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1 Introduction

Current research in Computational Vision follows two main paradigms: in the first
one, it is considered that the first task that a visual system has to solve consists in
reconstructing, from the set of images that constitute the sensory input, a set of fields
that represent, on one hand, the physical properties of the three–dimensional surfaces
around the viewer, and on the other, the boundaries between patches that “belong
together” in some sense, and thus, that may correspond to the outlines of plausible
physical objects in the scene. This process, which is usually called Early or Low–level
Vision, is supposed to be performed in natural systems by a set of loosely coupled neural
networks (computational modules), each one of which specializes in the reconstruction
of a particular field. Thus, specific modules have been proposed for the computation of:
brightness edges; depth from stereo, shading and motion; color, lightness and albedo;
velocity and optical flow; spatial and spatio–temporal interpolation and approximation,
etc.

In the second view, it is noted that many of the problems that have to be solved
using vision do not need a complete reconstruction of the three–dimensional world; for
a given task, it may be possible to feed the raw sensory data to a network (such as a
multi–layer perceptron) which directly generates the desired control commands. The
plausibility of this approach is illustrated, for example in (Pomerlau, 1992), where such
a network is used for an autonomous navigation task. In this case, however, it is also
necessary to determine a set of fields defined on the same lattice as the observations:
these fields represent the weights that indicate the relative importance of each pixel
value for the subnetwork of the corresponding hidden unit.

In both cases, the determination of the corresponding fields exhibits an important
common characteristic: due to the loss of information inherent to the imaging and
sensory transduction processes and, in the second case, to the fact that one usually
has a limited number of available “examples” to train the network, the values of the
fields are constrained by the data, but not determined in a unique and stable way
(i.e., the reconstruction problems are mathematically ill–posed). This means that
the networks that implement the solutions must incorporate in their structure prior
knowledge about the reconstructed fields.

For the sake of clarity, this paper is focused in the reconstruction (multi–module)
paradigm (although most of the results may be extended to the action–oriented case
as well). The general problem that we consider is then the following:

Suppose that we are given sensory measurements in the form of a set of observed
fields g at the nodes of a regular lattice L (usually a square lattice is assumed, although
other arrangements are possible). From these measurements, one wishes to reconstruct
a field f = {fi, i ∈ L}, given the “direct” equations that model g in terms of f and
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some noise process n:
φ(g, f, n) = 0 (1)

The simplest instance of this problem is image filtering: here, g consists of a sin-
gle field (the noisy observed image); f is the desired reconstructed image, and the
observation model is:

g − f − n = 0 (2)

Another example is the recovery of depth from stereoscopic pairs of images. Here,
the observations g = (gL, gR) are the grey levels measured in the left and right retinas,
respectively, and f is the associated disparity between pairs of corresponding points (if
this “correspondence problem” is solved, and if the geometry of the sensors is known,
the actual recovery of depth is a matter of simple geometric computations). If the
sites of the lattice are identified by a two–dimensional index i = (ix, iy), and assuming
horizontal epipolar lines, a simplified direct equation is:

gL(ix, iy)− gR(ix + fi, iy)− ni = 0

for each i ∈ L.
Another example is that of image segmentation; here, the input lattice is partitioned

into a set of non–overlapping regions {R1, ...RM}, so that the spatial variation of the
observed images is represented by a parametric model Ψ(i, θk) inside region Rk:

gi =
M∑

k=1

Ψ(i, θk)fik + ni (3)

where fik is the indicator variable of region Rk: fik = 1 iff i ∈ Rk and {θ1, ..., θM} are
the parameter vectors.

In the first example, the field f is underconstrained, because the noise field is not
known. In the second one, even in the absence of noise, the field f is not uniquely
determined, because there may be many points in the right image with the same grey
level of a given point in the left one. Finally, in the third example, non–uniqueness
arises because of measurement noise and because neither the parameter vectors nor
the indicator variables are known. Similar ambiguous situations arise in other early
vision problems for different reasons, and in all these cases it is necessary to introduce
additional prior constraints.

In this article we present systematic ways for doing this, and for embedding the
solution algorithms in suitable networks.
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2 Probabilistic Regularization

The classical way of finding solutions to ill–posed problems is based on regularization
methods, where stability and uniqueness of the solution is enforced by the introduction
of prior smoothness constraints in the solution. A more general approach — which
includes the classical one as a particular case — is probabilistic, and considers f and
g as realizations of random fields, so that the reconstruction of f is understood as an
estimation problem. The prior knowledge about the solution is expressed in the form
of a joint probability distribution for f , that specifies the desired dependencies between
values at neighboring sites. In this way, one may specify not only global smoothness
constraints (as in standard regularization), but also piecewise smoothness, as well as
constraints on the shape of the discontinuities.

