
Heuristics for Nested Dissection to Reduce
Fill-in in Sparse Matrix Factorizations

Miguel Vargas-Félix, Salvador Botello-Rionda

miguelvargas@cimat.mx, botello@cimat.mx

Morelia, November 6, 2013 1/28

mailto:miguelvargas@cimat.mx

Sparse matrices
In most problems of finite element method, finite volume or isogeometric analysis we have to
solve a linear system of equations

Ax=b.

When the stiffness matrix is assembled, the relation between adjacent nodes is captured as entries
in a matrix. Because a node has adjacency with only a few others, the resulting matrix has a very
sparse structure.

i j

k

 (
∘ ∘ ∘ ∘ ∘ ∘ ∘ ⋯
∘ ∘ ∘ ∘ ∘ ∘ ∘ ⋯
∘ ai i ∘ ai j ∘ 0 ∘ ⋯
∘ ∘ ∘ ∘ ∘ ∘ ∘ ⋯
∘ a j i ∘ a j j ∘ 0 ∘ ⋯
∘ ∘ ∘ ∘ ∘ ∘ ∘ ⋯
∘ 0 ∘ 0 ∘ ak k ∘ ⋯
∘ ∘ ∘ ∘ ∘ ∘ ∘ ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

)
http://www.cimat.mx/~miguelvargas 2/28

Lets define the notation η(A), it indicates the number of non-zero entries of A.

For example, A∈ℝ556×556 has 309,136 entries, with η(A)=1810, this means that only the 0.58% of
the entries are non zero.

Black dots indicates a non zero entry in the matrix

In finite element problems all matrices have symmetric structure, and depending on the problem
symmetric values or not.

http://www.cimat.mx/~miguelvargas 3/28

Cholesky factorization for sparse matrices
For full matrices the computational complexity of Cholesky factorization A=LLT is O (n3).

To calculate entries of L

Li j=
1

L j j(Ai j−∑
k=1

j−1

Li k L j k), for i> j

L j j=√A j j−∑
k=1

j−1

L j k
2 .

We use four strategies to reduce time and memory usage when performing this factorization on
sparse matrices:

1. Reordering of rows and columns of the matrix to reduce fill-in in L. This is equivalent to use a
permutation matrix to reorder the system (PAPT) (Px)=(P b).

2. Use symbolic Cholesky factorization to obtain an exact L factor (non zero entries in L).

3. Organize operations to improve cache usage.

4. Parallelize the factorization.

http://www.cimat.mx/~miguelvargas 4/28

Matrix reordering
We want to reorder rows and columns of A, in a way that the number of non-zero entries of L are
reduced. η (L) indicates the number of non-zero entries of L.

A= L=

The stiffness matrix to the left A∈ℝ556×556, with η (A)=1810. To the right the lower triangular
matrix L, with η (L)=8729.

There are several heuristics like the minimum degree algorithm [Geor81] or a nested dissection
method [Kary99].

http://www.cimat.mx/~miguelvargas 5/28

By reordering we have a matrix A ' with η (A ')=1810 and its factorization L ' with η (L ')=3215.
Both factorizations solve the same system of equations.

A '= L '=

We reduce the factorization fill-in by
η(L ')=3215
η (L)=8729

=0.368.

To determine a “good” reordering for a matrix A that minimize the fill-in of L is an NP complete
problem [Yann81].

http://www.cimat.mx/~miguelvargas 6/28

Symbolic Cholesky factorization
The algorithm to determine the Li j entries that area non-zero is called symbolic Cholesky
factorization [Gall90].

Let be, for all columns j=1…n,
a j ≝ {k> j ∣ Ak j≠0},
l j ≝ {k> j ∣ Lk j≠0}.

