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NURBS (Non-Uniform Rational B-Spline)
These splines are used to describe geometric designs with complex shapes

                                

    

05/22/13 2/55



Why NURBS?
Splines are used because they are useful to describe free-form shapes in 2D or 3D.

    

There are several kind of splines to describe graphical objects
● Bézier splines (artistic design software)
● B-Splines (special case of NURBS)
● NURBS
● Others (Kochanek–Bartels splines, Hermite splines, etc)
The  advantege  of  NURBS  is  that  these  give  an  exact  representation of  conic  shapes  and 
cuadratic surfaces.
NURBS are invariant under affine transformations (traslation, rotation, scalling, etc)
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NURBS
NURBS are defined by control points, these are coordinates that are used to manipulate the shape 
of the surface.
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Finite element method
CAD programs (like GiD) use NURBS to create smooth curves and surfaces.

     

Finite element method uses a mesh that is an approximation to the real geometry. Each element 
is an independent geometric entity.
The original geometry description is lost.
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Discretization
In the  finite element method,  a  domain is discretized into several  elements,  each element is 
mapped to an element in with normalized coordinates.

The normalized element (left) mapped to elements in the finite element discretization (right).
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Isogeometric Analysis
Created  by  Hughes,  Cottrell  and  Bazilevs 
[Hugh05] is a recent development to overcome 
several  limitations  existing  in  the  finite  ele-
ment method.

The idea of the Isogeometric Analysis (IGA) is 
to use  NURBS  as definition of elements in 
the sub-domain.

Keep geometry information in the simulation 
program.

By  having  the  geometry  the  simulation  can 
mesh automatically the geometry.
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Discretization
Isogeometric analysis maps all the domain into a normalized patch. The discretization is done in 
the patch, the elements then are easy created using a structured mesh.
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Comparison of Basis Functions
Traditional base functions used in the finite element method are not smooth between elements, 
only C0 continuity is guaranteed.

This figure shows the standard cubic finite element basis functions with equally spaced nodes.
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The idea of the Isogeometric Analysis is to use NURBS to define the elements [Hugh05], NURBS 
are built from B-splines.

The NURBS base functions fill all the patch (domain), they are smooth between elements.  C1 
continuity is guaranteed, if a higher order of B-splines are used, then C p, p>1 continuity can be 
achieved inside the domain.

This figure shows an example of cubic B-spline basis functions with equally spaced knots.
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Some advantages of IGA

Accurate modelation of contact surfaces
By using an exact description of contact surfaces isogeometric analysis can be used to simulate 
friction between surfaces.

        

This is problematic to be done with finite element discretizations.
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More accurate solutions
Many problems have sensitivity to the discretization, for example, the figure shows a solution of 
the two-dimensional Boussinesq equations. The x-component of velocity obtained using 552 tri-
angles with fifth order polynomials on each triangle [Cott09].

    

On the left, the elements are straight-sided. The spurious oscillations in the solution on the left 
are due to the use of straight-sided elements for the geometric approximation. On the right, the 
cylinder is approximated by elements with curved edges, and the oscillations are eliminated.
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Independence from mesh generators
Because in the isogeometric analysis the original geometry description is always known, the sim-
ulation program can automatically re-mesh the domain as needed to reach the accuracy needed. 
This makes multigrid algorithms easy to apply to this formulation.

"Automatic adaptive mesh refinement has not been as widely adopted in industry 
as one might assume from the extensive academic literature, because mesh refine-
ment requires access to the exact geometry and thus seamless and automatic com-
munication with CAD, which simply does not exist." [Cott09].

    

Having a easy way to generate mesh is also important for large and complex domains, where in  
the finite element formulation is common that mesh generation is more time consuming than the 
solution of the problem itself.
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Shape optimization
By having the NURBS control points of the geometry all the time, a simulation program can up-
date the geometry on the fly.