The basic tool in this approach is Bayes rule, which specifies the way in which prior
information (i.e., the prior distribution Pf ) is to be combined with the constraints
generated by the observations (i.e., the conditional distribution Pg|f ) to generate the
posterior distribution Pf |g:

Pf |g(f ; g) =
Pf (f)Pg|f (f ; g)

Pg(g)

note that since the observations g are given, PG(g) is a constant. The optimal estimator
f̂ ∗ is then obtained as the minimizer of the expected value (taken with respect to the
posterior distribution) of an appropriate cost function C(f, f̂).

This approach, then, requires the specification of three basic components (besides
the cost function): the observation model Pg|f ; the prior distribution Pf and the net-
work that will effect the reconstruction. We will now analyze them in detail.

2.1 The Observation Model

The form of the constraints that sensor measurements impose on the reconstructed field
depends upon the particular assumptions that are made about the image formation
process. If the random variables ni, i ∈ L are assumed to be independent, identically
distributed with distribution Pn, then the conditional distribution is found by solving
for n in Eq. (1): ni = φ−1(f, g) and setting:

Pg|f (f ; g) =
∏

i∈L

Pn(φ−1(g, f))

which can be written in the general form:

Pg|f (f ; g) = exp[
∑

i∈L

−Φi(f, g)] (4)
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In most cases, the functions Φi are quadratic — i.e., the noise is assumed to be Gaussian
— although other forms that reduce the influence of gross measurement errors have
also been used (see Black and Rangarajan, 1996).

2.2 Prior Distribution

The success of the Bayesian approach depends on the specification of a probability
distribution Pf (f) that models the desired behavior of the solution. In particular,
one would like to be able to specify a distribution in which fields where neighboring
sites exhibit the appropriate dependencies are more probable than those in which these
local constraints are violated. A general way of constructing such distributions is by
defining an “energy” function U(f), which is formed by a sum of terms that measure
the violation of the local constraints. The probability distribution of the field is then
given by the Gibbs measure:

Pf (f) =
1

Z
exp[−U(f)] (5)

where Z is a normalizing constant.
More precisely, if we define a neighborhood system {Ni, i ∈ L}, that is, a collection

of subsets of sites indexed by the sites of L: {Ni ⊂ L, i ∈ L} with the properties:

i /∈ Ni

i ∈ Nj ⇔ j ∈ Ni

its cliques consist on either single sites or subsets of sites such that any two of them
belonging to the same clique are neighbors of each other. With this definition, the
energy may be written as:

U(f) =
∑

C

VC(f) (6)

where C ranges over all the cliques of the neighborhood system, and each “potential
function” VC depends only on {fi, i ∈ C}.

A random field F whose probability distribution is given by (5) and (6) is called a
Markov Random Field on L (Geman and Geman, 1985, Li, 1995, Chellapa and Jain,
1993).

The potential functions represent the “user interface” of the model, since through
them one may specify the desired characteristics of the sample fields. Although they
may be arbitrarily specified, there are 3 basic types that are generally used, depending
on the characteristics of the desired reconstruction:

4



1. Piecewise Constant Fields. Here, each fi may only take a finite (usually small)
number of values. These fields are mostly used in segmentation problems, in
which case it is often convenient that each fi takes the form of a binary unit
vector whose elements correspond to the indicator variables in Eq. (3). The
most widely used potential is the generalized Ising potential for cliques of size 2:

VC(fi, fj) = −β , if fi = fj

= β , otherwise

2. Globally Smooth Fields. This case corresponds to standard regularization; the
potentials are obtained as the squares of finite difference approximations of differ-
ential operators. For first order differences, one obtains the “membrane” model:

VC(fi, fj) = (fi − fj)
2 (7)

where i and j denote a pair of nearest neighbor sites in the lattice. The second
order model corresponds to the bending energy of a thin plate, and the neigh-
borhood system has cliques that consist of sets of 3 neighboring sites i, j, k lying
on a horizontal or vertical straight line, and of sets of 4 sites p, q, r, s lying at
the corners of a square whose side equals the lattice spacing. The corresponding
potentials are:

VC3(f) = (−fi + 2fj − fk)
2 (8)

and

VC4(f) =
1

4
(−fr + fs + fp − fq)

2 (9)

where (r, q) and (s, p) lie at opposite corners of the square.

If one adopts the observation model (2), and assumes that Pn is a zero–mean
Gaussian distribution, the posterior energy becomes equivalent to the discretized
functional of standard regularization, and its (unique) maximizer corresponds to
the MAP estimator (see below).

