
Optimal Rapidly-exploring Random Trees

Miguel Vargas

Material taken form:
S. Karaman, E. Frazzoli, Sampling-based Algorithms for Optimal Motion Planning.
S. Karaman, E. Frazzoli, Incremental Sampling-based Algorithms for Optimal Motion Planning.

1/22

Introduction

Introduction

The optimality problem of path planning is to find a feasible path with minimum cost (given
a cost function). If no such path exists, report failure.

• The paper provides a systematic and thorough analysis of optimality and complexity for
sampling-based path planning algorithms, like Probabilistic RoadMaps (PRM) and Rapidly-
exploring Random Trees (RRT). It is proven that PRM and RRT algorithms are not
asymptotically optimal.

• New algorithms are proposed PRM*, RRG, and RRT*. These are proven to be
probabilistycally complete, asymptotically optimal and computationally efficient.

• The key insight is that connections between vertices in the graph should be sought within
balls whose radius vanishes with a certain rate as the size of the graph increases, and is based
on new connections between motion planning and thoery of random geometric graphs.

In this work we will discuss only RRT and RRT* algorithms.

2/22

Notation

Notation

Let X =(0,1)d be the configuration space of dimension d . Let X obs be the obstacle region, and
X free=cl (X ∖ X obs) the obstacle-free region, where cl (⋅) is the closure of a set.

The initial condition x init∈X free. The goal region X goal is an open subset of X free.

Given a set X ⊂ℝd, and a scalar s≥0, a path in X is a continuous function
σ : [0, s]→ X ,

where s is the length of the path.

Given two paths in X , σ1: [0, s1]→ X and σ2 : [0, s2]→ X , with σ1(s1)=σ2 (0), their concatenation
is denoted σ1∣σ2,

σ=σ1∣σ2 : [0, s1+s2]→ X .

Ths set of all paths in X with nonzero length is denoted by Σ.

The closed Ball of radius r>0 centered at x∈ℝd is defined as Bx , r :={y∈ℝd∣∥y−x∥≤r }.
3/22

RRT

RRT
Algorithm Example 1 Example 2

V ← {x init }
E ←∅
for i←1…N

x rand←SampleFree (i)
xnearest←Nearest ((V , E) , x rand)

x rand

xnearest

x rand

xnearest

xnew←Steer (xnearest , xrand) xnew
η

x rand

xnearest

xnew

xnearest

η

if ObstacleFree (xnearest , xnew)
V ←V∪{xnew}
E ←E∪{(xnearest , xnew)}

xnewxnearest

xnew

xnearest

return (V , E)

4/22

RRT*

RRT*
Algorithm Example 1 Example 2

V ← {x init }
E ←∅
for i←1…N

x rand←SampleFree (i)
xnearest←Nearest ((V , E) , x rand)

x rand

xnearestxinit

x rand

xnearestxinit

xnew←Steer (xnearest , xrand) xnew
η

x rand

xnearestxinit

xnew

xnearestxinit

η

if ObstacleFree (xnearest , xnew)
X near←Near ((V , E) , xnew , r n)
V ←V∪{xnew}
xmin← xnearest

cmin←Cost (xnearest)+c (Line (xnearest , xnew))

xnew

x rand

xnearest

rn

xinit

xnew

xnearest

rn

xinit
xmin

5/22

RRT*

for_each xnear∈X near

if CollisionFree (xnear , xnew)
if Cost (xnear)+c (Line (xnear , xnew))<cmin

xmin← xnear

cmin←Cost (xnear)+c(Line (xnear , xnew))
E ←E∪{(xmin , xnew)}

xnewxnearestxinit
xnewxnearestxinit xmin

xnew

xnearest
xinit

xmin

for_each xnear∈X near

if CollisionFree (xnew , xnear)
t ←Cost (xnew)+c(Line (xnew , xnear))
if t<Cost (xnear)

xparent ←Parent (xnear)
E ←(E ∖ {(xparent , xnear)})∪{(xnew , xnear)}

xnewxnearestxinit

xnew

xnearest
xinit

return (V , E)
xnewxnearestxinit

xnew

xnearest
xinit

The RRT* algorithm essentially “rewires” the tree as it discovers new lower-cost paths reaching
the nodes that are already in the tree.