The number of degrees of freedom of the control points is by far less that the degrees of freedom 
of the mesh.
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B-splines for curves
A B-Spline is a particular case of NURBS, so, the following also apply to NURBS.

A B-spline curve is defined as [Pieg97],

C (u )=∑
i=0

n

N i , p (u )Pi.

● Pi are control points (or coordinates), for 2D B-Splines Pi∈ℝ
2, for 3D B-Splines Pi∈ℝ

3.
● N i , p (u) are piecewise polynomial functions forming a basis for the vector space of all piece-

wise polynomial functions of degree p, for a fixed knot vector U={ui }, 0≤i≤m.
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Basis functions
Let  U={u0, u1,… , um} be  a  nondecreasing  sequence  of  real  numbers,  such  that  ui≤ui+1 for 
i=0,1,… , m−1. The ui are called knots, and U is the knot vector.
The i-th B-spline basis function of p-degree, denoted by N i , p (u) are defined recursively with the 
Cox-de Boor recursion formula.

For p=0 N i ,0 (u )={1 if ui≤u<ui+1

0 otherwise
.

And for p=1,2,3,…

N i , p (u)=
u−ui

ui+ p−ui
N i , p−1 (u )+

ui+ p+1−u
ui+ p+1−ui+1

N i+1, p−1 (u).

In a knot vector, multiplicity of knots can exist!! (this is important, also complicates things)
ui=ui+1

So, division by zero can occur in the previous formulation, for those cases we will use the follow-
ing definition

x
0
≝0.
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Shape of the basis functions
Let  U={u0, u1,… , um} be  a  nondecreasing  sequence  of  real  numbers,  such  that  ui≤ui+1 for 
i=0,1,… , m−1. The ui are called knots, and U  is the knot vector.
The i-th B-spline basis function of p-degree, denoted by N i , p (u) are defined recursively with the 
Cox-de Boor recursion formula.

For p=0 N i ,0 (u )={1 if ui≤u≤ui+1

0 otherwise
.

And for p=1,2,3,…

N i , p (u)=
u−ui

ui+ p−ui
N i , p−1 (u )+

ui+ p+1−u
ui+ p+1−ui+1

N i+1, p−1 (u).
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For example, a basis for a 2-degree

With a knot vector, U={u0, u1,… , um}
U={0,0,0,1,2,3, 4,4,5,5,5}, with m=10.

Considerations
● For any u, a maximum of p+1 basis functions are different of zero.

● ∑
i=0

p

N i , p (u)=1, for u0≤u≤um.

● N i , p (u)≥0, for u0≤u≤um.
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Dependence for calculation
The i-th B-spline basis function of p-degree, denoted by N i , p (u) are defined recursively with the 
Cox-de Boor recursion formula.

For p=0 N i ,0 (u )={1 if ui≤u≤ui+1

0 otherwise
.

And for p=1,2,3,…

N i , p (u)=
u−ui

ui+ p−ui
N i , p−1 (u )+

ui+ p+1−u
ui+ p+1−ui+1

N i+1, p−1 (u).

There is a dependence to calculate each N i , p (u),
N 0,0

N 0, 1

N 1,0 N 0,2

N 1, 1 N 0,3

N 2,0 N 1,2

N 2, 1 N 1,3

N 3,0 N 2,2 ⋮
N 3, 1 ⋮

N 4,0 ⋮
⋮
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Computational algorithm
Many evaluations of the basis functions are equal to zero. Also recursive calculation can be ex-
pensive.
An efficient algorithm to calculate all the non-vanishing base functions [Pieg97] is:

BasisFunctions (u , p ,U ,N )
∙ i←FindSpan (u , p ,U)
∙ N 0←1
∙ for j←1,2,… , p
∙ ∙ L j←u−ui+1− j