3. Piecewise Smooth Fields. This is a very important and general case. There are
two basic approaches for the construction of the potentials:

a) The discontinuities of the field are explicitly modeled by means of an aux-
iliary “line field” s (originally introduced by Geman and Geman, 1984),
which is defined on a “dual” lattice whose sites are between each pair of
(horizontal or vertical) neighboring sites of L; s is thus indexed by a pair of
indices corresponding to sites of L. Each line element sij may take values on
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the set {0, 1}, indicating the absence or presence of a line (discontinuity),
respectively (in some models, s is allowed to take non–integer values in the
interval [0, 1] as well: Geman and Reynolds, 1992; Black and Rangarajan,
1996).

The prior energy takes the form:

U(f, s) =
∑

<i,j>

[
(fi − fj)

2sij + Ψ(sij)
]
+

∑

D

WD(s) (10)

where Ψ(sij) is a function that assigns a penalty for the introduction of a
discontinuity between pixels i and j.

The line potentials WD(s) assign penalties to different local line configu-
rations. They are summed over the cliques D of a neighborhood system
defined on the dual lattice, and they are used to favor, for example, piece-
wise smooth lines, and to prevent the formation of smooth patches that are
too thin or too small.

b) The discontinuities are implicitly modeled by non–quadratic potentials ρ(fi−
fj), where ρ behaves like a quadratic function for small values of its argu-
ment, but grows at a smaller rate as its argument becomes large. The
derivatives of these potentials are related to influence functions of robust
statistical estimators, and are therefore called robust potentials .

If the term
∑

D WD(s) is omitted, it is always possible to express (10) in the
form of a sum of robust potentials, simply by putting

ρ(fi − fj) = inf
sij

[
(fi − fj)

2sij + Ψ(sij)
]

where the right hand side may be explicitly evaluated in many cases. If
certain technical conditions on the ρ function are fulfilled, it is also possible
to write a robust potential in the line field form (Charbonnier et. al., 1997).
Being able to go from one representation to the other, one may add spatial
interaction terms to robust potentials, or use continuation methods that
have been developed for robust potentials in the line field case (see Black
and Rangarajan, 1996; Blake and Zisserman, 1987).

4. Piecewise Parametric Models. In this case the smooth patches are assumed to
follow a parametric model with a relatively small number of parameters; for
example, in the case of the reconstruction of the velocity field (optical flow)
from a sequence of images, an affine model for the velocity of the form fi =
Ai + b is often used (recall that i is a 2–Dimensional index representing the
spatial coordinates), as in (Black, Fleet and Yacoob, 2000). In other cases,
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spline models with controlled stiffness are more appropriate (Marroquin et. al.,
2000). The problem here is that not only the parameters for each model have
to be determined, but also the domain of validity of each model, i.e., a field of
indicator variables, as in Eq. (3). The prior constraints refer in this case to the
spatial coherence of these domains, and may be enforced by Ising potentials.

A comparison between the performance of methods based on robust potentials and
piecewise parametric models is shown in Fig. 1. In the images in the left column,
a piecewise smooth image corrupted with uniform noise (top row) is reconstructed
using robust potentials in the prior distribution (middle row) and using piecewise
parametric (in this case, linear) models (bottom row). In this case, both methods
produce similar results because the true gray level variation follows indeed a linear
model. The advantage of robust potential methods in this case is that they will keep
working even if the variation is not linear, provided it is piecewise smooth, whereas the
parametric model solution will fail if the wrong model is used. In the images in the
right column, a piecewise constant image corrupted by shot noise (the type of image
that might correspond to a noisy classification; top row) is also reconstructed using
robust and piecewise parametric models (middle and bottom rows). Note that in this
case the robust potential solution reduces the dynamic range and introduces artifacts,
such as the bands around the 2 circles, whereas the parametric model solution is much
cleaner. Other examples of the application of these approaches to a variety of problems,
as well as extensions and theoretical results may be found in: Li, 1995; Chellapa and
Jain, 1993; Marroquin et. al., 2000 and Marroquin et. al., 2001).

2.3 Networks

Since the reconstruction is needed at the sites of the pixel lattice L, it is very natural
to model the reconstructing network as a Cellular Automaton that consists of an array
of processors or cells located also at the sites of L. The state of these processors at a
given time t is denoted by ξ(t) = {ξ(t)

i , i ∈ L}. The interconnection pattern between
processors is specified by the defined neighborhood system. The state of each processor
changes from time to time with a rule that depends on its own state and that of its
neighbors:

ξ
(t+1)
i = R(ξ

(t)
j , j ∈ Ni ∪ {i})

Cellular automata (CA) may be deterministic (DCA) or stochastic (SCA), depending
on the nature of the rule R.

Given this model for the architecture of a computational module, the important
question is how to specify R, so that: in the deterministic case, the DCA has a fixed
point and the reconstructed field f is obtained from it, and in the stochastic case, the
automaton is regular and f is obtained from time averages of functions of its state.
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In the case of globally smooth reconstructions, the energy function is usually con-
vex, and the best estimator is obtained by minimizing this energy. The reconstructing
networks are in this case equivalent to distributed iterative methods for matrix inver-
sion (Bertsekas and Tsitsiklis, 1989). They may also be implemented analogically with
pure resistor networks (see Marroquin, Mitter and Poggio, 1987).