6/22

RRT*

Near function
This function returns a set with all nodes of the tree within a ball of radius rn centered in xnew.

Ball radius.
This radius is determinated with

rn←min{γ(log n
n)

1/d

,η},

with

γ← 2(1+ 1
d)

1/ d(μ (X free)
ζd)

1 /d

,

where
n←∣V∣,

is the cardinality of the set of nodes, μ (X free) denotes the Lebesgue measure (i.e., volume) of the
obstacle-free space, and ζd the volume of the unit ball in the d-dimensional Euclidean space.

The dispersion of a set of n random points sampled uniformly and independently in a bounded set
S⊂ℝd is O ((log n

n)1 /d). Dispersion captures the degree to which points in a point set are separated
from each other.

7/22

1 10 100 1,000 10,000 100,000 1,000,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

d=10
d=5
d=3
d=2

n

(logn
n)

1 /d

RRT*

Cost function
It returns a distance from a node of the tree to the root, let v∈V ,

Cost (v)=Cost (Parent (v))+c (Line (Parent (v) , v)).
If v0∈V is the root of the tree, then Cost (v0)=0.

c function
Let c :Σ→R>0 be a function, called cost function, which assigns a non-negative cost to all
nontrivial collision-free paths.

Line function
Given two points x1 , x2∈ℝ

d, the function
Line (x1 , x2) : [0 , s]→ X

is defined as the straight line path from x1 to x2.

8/22

Probabilistic completeness

Probabilistic completeness

For any robustly feasible path planning problem (X free , xinit , X goal), there exist a constants a>0
and n0∈ℕ, both dependent only on X free and X goal, such that

P ({V n
RRT∩X goal≠∅})>1− 1

ea n , ∀n>n0;

also

P ({V n
RRT*∩X goal≠∅})>1− 1

ea n , ∀n>n0.

Proof.
By construction V n

RRT*
(ω)=V n

RRT
(ω), for all ω∈Ω, and n⊂ℕ. RRT* returns a connected graph.

Hence the result follows directly from the probabilistic completeness of RRT.

If the RRT algorithm returns a feasible solution by iteration n, so will the RRT* algorithm,
assuming the same sample sequence.

9/22

Asymptotically optimality

Asymptotically optimality

A collision-free path σ : [0, s]→ X is said to have weak δ−clearance, if exists a path σ ' that has
strong δ−clearance, and there exist a homotopy between them.

A feasible path σ*∈X free that solves the optimaly problem is said to be robustly optimal if it has a
weak δ−clearance and, for any sequence of collision free paths {σn }n∈ℕ, σn∈X free∀n∈ℕ, such
that limn→∞σn=σ*, limn→∞c (σn)=c (σ*).
Let c*=c (σ*) be the cost of an optimal path, and let Y n

RRT be the extended random variable
corresponding to the cost of the minimum-cost solution included in the graph returned by RRT.
An algorithm ALG is asymptotically optimal if, for any path planning problem (X free , xinit , X goal),
and cost function c :Σ→ℝ≥0 that admit a robustly optimal solution with finite cost c*

P({limn→∞
supY n

RRT=c*})=1.

10/22

Asymptotically optimality

The RRT algorithm is not asymptotically optimal
Each iteration of the RRT algorithm either adds a vertex and an edge, or leages the graph
unchanged.

The limit limn→∞sup Y n
RRT exists and is equal to the random variable Y ∞

RRT. This limit is strictly
greater that c* almost surely,

P({limn→∞
supY n

RRT>c*})=1.

The cost of the best solution returned by RRT converges to a suboptimal value, with probability
one.

11/22

Asymptotic optimality of RRT*

Asymptotic optimality of RRT*

Assumptions:
1. The cost function is additive.
For all σ1,σ2∈ΣX free, the cost function c statisfies the following: c (σ1∣σ2)=c (σ1)+c (σ2).