∙ ∙ R j←ui+1−u
∙ ∙ saved←0
∙ ∙ for r←0,2,… , j−1

∙ ∙ ∙ temp←
N r

Rr+1+L j−r

∙ ∙ ∙ N r← saved+Rr+1∗temp
∙ ∙ ∙ saved← L j−r∗temp
∙ ∙ N j← saved

The result will be N=N 0, N 1,…N p. This algorithm also guarantees that there will be no division 
by zero.
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FindSpan algorithm
This algorithm finds the interval or span of  U={u0, u1,… , um} where  u is located, by making a 
binary search

FindSpan (u , p , U )
∙ i← p
∙ high←m− p
∙ repeat

∙ ∙ middle← (i+high )
2

∙ ∙ if u<umiddle

∙ ∙ ∙ high←middle
∙ ∙ else
∙ ∙ ∙ if i=middle
∙ ∙ ∙ ∙ exit_repeat
∙ ∙ ∙ i←middle

The result will be the i that satisfy u∈[ui , ui+1).
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B-spline curves

A B-spline curve is defined as [Pieg97],

C (u )=∑
i=0

n

N i , p (u )Pi.

● Pi is a vector of control points (or coordinates),
for 2D B-Splines Pi∈ℝ

2, for 3D B-Splines Pi∈ℝ
3.

● N i , p (u) are  piecewise  polynomial  functions  forming  a  basis for  the  vector  space  of  all 
piecewise polynomial functions of degree p, for a fixed knot vector U={ui }, 0≤i≤m.
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Interactive demo

This interactive demostration of B-Splines and NURBS,  was  made by Jan Foretník,  it  can be 
found at:

http://geometrie.foretnik.net/?id=index&lang=en
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B-Spline curves in 3D

i (Pi )x (Pi )y (Pi )z
0 -4.0 -4.0 -3.0
1 -3.0 0.0 -2.0
2 0.0 1.0 1.0
3 3.0 -4.0 -3.0
4 5.0 2.0 -1.0
5 6.0 -3.0 1.0
6 9.0 2.0 3.0
7 -2.0 6.0 -3.0
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B-spline surfaces

A B-spline surface is defined as [Pieg97],

S (u , v )=∑
i=0

n1

∑
j=0

n2

N i , p (u )N j , q (v )Pi j.

● Pi j is a matrix of control points (or coordinates),
for 2D B-Splines Pi j∈ℝ

2, for 3D B-Splines Pi j∈ℝ
3.

● The basis N i , p (u) and N j , q (v ) could have different degrees and knot vectors
U={ui }, 0≤i≤m1 and V={vi }, 0≤i≤m2.
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B-Spline surfaces in 3D
i j (Pi j )x (Pi j )y (Pi j )z
0 0 -5.00 -5.00 0.00
0 1 -4.20 -5.17 1.50
0 2 -2.35 -5.51 4.01
0 3 -0.67 -5.58 1.59
0 4 0.35 -5.55 -0.84
0 5 2.36 -5.70 -1.52
0 6 3.87 -5.87 -0.71
0 7 5.00 -6.00 0.00
1 0 -5.11 -3.06 -0.70
1 1 -4.28 -3.24 0.85
1 2 -2.37 -3.62 3.67
1 3 -0.52 -3.76 2.02
1 4 0.62 -3.81 0.14
1 5 2.68 -3.99 -0.25
1 6 4.17 -4.17 0.61
1 7 5.32 -4.29 1.28
2 0 -5.24 -1.33 -0.98
2 1 -4.37 -1.51 0.57
2 2 -2.47 -1.86 3.42
2 3 -0.41 -2.05 2.51
2 4 0.84 -2.12 1.04
2 5 2.89 -2.30 0.70
2 6 4.32 -2.44 1.44
2 7 5.49 -2.53 1.97
3 0 -5.54 2.07 -1.02
3 1 -4.62 1.91 0.44
3 2 -2.77 1.64 2.96
3 3 -0.34 1.39 3.25
3 4 1.09 1.28 2.27
3 5 3.05 1.15 1.66
3 6 4.30 1.10 1.95
3 7 5.51 1.10 2.06
4 0 -5.73 3.90 -0.77
4 1 -4.79 3.75 0.62
4 2 -3.00 3.53 2.79
4 3 -0.42 3.28 3.36
4 4 1.06 3.17 2.37
4 5 2.95 3.07 1.46
4 6 4.11 3.07 1.47
4 7 5.34 3.11 1.36
5 0 -6.00 6.00 0.00
5 1 -5.05 5.84 1.29
5 2 -3.30 5.59 2.98
5 3 -0.67 5.26 3.23
5 4 0.81 5.08 1.85
5 5 2.66 4.95 0.50
5 6 3.76 4.95 0.25
5 7 5.00 5.00 0.00