The sets r j will register the columns of L which structure will affect the column j of L.

for i ← 1,2,… , n
· r i ← ∅

for i ← 1,2,… , n
· l i ← ai

· for each j∈r i

· · l i ← l i∪l j∖{i}
· if l i≠∅
· · p ← min { j∈l i }
· · r p ← r p∪{i }

A=(

a1 1 a1 2 a16

a21 a2 2 a2 3 a2 4

a3 2 a33 a3 5

a4 2 a4 4

a53 a5 5 a56

a61 a6 5 a66

)
a2= {3,4 }

L=(

l 1 1

l 2 1 l 2 2

l 3 2 l 33

l 4 2 l 43 l 44

l 53 l 54 l5 5

l 6 1 l 6 2 l 63 l 64 l6 5 l 66

)
l 2={3,4,6}

This algorithm is very efficient, its complexity in time and space has an order of O (η(L)).

http://www.cimat.mx/~miguelvargas 7/28

How efficient is it?
The next table shows results solving a 2D Poisson equation problem, comparing Cholesky and
conjugate gradient with Jacobi preconditioning.

Number of equations nnz(A) nnz(L) Cholesky time [s] CGJ time [s]
1,006 6,140 14,722 0.086 0.081
3,110 20,112 62,363 0.137 0.103

10,014 67,052 265,566 0.309 0.184
31,615 215,807 1’059,714 1.008 0.454

102,233 705,689 4’162,084 3.810 2.891
312,248 2’168,286 14’697,188 15.819 19.165
909,540 6’336,942 48’748,327 69.353 89.660

3’105,275 21’681,667 188’982,798 409.365 543.110
10’757,887 75’202,303 743’643,820 2,780.734 3,386.609

1,000 10,000 100,000 1,000,000 10,000,000
0

0

1

10

100

1,000

10,000

0.1 0.1
0.2

0.5

2.9

19.2

89.7

543.1

3,386.6

0.1
0.1

0.3

1.0

3.8

15.8

69.4

409.4

2,780.7

Cholesky

CGJ

Equations

Ti
m

e
[s

]

1,000 10,000 100,000 1,000,000 10,000,000
0

1

10

100

1,000

10,000

0.4

1.3

4.3

13.6

44.1

134.9

393.2

1,343.5

4,656.1

0.7

2.6

10.2

38.2

145.3

512.5

1,747.3

7,134.4

32,703.9

Cholesky

CGJ

Equations

M
em

or
y

[M
eg

a
by

te
s]

http://www.cimat.mx/~miguelvargas 8/28

Graph reordering
Let G=(V ,E) be a graph with n vertex V with m edges E ,

1

2

3

4

56
7

A ordering (or tagging) α of G is simply a mapping from the set {1,2,… , n } in V, where n is the
number of vertex of G. The graph tagged by α will be written Gα=(V α , Eα).

5

4

7

6

21
3

http://www.cimat.mx/~miguelvargas 9/28

Let A be a sparse matrix, symmetric, of size n×n, the ordered graph of A, GA=(V A ,EA), in it
{vi , v j }∈EA if and only if Ai j=A j i≠0, i≠ j. Here vi is a vertex of V A with tag A.

A=(
● ● ● ● · ● ·
● ● · ● · · ·
● · ● · ● · ·
● ● · ● · · ●
· · ● · ● · ●
● · · · · ● ·
· · · ● ● · ●

) GA=(V A , EA)
1

2

3

4

56
7

An ordering α applied to GA=(V A , EA) is equivalent to a apply a permutation matrix.

Gα=(V α , Eα)
5

4

7

6

21
3

 PAPT=(
● · · · ● · ·
· ● ● · · · ●
· ● ● · · ● ·
· · · ● ● ● ·
● · · ● ● ● ●
· · ● ● ● ● ·
· ● · · ● · ●

)
For the fill-in of the Cholesky factorization, to find a “good” permutation P for A that reduces the
number of non-zero entries on L means to find a “good”ordering of its graph [Geor81].
http://www.cimat.mx/~miguelvargas 10/28

Nested dissection algorithm

Separator
Lets consider a separator set S⊂V in G=(V ,E), when removed from G the graph is disconnected
in two non-empty sets of vertex R⊂V and S⊂V , also

R∩S=∅, S∩T=∅, R∩T=∅ y R∪S∪T=V

In the next example V={1,2,… ,13}, let S={1,10,13 } be a separator of G=(V ,E), when removed
from the graph we obtain

R={4,3,7,8,11} and T={2,5,6,9,12}

1

23
4 5

67
8

9

10

11 1213

23
4 5

67
8

911 12

http://www.cimat.mx/~miguelvargas 11/28

This procedure applied in a recursive way is known as the generalized nested dissection algorithm
[Lipt79].