2. Continuity of the cost function.
The cost function c is Lipschitz continuous in the following sense: there exists some constant κ
such that for any two paths σ1: [0, s1]→ xfree and σ s : [0, s2]→ xfree,

∣c (σ1)−c (σ2)∣≤κ supτ∈[0, 1]∥σ1 (τ1)−σ2 (τ2)∥.

3. Obstacle spacing.
There exists a constant δ∈ℝ+ such that for any point x∈X free there exits x '∈X free, such that

i. The δ -ball centered at x ' lines inside X free,
Bx ' ,δ⊂X free.

ii. x lies inside the δ -ball centered at x ' ,
x∈B x ' ,δ.

12/22

Asymptotic optimality of RRT*

The following theorem ensures the asymptotic optimality of the RRT* algorithm.

Theorem 2.
Let yi denote the cost of the minimum cost path in the tree, at the iteration i.
Taking asumptions 1, 2 and 3. Then, the cost of the minimum cost path in the RRT* converges to
c* almost surely,

P({limi→∞
yi=c*})=1

Theorem 3.
If

γ>2(1+ 1
d)

1/ d(μ (X free)
ζd)

1 /d

,

then the RRT* algorithm is asymtotically optimal.

13/22

Complexity of RRT vs RRT*

Complexity of RRT vs RRT*

• The number of calls for Sample, Streer and Nearest is the same for both algorithms.

• ObstacleFree is called only once in RRT and could be called many times by RRT*.

• RRT* also uses Near and Cost functions.
• Cost is O (log n).
• An optimal Near function is O (log n+(1/ϵ)d−1) (Arya, Mount. 2000).

14/22

Complexity of RRT vs RRT*

Let N i the number of vertices at the end of iteration i. Let M i
RRT and M i

RRT* be the random
variable that denotes the number of steps taken by RRT and RRT* algorithm in iteration i.

Assuming that Nearest is implemented an algorithm optimal in fixed dimensions (Arya, Mount,
1999), the number of steps executed by the RRT algorithm at each iteration is at least order
log (N i) in expectation in the limit, i.e., there exists a constant ϕ∈ℝ>0 such that

lim
i→∞

inf E [M i
RRT

log (N i)]≥ϕ.

Under the previous assumption, there exists a constant ϕ∈ℝ>0 such that

lim
i→∞

sup E[M i
RRT*

M i
RRT]≤ϕ.

The RRT* algorithm does not have significant overhead when compared to RRT algorithm in
terms of asymptotic computational complexity. This is also supported by experimental evidence.

15/22

Simulations, RRT vs RRT*

Simulations, RRT vs RRT*

503 iterations

16/22

Simulations, RRT vs RRT*

Simulations, RRT vs RRT*

1027

17/22

Simulations, RRT vs RRT*

Simulations, RRT vs RRT*

2062

18/22

Simulations, RRT vs RRT*

Simulations, RRT vs RRT*

3037

19/22

Simulations, RRT vs RRT*

Example RRT

http://www.youtube.com/watch?v=vW74bC-Ygb4

20/22

http://www.youtube.com/watch?v=vW74bC-Ygb4

Simulations, RRT vs RRT*

Example RRT*

http://www.youtube.com/watch?v=2WOBMswcCA8

21/22

http://www.youtube.com/watch?v=2WOBMswcCA8

References

References

S. Karaman, E. Frazzoli, Sampling-based Algorithms for Optimal Motion Planning.

S. Karaman, E. Frazzoli, Incremental Sampling-based Algorithms for Optimal Motion Planning.

S. Arya, D. M. Mount, R. Silverman, and A. Y. Wu. An optimal algorithm for approximate nearest
neighbor search in fixed dimensions. Journal of the ACM, 45(6):891–923, November 1999.

S. Arya and D. M. Mount. Approximate range searching. Computational Geometry: Theory and
Applications, 17:135–163, 2000.

http://sertac.scripts.mit.edu/rrtstar

22/22

http://sertac.scripts.mit.edu/rrtstar

