusion-weighted data were
acquired on the 3T Tim Trio MRI systems with 12-channel. The data is avail-
able at http://www.lnao.fr/spip.php?article112. For these data, we have only 2
repetitions. See Figure 2(b).

In vivo Brain Human Data. A single healthy volunteer was scanned on
a Siemens Trio 3T scanner with12 channel coil. Acquisition parameters: single-
shot echo-planar imaging, five images for b=0 s/mm, 64 DW images with unique,
isotropically distributed orientations (b=1000 s/mm2), TR=6700 ms, TE=85
ms, 90o flip angle, voxel dimensions equal to 2× 2× 2 mm3. The approximated
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Fig. 4. Results step by step (by rows) of Traking fiber on synthetic data by using
different values of G. (a) G=0, (d) G=0.0001 and (g) G=0.002. (b), (e) and (h) are
the results without outliers, respectively. (c), (f) and (i) show the computed bundles.

Signal to Noise Ratio (SNR) is equal to 26. For these data, we acquire 5 repeti-
tions.

The first experiment was performed with synthetic data. The Figure 3 shows
the results obtained, step by step, for the fibers crossing with different values
of G and using as seed point the blue mark of image 3(a). We can see that
when G=0 is used many particles take a wrong way. On the other hand, when
weak gravity is used, the above problem is corrected for the majority of particles
but the method still explores the potential bifurcations.. Finally, when strong
gravity is used the particles no longer can explore the medium because they
remain together. This is not proper when there are bifurcations bacause the
exploration is not allowed.



(a) (b) (c)

Fig. 5. Result of Traking fiber on diffusion phantom data: (a) our approach, (b) Method
Ramı́rez-Manzanares et. al. and (c) ground truth.

Table 1. Root Mean Square Error using L2 norm between the obtained fibers with
the method of Ramı́rez-Manzanares et. al. (RM) and ours (MP).

Fibers 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MP 2.56 1.96 4.28 2.05 1.9 1.63 66.5 2.62 7.71 33.58 3.69 2.24 2.31 4.41 3.31 6.42

RM 4.98 39.65 53.84 6.02 7.36 2.65 71.1 14.77 10.2 9.41 21.51 14.83 20.01 2.94 16.37 14.35

The second experiment was performed using the diffusion phantom data.
The Figure 3 shows the visual comparison between the results obtained from
the seed points in image 3(b) by using our approach, the method of Ramı́rez-
Manzanares et. al. [9] and the ground truth. Note that the visual comparation is
representative since the diffusion phantom is basically in 2D. In this manner, if
a fiber is seen similar to ground truth, then, the error between the obtained fiber
and the real fiber will be minimal. This can be seen also in Table 1. The Table
1 shows the numerical comparison, fiber by fiber, using L2 norm. Thus, one can
see that we recover correctly 13 of 16 tracks. Instead, the method of Ramı́rez-
Manzanares et. al. recover correctly only 5 fibres. It is important to mention
that all obtained tracks were performed with the same set of parameters, also,
the presented fibers are the average from the group (cluster) with the highest
number of walks.

The last experiment was performed using in vivo Brain Human data. The
Figure 6 shows the obtained results using one seed point planted in the corpus
callosum indicated by the blue mark in image 3(c). The Panel (a) shows the
results without gavity force and the panel (b) is shown the tracks using G=0.0001
and 500 particles. This shows very clear that when weak gravity is used the
trajectories obtained are more consistent that when the gravity force is not
used. On the other hand, the Figure 7 shows different views of the results of
our approach for in vivo brain human data using 47 seed points around corpus
callosum (see image 3(c)), 1000 particles for each seed point and G=0.00005.



(a) (b)

Fig. 6. Results of fiber tracking on in vivo brain human data using 500 particles and
(a) G=0, (b)G=0.0001. The seed point is located on the blue mark in Figure 3(c).

(a) (b) (c)

(d) (e) (f)

Fig. 7. Results of fiber tracking on in vivo human data using 47 seed points on corpus
callosum, with G=0.00005 and 1000 particles. (a), (b) and (c) Differents views of fibers
without outliers, (d), (e) and (f) differents views of fiber Bundles.

These images show the estimated pathways without outliers. Also, one can see
the averaged (main) connections in the panels (d), (e) y (f).



4 Conclusions

This report presents a novel method for stochastic tractography based on massive
particles. The particles dynamic depends on its previous direction (inertia), its
current position, the orientation information of its neighbor voxels (medium),
and on a new proposed gravitational term. The inertia, the medium and the
gravitational force among particles promote smooth particle trajectories.

The gravitational force aids in the correction of particles trajectories as well
as allowing medium exploration. According to our results, there is a compro-
mise between the gravitational forces and particle spread in the medium (i.e.
the capability of exploration). In practice, smaller values of gravity significantly
improves the solution of w.r.t. the computed solutions without the gravity force.

In addition, we present a method for clustering particles comprising the path-
way for the axonal fiber tracks. This clustering method allows removal of portion
of the axonal bundles that have been wrongly estimated. True performance of
the proposed method was demonstrated on synthatic and real human brain im-
ages.
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