The idea is to split the graph trying to make R and T of the same size with a small separator. This
is an divide-and-conquer recursive method.

Dissection G (V , E)
If ∣G∣<β
· The vertexes V are ordered with any order

(the minimum degree algorithm can be used)
else
· Search for a separator set S⊂V such that after removing it from G

we get two sets of disconnected vertexes R and T , with ∣R∣≈∣T∣.
· Remove all edges from E that have connections with entries in S .
· Dissection G (R ,E)
· Dissection G (T , E)
· Order the vertexes, putting the ones in S at the end of the order.

This algorithm is recursive and the resulting order of vertexes of G produces an efficient Cholesky
factorization.

An improved version of this algorithm is presented in [Kary99].

http://www.cimat.mx/~miguelvargas 12/28

This is an exaple of the nested dissection algorithm:

Graph Dependency tree
1

23
4 5

67
8

9

10

11 12
13

14 15

16

17

18
19

20

1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12,
13, 14, 15, 16,
17, 18, 19, 20

1

23
4 5

67
8

9

10

11 12
13

14 15

16

17

18
19

20

5, 2, 10,
13, 17

1, 4, 3, 7,
8, 11, 14

6, 12, 18, 20,
9, 15, 16, 19

http://www.cimat.mx/~miguelvargas 13/28

Graph Dependency tree
1

3
4

67
8

911 12

14 15

16

18
19

20

5, 2, 10,
13, 17

1, 4, 3, 7,
8, 11, 14

6, 12, 18, 20,
9, 15, 16, 19

1

3
4

67
8

911 12

14 15

16

18
19

20

5, 2, 10,
13, 17

7, 8 12, 15

11,
14

18,
20

1,
4,
3

6, 9,
16, 19

http://www.cimat.mx/~miguelvargas 14/28

Graph Dependency tree
1

3
4

6

911

14

16

18
19

20

5, 2, 10,
13, 17

7, 8 12, 15

11,
14

18,
20

1,
4,
3

6, 9,
16, 19

1

3
4

6

911

14

16

18
19

20

5, 2, 10,
13, 17

7, 8 12, 15

11,
14

18,
20

4 9,
16

1 3

6 19

http://www.cimat.mx/~miguelvargas 15/28

Fron the final dependency tree an ordering is creating numerating the vertexes filling the root at
last up to the leaves.

5, 2, 10,
13, 17

7, 8 12, 15

11,
14

18,
20

4 9,
16

1 3

6 19
The elimination sequence is 6, 19, 9, 16, 18, 20, 12, 15, 1, 3, 4, 11, 14, 7, 8, 5, 2, 10, 13, 17. This
ordering is used to generate A ', the equivalent P is

P=(
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

).
http://www.cimat.mx/~miguelvargas 16/28

This is an example of a finite element mesh reordered using nested dissection

A has a size 1,263×1,263, with η (A)=14,131. The factorization produces η (L)=128,476

A= L=

http://www.cimat.mx/~miguelvargas 17/28

Reordering using nested dissection

A r= Lr=

The factorization produces η(Lr)=39,465. For this case

η(Lr)=39,465
η(L)=128,476

=0.3072.

http://www.cimat.mx/~miguelvargas 18/28

Heuristics to obtain “good” separators
Basically we have to goals:

a) Split the graph in two approximatelly equal sub-graphs.

b) Split the graph using the minimum number of vertexes in the separator.

We will try to locate the “center” of the graph and then we will try to generate a plane that cuts the
graph in approximately two equal parts.

