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The car like robot

The car like robot

From the driver’s point of view, a car has two degrees of freedom: the accelerator and the steering 
weel. The reference point is the midpoint of the rear weels. The distance between front and rear  
axes is 1.

Velocity q̇=( ẋ ẏ θ̇)T, can not assume arbitrary values, it has the nonholonomic constraint

(−sinθ cosθ 0) ( ẋ ẏ θ̇ )T=0,
that means that the car can not slip on the surface (zero lateral velocity).
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The car like robot

Let be v the speed of the front wheels  (v≤1) and ϕ the angle between the front wheels and the 
main direction of the car (∣ϕ∣≤ ϕ

4 ).
The control system is

( ẋ
ẏ
θ̇
v̇
ϕ̇
)=(v cosϕcosθ

v cosϕsinθ
v sinθ

0
0

)+(0
0
0
1
0
)v1+(0

0
0
0
1
)v2.

For this problem, the position of the front wheels and the vehicle speed are not relevant. Thus we 
will work only with the simplified system

( ẋ
ẏ
θ̇)=(cosθ

sinθ
0 )v cosϕ+(0

0
1)v sin ϕ.

Defining  the  control  as  u1=v cosϕ and  u2=v sin ϕ,  with  ∣u2 (t )∣≤∣u1 (t )∣≤1 the  system can  be 
written as

( ẋ
ẏ
θ̇)=(cosθ 0

sinθ 0
0 1)(u1

u2)=( X 1 X 2)(u1

u2).
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Property 1: The Car-like system is controllable

Property 1: The Car-like system is controllable

It  suffices to consider  two constat  admissible controls  that  respect  the curvature bounds. The 
straight-line motion (corresponding to the vector field X 1)

(u1

u2)=(1
0),

and the arc of circle of minimal radius (corresponding to the vector field X 1+X 2)

(u1

u2)=(1
1).

The coordinates of [ X 1, X 1+X 2 ] are:

X 1=(cosθ
sinθ

0 ), X 1+X 2=(cosθ
sinθ

1 ); [ X 1, X 1+X 2 ]=(−sinθ
cosθ

0 ).

Definition: A system is locally controllable from some point c, if there is a neighborhood of c all 
of whose points are reachable from c by an admissible path.
A system is controllable if it is locally controllable at every point.
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Property 1: The Car-like system is controllable

Proof using Campbell-Baker-Hausdorff-Dynkin formula
It is easy to see that

{X 1 , [ X 1, X 1+X 2 ] , X 1+X 2} (1)
spans the tangent space at every point.

Proving that the system is locally controllable from the origin would hold the proof for every 
point.

Let  X  be a vector field, following X  for a time  a  is the same as taking  ea X . The exponential 
describes a motion from a point to another on a given path. Following a X  for a given time and 
then bY , leaves us at the point ea X⋅ebY . The exponential of a vectori field appears as an operation 
on the manifold.

Let c=(t1, t 2, t3), a point near the origin, in the coordinate basis induced by (1). c is reachable from 
the origin by the following flow

ϕ(t1 , t 2 , t3)=et 1 X 1 et2 [ X 1 , X 1+X 2 ] et 3( X 1+X 2). (2)
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Property 1: The Car-like system is controllable

The first and the third flows obey the constrains on the controls. For the second the following 
approximation is taken (for t>0) given by the Campbell-Baker-Hausdorff-Dynkin formula

et [ X 1 , X 1+X 2 ]+O ( t3 / 2)=et 1/2 X 1 et1 /2 ( X 1+X 2)e−t1 /2 X 1 e−t1 /2( X 1+X 2 ).

This shows that any configuration obtained by (2) can be approximated by the flow
ϕ̃(t1 , t 2 , t3)=et 1 X 1 et1 /2 X 1 et 1/2( X 1+X 2) e−t 1/2 X 1 e−t 1/2( X 1+X 2)et3( X 1+X 2),

which obey the constraints.

The mapping ϕ̃ is a local homeomorphism, the inverse image of a neighborhood of the origin in 
the configuration is a neighborhood of (0,0,0) in ℝ3.

A choice exists for t 1, t 2 and t 3 that exactly attains any given configuration in a neighborhood of 
the origin. Hence, the system is controllable from the origin.

The flow ϕ̃ corresponds exactly to the path provided by the direct proof (next section).
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Property 1: The Car-like system is controllable

Direct proof

It suffices to prove that the system is locally controllable from the origin. Let c=( x , y ,θ ), a point 
near the origin.

Let  γ1 the arc  of  circle  tangent  to  c with length  θ (assuming  θ≥0 W.L.O.G.).  Moving with 
direcction −1, it attains the point

c1=( x−sinθ , y−(1−cosθ) ,0 ),
assuming y−(1−cosθ )>0.

Other assumptions are processed in the same way (see figure).
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Property 1: The Car-like system is controllable

Let γ2 ( τ ) be the path consisting of four pieces of same length τ:
• a forward motion on a straight line segment
• a forward motion on an arc of circle
• a backward motion on a straight line segment
• a backward motion on an arc of a cicle

The coordinates of the point attained by this sequence are
( x1+τ−τcos τ , y1−τ sin τ ,0),

choosing τc such that
∣y−(1−cosθ)∣=τc sin τc,
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Property 1: The Car-like system is controllable

this τc always exists and is unique for any c sufficiently near the origin.

The coordinates of point c2 attained by γ2 (τc ) are
c2=(x−sinθ+τc(1−cos τc) ,0 ,0).

Finally, let γ3 be the straight line motion fron c2 to the origin.