i U i

0 0.0000
1 0.0000
2 0.0000
3 0.0000
4 0.4602
5 0.4992
6 1.0000
7 1.0000
8 1.0000
9 1.0000

    

j V j

0 0.0000
1 0.0000
2 0.0000
3 0.0000
4 0.3184
5 0.4641
6 0.6912
7 0.7501
8 1.0000
9 1.0000
10 1.0000
11 1.0000
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B-Spline volumes

A B-spline volume is defined as,

B (u , v ,w )=∑
i=0

n1

∑
j=0

n2

∑
k=0

n3

N i , p (u) N j , q (v ) N k , r (w )Pi j k.

● Pi j k  is a tensor of rank 3 of control points (or coordinates), Pi j k∈ℝ
3.

● The basis N i , p (u), N j , q (v ) and N k , r (w ) could have different degrees and knot vectors
U={ui }, 0≤i≤m1, V={vi }, 0≤i≤m2 and W={wi }, 0≤i≤m3.
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Now, the NURBS

NURBS curve
A NURBS (Non-Uniform Rational B-Spline) curve is defined as,

C (u )=
∑
i=0

n

N i , p (u)W i Pi

∑
i=0

n

N i , p (u)W i

.

There is a weight for each control point, W i for i=0,1, 2,… , n.

Note that if W i=1 for i=0,1, 2,… , n then C (u ) corresponds to the definition of a B-Spline.

Non-uniform: Means that the entries of the knot vector, where the  N i , p (u) is defined, are not 
periodic (equally spaced).

Rational: The use of weights allows more control of the NURBS.

05/22/13 28/55



Advantages
Conic functions (circle, ellipses, etc.) can not be described accurately with B-Splines, these can 
only approximate.

NURBS can represent exactly these conic functions.
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NURBS surface
A NURBS surface is defined as,

S (u , v )=
∑
i=0

n1

∑
j=0

n2

N i , p (u) N j , q (v )W i j Pi j

∑
i=0

n1

∑
j=0

n2

N i , p (u) N j , q (v )W i j

.

Weights are W i j for i=0,1, 2,… , n1 and j=0,1,2,… , n2.

NURBS volume
A NURBS volume is defined as,

B (u , v , w )=
∑
i=0

n1

∑
j=0

n2

∑
k=0

n3

N i , p (u) N j , q (v ) N k , r (w )W i j k Pi j k

∑
i=0

n1

∑
j=0

n2

∑
k=0

n3

N i , p (u) N j , q (v ) N k , r (w )W i j k

.

Weights are W i j k for i=0,1, 2,… , n1, j=0,1,2,… , n2 and k=0,1,2,… , n3.
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Insertion of knots (a.k.a. meshing)
CAD software will generate NURBS objects (curves, surfaces or volumes) using the  minimun 
number of control points possible, i.e. using small knot vectors.

For example, the next figure has knots vectors
U={0,0,0,0.5,1,1,1} and V={0,0,0,1,1,1}.
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Meshing in  isogeometric  analysis  consists  on  inserting knots to  refine the normalized space 
(parameter space).
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Knot insertion in curves
Let C (u ) be a NURBS curve with control points Pi and basis functions N i , p (u), with i=1, 2,… , n

C (u )=∑
i=0

n

N i , p (u )Pi,

with a knot vector
U={u0, u1,… , um}.