The difficult part is that this has to be done without knowing the coordinates of nodes of the mesh.

http://www.cimat.mx/~miguelvargas 19/28

Generating ‘balls’

Layer 0

Layer 1

Layer 2

Balls are created selecting a vertex randomly, lets call it ‘layer 0’. Next a layer of all adjacent
vertexes to ‘layer 0’ is added, forming ‘layer 1’. Same process to form ‘layer 2’, etc.

This procedure works for 3D meshes.
http://www.cimat.mx/~miguelvargas 20/28

Heuristic to locate the center of the graph
This is done creating several balls, each one has n

2+α vertexes. The intersection of all balls will be
choosen as the center of the graph.

http://www.cimat.mx/~miguelvargas 21/28

Separator creation
Two nodes of the ‘center’ of the graph are randomly selected, they are used as center of balls.

Layers of both balls are grown at the same time. When a vertex is part of the layer of both balls it
is maked as a separator and removed from the layers.

http://www.cimat.mx/~miguelvargas 22/28

Several separators are created, the best one is used. It is choosen the one that has the minimun
fitness. The fitness function is:

f =s(nmin

nmax),
where s is the separator size, nmin is the number of nodes of the partition with less nodes, and nmax
is the number of nodes of the partition with more nodes.

http://www.cimat.mx/~miguelvargas 23/28

Examples
These are examples of the recursive evolution of the nested dissection.

http://www.cimat.mx/~miguelvargas 24/28

Numerical experiments
We tested these heuristics against the METIS library [Kary99].

n nnz(A) FEMT nnz(L) METIS nnz(L) Difference
998 6,490 15,760 14,149 6.4%

3,361 22,311 66,280 60,492 9.5%
10,013 67,819 255,221 231,332 5.7%
33,258 228,502 1,052,032 952,013 7.1%

100,529 695,927 3,843,843 3,434,915 7.6%
334,643 2,328,077 15,590,679 13,760,163 7.3%

1,008,572 7,034,658 52,843,928 48,576,349 4.0%
3,343,042 23,354,982 190,399,689 185,091,059 2.9%

10,136,296 70,900,872 648,691,337 629,026,259 3.1%

100 1,000 10,000 100,000 1,000,000 10,000,000
10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

FEMT nnz(L)
METIS nnz(L)

Number of equations

nn
z(

L)

http://www.cimat.mx/~miguelvargas 25/28

Future work
Improve speed. Dynamically set the number of separators tried by the number of nodes.

Improve speed by parallelizing the creation of separators.

Improve the fitness function.

Use nested dissection as a partitioning strategy [Kary99].

http://www.cimat.mx/~miguelvargas 26/28

Questions?

miguelvargas@cimat.mx

http://www.cimat.mx/~miguelvargas 27/28

mailto:miguelvargas@cimat.mx

References
[Geor81] A. George, J. W. H. Liu. Computer solution of large sparse positive definite systems.

Prentice-Hall, 1981.

[Kary99] G. Karypis, V. Kumar. A Fast and Highly Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM Journal on Scientific Computing, Vol. 20-1, pp. 359-392, 1999.

[Lipt79] R. J. Lipton, D. J. Rose, R. E. Tarjan. Generalized Nested Dissection. Computer Science
Department, Stanford University, 1997.

[Yann81] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Journal on
Algebraic Discrete Methods, Volume 2, Issue 1, pp 77-79, March, 1981.

[Gall90] K. A. Gallivan, M. T. Heath, E. Ng, J. M. Ortega, B. W. Peyton, R. J. Plemmons, C. H.
Romine, A. H. Sameh, R. G. Voigt. Parallel Algorithms for Matrix Computations.
SIAM, 1990.

http://www.cimat.mx/~miguelvargas 28/28

	Sparse matrices
	Cholesky factorization for sparse matrices
	Matrix reordering
	Symbolic Cholesky factorization
	How efficient is it?

	Graph reordering
	Nested dissection algorithm
	Separator

	Heuristics to obtain “good” separators
	Generating ‘balls’
	Heuristic to locate the center of the graph
	Separator creation
	Examples

	Numerical experiments
	Future work
	Questions?
	References