The path formed by the sequence  γ1,  γ2 and  γ3,  followed in reverse direction, goes from the 
origin to c. Thus the car-like system is locally controllable.
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Shortest paths for a car-like robot

Shortest paths for a car-like robot

For car-like robots in absence of obtacles and linear velocity control  u1=1, Dubins proved that 
shorted paths are curves of class C1 composed of

• Arcs of circle with radius 1
• Straight line segments

Reeds and Sheep extended Dubin’s work for car-like systems where  u1 can take positive and 
negative values, this allow maneuvers, or cusps, along the path. Between cusps the paths follow 
the form given by Dubins.

Any path with more than two cusps can be reduced to a path with at most two cusps.
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Shortest paths for a car-like robot

This model assume linear velocity to be constant and equal to 1.

For more general systems where the linear velocity is upper bounded by 1, Sussmann and Tang 
proved that  the shortest  paths are the same founded for  Reed and Sheep. In this systems the 
constains are ∣u2 (t )∣≤∣u1 (t )∣≤1.

The shortest path metric and sub-Riemannian geometry
Having the exact  form of the shortest paths for the car-like system, it  can be algorithmically 
compute the arclength in the plane of the shortest path connecting any two configurations.

There is one-to-one correspondece between the paths in the Euclidean plane ℝ2 and the paths in 
the configuration space ℝ2×S1 that satisfy the nonholonomic constrain. This distance denotes a 
metric in the configuration space, lets call it d RS.

In  other  words,  d RS is  the  metric  induced  by  the  lenght  of  the  shortest  paths  between  two 
configurations.

Also, d RS allows the determination of the reachable set in the presence of obstacles.
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Property 2

Property 2

For any point c=( x , y ,θ ) sufficiently near to the origin o=(0,0,0),
1
3

(∣x∣+∣y∣1/2+∣θ∣)≤d RS (c ,o )≤12 (∣x∣+∣y∣1/2+∣θ∣).

The shape of dRS implies that the associated topology and the Euclidean are the same.

Corollary: For each neighborhood (in the Euclidean topology)  N (c ) of a configuration  c, there 
exists  a  neighborhood  (in  the  Euclidean  topology)  N ' (c ) such  that  for  any  configuration 
c ' ∈N ' (c ) the path corresponding to the shortest path between c and c '  is included in N (c ).
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Property 2

The comparison of the two topologies is done using the methods of sub-Riemannian geometry.

Metrics can be defined by minimizing the length of all trajectories linking two given points.

For nonholonomic systems, these metics are said to be sub-Riemanninan, or singular.

For the car-like system this metric is obtained by minimizing ∫ (u1
2+u2

2)1/ 2
dt . The shortest path 

metric consists in minimizing the intregral of the linear speed ∫∣u1∣dt . These are equivalent.

Computational consequences
Any path for  the holonomic system (included in an open set  of  the  admissible  configuration 
space) can be discretized into a finite number of points such that, if one joins two consecutive 
points of the path by a Reeds-Shepp curve, one obtains a new path that constitutes a feasible 
collision-free path for the nonholonomic system.

Property 2 provides an upper bound of the number of subdividing points required by the method.
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Algorithm analysis

Algorithm analysis

Convergence and completeness

Given any ϵ>0, there exists δ>0 such that for any two configurations that are separated by less 
than  δ,  all  the  configurations  along  the  shortest  path  connecting  them  will  lie  in  some 
neighborhood of diameter ϵ of the two configurations.

This is consequence of the corollary of property 2.

This is enough to probe both convergence and completeness of the algorithm, because if one 
continue dividing the path, at some point a sequence of configurations will be generated that are 
sufficiently close that the shortest paths linking each of these configurations must lie in the free  
configuration space.

Complexity
Property 2 says that in the worst case the length of the feasible path connecting two configurations 
is of the order of the square root of their separation measured in the Euclidean norm, i.e. δ is in 
O (ϵ1 /2 ). Near the origin ∣x∣+∣y∣1 /2+∣θ∣ is dominated by ∣y∣1/2.
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Algorithm analysis

If the geometric planner computes a path for which all the configurations are contained in the free 
space, then the geometric path must be cut in pieces of length at most O (ϵ2 ) in order to guaranteed 
that the feasible path joining them does not leave the free configuration space.

The worst case is reached in the case of the parking task.

 

If  L is the length of the walls, and  ϵ is de difference between the with of the corridor and the 
lengh of the car, then the algorithm runs in O (L /ϵ2).

The algorithm is more efficient as the geometric path is farther from the obstacles.
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Algorithm analysis

The complexity also depends on the lower bound ρ of the turning radius. The algorithm runs in 
O (ρ/ϵ2).

It is possible to reduce the number of pieces of the shortest path.

 

The number of maneuvers for the classical car-parking increases as the square of the decreasing 
free space ϵ.

The algorithm does not find an optimal length path (it requires an open set to move in). To do so  
the algorithm would need to work with contact with the obstacles.
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Complexity of the complete problem

Complexity of the complete problem

The following quantities are needed:
n Geometric complexity of the obstacles

m Geometric complexity of the robot
ϵ Minimum “size” of the free space
ρ Minimum turning radius
σ “Complexity” of the output path

n and m are the classical parameters used for evaluating the complexity of the methods that solve 
the piano-mover problem.

Let  c be  any  point  in  the  free  configuration  space  and  B (c ,ϵ) the  biggest  Riemannian  ball 
containing c, with radius ϵ. Then ϵ is defined as Minc {ϵ }. By property 2, the number of Reeds and 
Shepp balls of radius ϵ required to cover a Riemannian ball of radius ϵ is O (ϵ−2).

The complexity of σ can be characterized by the number of elementary pieces of the solution path
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Experimental results

Experimental results
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