We want to insert a knot in the position ū∈[uk , uk +1), to form a new knot vector
Ū={u0, u1,… , uk−1 , uk , ū , uk +1 , uk+2 ,… , um },

with m+1 knots.

The curve will have a new representation with n+1 control points Qi and basis functions N̄ i , p (u)

C (u )=∑
i=0

n+1

N̄ i , p (u )Qi.

Inserting knots  consists  on determining the  Qi,  i=1, 2,… , n+1.  Althoug,  some control  points 
change, the shape of the NURBS is not modified.
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Knot insertion algorithm
To insert a knot in a NURBS of p-degree it is necesary to modify p control points.

For a NURBS with  n control points  Pi, with  i=0,1,… , n, after inserting a knot in the position 
ū∈[uk , uk +1), the new control points will be Qi with i=0,1,… , n+1

Qi=αi Pi+(1−αi )Pi−1,
with

αi={ 1 i≤k− p
ū−ui

ui+ p−ui
k− p+1≤i≤k

0 i≥k+1

.

The value of k  is determinated using the function k←FindSpan (u , p ,U ).

An efficient algorithm to insert knots is given in [Pieg97].

Next, an example:
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For a curve with a knot vector  U={0,0,0,0,1,2,3, 4,5,5,5,5 }, and with control points  Pi with 
i=0,1,… ,7. This curve has 5 spans.

We will insert a knot at ū=2.5.
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To  obtain  U={0,0,0,0,1,2, 2.5 ,3,4,5,5,5,5},  with  a  new  vector  of  control  points  Pi with 
i=0,1,… , 8. The new curve has 6 spans.

Next, we will insert a knot at ū=3.5.
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The new knot vector is, U={0,0,0,0,1,2, 2.5,3,3.5 ,4,5,5,5,5}. The new vector of control points 
Pi with i=0,1,… ,9. 7 spans have been formed.

To complete the division, we will insert the knots {0.5,1.5,4.5}.
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Now U={0,0,0,0,0.5 ,1,1.5 ,2, 2.5,3,3.5,4, 4.5 ,5,5,5,5}, and we have 13 control points Pi, with 
i=0,1,… ,12. The new curve has 10 spans.

We can continue inserting knots to have a finer mesh.
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For this curve  U={0,0,0,0,0.25, 0.5,0.75,… , 4.25,4.5, 4.75,5,5,5,5}, with a total of 23 control 
points Pi, with i=0,1,… ,22. The total number of spans is 20.
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Knots insertion in surfaces (a.k.a. meshing surfaces)
A B-spline surface is defined as [Pieg97],

S (u , v )=∑
i=0

n1

∑
j=0

n2

N i , p (u )N j , q (v )Pi j,

where  Pi j is a  matrix of control points (or coordinates).  The basis  N i , p (u) and  N j , q (v ) could 
have different degrees and knot vectors U={ui }, 0≤i≤m1 and V={vi }, 0≤i≤m2.

The procedure for meshing surfaces consists on inserting knots in both knot vectors.

An efficient algorithm to insert knots is given in [Pieg97].
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The  following  image  shows  the  control  points  of  a  surface  with  knot  vectors 
U={0,0,0,0,1,1,1,1} and V={0,0,0,0.5,1,1,1}

Original control points Inserting u=0.4
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The knot insertion can be done on both knot vectors at the same time.

Inserting v=0.7 Inserting u=0.4 and v=0.7
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Multiple patches (sub-domains)
A NURBS object can not have a very complex shape, to handle domains with complex shapes it is 
necessary to divide the domain in patches of NURBS objects.

For example, a pipe, can be divided in two:

    

On the join of the two sub-domains the numeration of nodes must be unique. For this example, 
full domain has 8 elements.

05/22/13 43/55



Isogeometric analisys
NURBS shape are defined by  control points, 
these do not need to be in the domain.

The simulation program takes this set of con-
trol points (control mesh) to construct the do-
main or physical space.