In the case of piecewise smooth potentials, when these are represented in the line
field form, and the term

∑
D WD(s) is not included, the energy function becomes

quadratic in f for a given value of s, and therefore it may be minimized by the methods
described in (Bertsekas and Tsitsiklis, 1989). On the other hand, if f is kept fixed, one
may find the value of the s variables that minimizes U in closed form. By alternat-
ing these 2 steps, one gets an effective algorithm for the computation of the optimal
estimator (Geman and Reynolds, 1992; Charbonnier, et. al., 1997). If the energy is
represented in terms of robust potentials, often local descent schemes combined with
continuation methods are most effective (Blake and Zisserman, 1987).

An important issue in all these cases is the determination of the parameters included
in the energy function. In many cases these are hand–adjusted for a given class of
images; it is better, however, to determine them automatically, as in Zhang, 1993 or
in Chen et. al., 2000.

3 Discussion

For the case of piecewise constant fields, the best estimator is not necessarily obtained
by minimizing the posterior energy (i.e., the Maximum a Posteriori or MAP estimator).
It has been shown (Marroquin Mitter and Poggio, 1987) That the estimator that max-
imizes the posterior marginal probabilities (the MPM estimator) has better behavior,
particularly for low signal to noise ratios. In both cases, the cost for the exact com-
putation of the optimal estimators is too high, so that approximations must be made.
The most precise are obtained with SCA, which mathematically correspond to regular
Markov chains whose invariant measures correspond to the posterior distribution Pf |g.
In this case, the law of large numbers for regular chains establishes that the average
of any function of the state Y (ξ), taken with respect to Pf |g may be approximated
arbitrarily well by the time average of Y (ξ(t)), obtained by observing the evolution
of the automaton. One may use this property for estimating the posterior marginals,
by counting the number of times a given cell is in each state, from which the MPM
estimator may be obtained. It is also possible to approximate the MAP estimator, by
introducing a “temperature” parameter which goes slowly to zero (a procedure known
as “Simulated Annealing”; see Geman and Geman, 1984).

The main drawback of these stochastic methods is their computational complexity,
since many iterations are needed to obtain accurate results. This is specially important
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in the case of the estimation of piecewise parametric models, since here the most
effective procedures consist of 2 steps, which are alternatively performed in an iterative
manner until convergence is achieved. These steps are:

1. Estimate the best segmentation (i.e., the f indicator variables in Eq. (3)), given
the model parameters.

2. Estimate the model parameters given the segmentation.

with an appropriate initialization step. Instances of these procedures are found in
Marroquin et. al., 2000 and Black, Fleet and Yacoob, 2000.

To perform step 1, it is necessary to have efficient estimators for piecewise constant
fields. One way to obtain them is derived from the Mean Field (MF) Theory of
Statistical Physics, and is based on the assumption that the mean value < fi > of
a MRF at each site i can be computed considering that the influence of the field
on this site can be approximated by the influence of {< fj >, j ∈ Ni}. Note that
if fi is a binary vector of indicator variables as in Eq. (3), < fik >, k = 1, ...M
represent the corresponding posterior marginal probabilities Pr(fik = 1 | g), from
which the optimal estimators may be computed. The MF–based estimation algorithm
may be implemented by a DCA with M layers, where each unit corresponds to a
specific marginal probability. The update rule for each node involves the computation
of the exponential of the sum of the local contributions of neighboring sites plus a
normalization step (see Zhang, 1993).

A different approach is based on the idea of constructing a random field of discrete
probability distributions using a Gauss–Markov model, so that the mean value of this
field corresponds to the posterior marginal probabilities. Since this field is Gaussian,
its mean value is found by the minimization of a quadratic form, which, because of the
Markovian property, has a particularly simple structure. The network that computes
the optimal estimator is represented in Fig. 2. Note that, unlike the MF network, in
this case there is no need neither of exponentiation nor of normalization; as a result,
one can get better results at a fraction of the computational cost (see Marroquin et.
al., 2000 and Marroquin et. al., 2001).
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Figures
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Figure 1: Left column: a piecewise smooth image corrupted with uniform noise (top
row) is reconstructed using robust potentials (middle row) and piecewise planar models
(bottom row). Right column: a piecewise constant image corrupted by shot noise is
also reconstructed using robust and piecewise parametric models (middle and bottom
rows).
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Figure 2: Network that computes the optimal estimator for a discrete-valued field.
Each layer corresponds to a valid value for the field (in this example, orientation). Note
that the layers are decoupled; they must, however, be synchronized for the system to
work properly.
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