The  normalized  mapping of  this  physical 
space is called parameter space.

This  parameter  space  is  discretized  using  a 
structural  mesh,  mapping  this  mesh  back-
wards to the physical space creates the physic-
al mesh of the domain.
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The root idea behind isogeometric analysis is that the basis used to exactly model the geometry 
will also serve as the basis for the solution space of the numerical method.

Control variables
Let C (ξ ) be a NURBS curve in 2D with n+1 control points Pi and basis functions N i , p (ξ ), with 
i=0,1, 2,… , n

C (ξ )=∑
i=0

n

N i , p (ξ )Pi, or (x (ξ )
y (ξ ))=∑i=0

n

N i , p (ξ )((Pi)x
(Pi )y)

with a knot vector Ξ={ξ0, ξ1,… ,ξm}.

We can build other functions over the patch in similar fashion, to map from the normalized space 
to the physical space

û (ξ )=∑
i=0

n

N i , p (ξ )d i,

the coefficients d i are called control variables.
“As with control points, the non-interpolatory nature of the basis prevents strictly interpreting 
the control variables as we can do with nodal values in FEA.” [Cott09]

Lets remember that for any u, a maximum of p+1 basis functions N i , p (u) are different to zero.
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An example, the Poisson equation in a 2D surface
We have two knot vectors,

Ξ={ξ0,ξ1,… ,ξm1}, Η={η0,η1,… ,ηm2},
with a matrix of control points Pi j of size n1×n2. The basis N i , p (u) and N j , q (v ) have degrees p 
and q respectively.

The functions of change of coordinates are the same functions that define the surface

S (ξ ,η)=∑
i=0

n1

∑
j=0

n2

N i , p (ξ ) N j , q (η) Pi j, or (x (ξ ,η)
y (ξ ,η))=∑i=0

n1

∑
j=0

n2

N i , p (ξ ) N j , q (η )((Pi )x
(Pi )y)

where  is a matrix of control points (or coordinates).

We can define a matrix of control variables {φi j }.

φ (ξ ,η)=∑
i=0

n1

∑
j=0

n2

N i , p (ξ ) N j , q (η )φi j

Lets remember again that for any u, a maximum of p+1 basis functions N i , p (u) are different to 
zero. This means that the resulting system of equations will be sparse!!
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We want to solve

f (φ(x , y))= ∂
∂ x (k ∂φ

∂ x )+ ∂
∂ y (k ∂φ

∂ y )−S=0,

in a domain Ω with certain boundary conditions. Lets also define the flux as

q=k (∂φ∂ x
∂φ
∂ y ).

By using a weak formulation, using a weight function W , we want to solve
∫
Ω

W f (φ( x , y))dx dy=0,

this is equivalent to

∫
Ω

W [ ∂∂ x (k ∂ϕ
∂ x )+ ∂

∂ y (k ∂ϕ
∂ y )−S ]d Ω+W [ϕ−ϕ̄ ]+W [q−q̄ ]⏟

Boundary conditions

=0.

Integrating by parts and using the definition of flux, we have

W q x∣ω−∫
Ω

∂W
∂ x

k ∂φ
∂ x

d Ω+W q y∣ω−∫
Ω

∂W
∂ y

k ∂φ
∂ y

d Ω−∫
Ω

W S dΩ+W [φ−φ̄ ]+W [q−q̄ ]=0.
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We will use the NURBS basis as weight functions.

For convenience, lets define
N i j≝N i , p (ξ ) N j , q (η ).

Therefore

∑
i=0

n1

∑
j=0

n2 (N i j q x∣ω−∫
Ω

∂N i j

∂ x
k ∂φ
∂ x

dΩ+N i j q y∣ω−∫
Ω

∂N i j

∂ y
k ∂φ
∂ y

dΩ−∫
Ω

N i j S d Ω+N i j [φ−φ̄ ]+N i j [q−q̄ ])=0.

For each element,

∑
i=0

n1

∑
j=0

n2 [k∫
Ωe

∂N i j

∂ x
∂φ ( x , y )

∂ x
dΩe+k∫

Ωe

∂ N i j

∂ y
∂φ ( x , y )

∂ y
dΩe]=∑i=0

n1

∑
j=0

n2

[∫Ω N i j S ( x , y )dΩ],
the integration will be done using gaussian quadrature (the description is below).
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The Jacobian
Using

N i j≝N i , p (ξ ) N j , q (η ).

The change of variables is

(∂N i j

∂ξ
∂N i j

∂η
)=(∂ x

∂ξ
∂ y
∂ξ

∂ x
∂η

∂ y
∂η)⏟

Je

(∂N i j

∂ x
∂N i j

∂ y
).

If det Je≠0, then the inverse operation is given by

(∂N i j

∂ x
∂N i j

∂ y
)=(Je)−1(∂N i j

∂ρ
∂N i j

∂η
).
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Basis function derivatives
For a given polynomial order p and knot vector U , the derivative of the i-th basis function is giv-
en by

d
d u

N i , p (u )= p
ui+ p−ui

N i , p−1 (u)− p
ui+ p+1−ui+1

N i+1, p−1(u).

For higher derivatives [Cott09]
d k

d uk N i , p(u)=
p

ui+ p−ui ( d k−1

d uk−1 N i , p−1 (u))− p
ui+ p+1−ui+1( d k−1

d uk−1 N i+1, p−1 (u)).
An  efficient algorithm to calculate all the non-vanishing base functions derivatives is given in 
[Pieg97].

For a NURBS of p-degree we will have C p-continuity on N i , p (u) for any u∈(u0, um) if there is not 
multiplicity in u.

If there is multiplicity of knots of r, then we will have C p−(r−1)-continuity on N i , p (u).
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Example
For a knot vector U={0,0,0,0, 2,4,6,8,8,8,8}, and degree 3, basis functions N i , 3 (u) are:

Their derivatives are: d
d u

N i , 3 (u):
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Integration over elements
Integration is done using Gaussian quadrature in each element in the parameter space.

The evaluation of the shape functions N i , p (ξ ) N j , q (η) should be done in Ω̂e.

We can calculate (ξ ,η)∈Ω̂e from ( ξ̃ , η̃)∈Ω̃e as [Cott99 p99]:

ξ=ξi+( ξ̃+1) (
ξi+1−ξi )

2
,

η=ηi+( η̃+1) (
ηi+1−ηi )

2
.
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Comparison of FEA and IGA

Finite Element Analysis Isogeometric Analysis
Nodal points Control points
Nodal variables Control variables
Mesh Knots
Lagrange basis functions NURBS basis functions
Basis interpolate nodal points and variables Basis does not interpolate control points and 

variables
h-refinement Knot insertion
p-refinement Order elevation
Approximate geometry Exact geometry
Sub-domains Patches
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Summary
An analysis framework based on NURBS consists of [Hugh05]:

● A mesh for a NURBS patch is defined by the product of knot vectors. For example, in 3D, a 
mesh is given by U×V×W.

● Knot spans subdivide the domain into “elements”.
● The support of each basis functions consists of a small number of “elements”.
● The control points associated with the basis functions define the geometry.
● The fields in question (displacement, velocity, temperature, etc.) are represented in terms of the  

same basis functions as the geometry. The coefficients of the basis functions are the degrees-
of-freedom, or control variables.

● Mesh refinement strategies are developed from a combination of  knot insertion and  order 
elevation techniques.

● Arrays constructed from isoparametric NURBS patches can be assembled into global arrays in 
the same way as finite elements.

● The easiest way to set Dirichlet boundary conditions is to apply them to the control variables. 
In the case of homogeneous Dirichlet conditions, this results in exact, pointwise satisfaction. In 
the case of inhomogeneous Dirichlet conditions, the boundary values must be approximated by 
functions lying within the NURBS space.
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