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Problem description

Problem description

We want to solve large scale dynamic problems with linear deformation modeled with the finite 
element method.
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σ=D (ε−ε 0 )+σ 0

Where u is the displacement vector, ε  the stain, σ  the stress. D is called the constitutive matrix.
The solution is found using the finite element method with the Galerkin weighted residuals.
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Schur substructuring method

Schur substructuring method

This is a domain decomposition method without overlapping [Krui04].
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Finite element domain (left), domain discretization (center), partitioning (right).

We start with a system of equations resulting from a finite element problem
Kd=f , (1)

where K is a symmetric positive definite matrix of size n×n.

If we divide the geometry into p partitions, the idea is to split the workload to let each partition to 
be handled by a computer in the cluster.
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Schur substructuring method
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Figure 1. Partitioning example.

We can arrange (reorder variables) of the system of equations to have the following form
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The superscript  II denotes entries that capture the relationship between nodes inside a partition. 
BB is used to indicate entries in the matrix that relate nodes on the boundary. Finally IB and BI 
are used for entries with values dependent of nodes in the boundary and nodes inside the partition.
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Schur substructuring method

Thus, the system can be separated in p different systems,

(Ki
II K i

IB

K i
BI KBB)(di

I

dB)=( f i
I

f B), i=1… p.

For each partition i  the vector of unknowns di
I as

di
I=(Ki

II)−1( f i
I−Ki

IBdB). (3)

After applying Gaussian elimination by blocks on (2), the reduced system of equations becomes

(KBB−∑
i=1

p

K i
BI (Ki

II)−1
K i

IB)dB=fB−∑
i=1

p

Ki
BI(Ki

II)−1
f i

I. (4)

Once the vector dB is computed using (4), we can calculate the internal unknowns di
I with (3).

It is not necessary to calculate the inverse in (4).

Let’s define K̄ i
BB=Ki

BI(K i
II)−1K i

IB, to calculate it [Sori00], we proceed column by column using an 
extra vector t, and solving for c=1…n

K i
II t=[Ki

IB]c, (5)
note that many [K i

IB]c are null. Next we can complete K i
BB with,

[K̄ i
BB]c=K i

BI t.
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Schur substructuring method

Now lets define f̄ i
B=K i

BI(K i
II)−1 f i

I, in this case only one system has to be solved
K i

II t=f i
I, (6)

and then
f̄ i

B=K i
BI t.

Each K̄ i
BB and f̄ i

B holds the contribution of each partition to (4), this can be written as

(KBB−∑
i=1

p

K̄ i
BB)dB=fB−∑

i=1

p

f̄ i
B, (7)

once (7) is solved, we can calculate the inner results of each partition using (3).

Since Ki
II is sparse and has to be solved many times in (5), a efficient way to proceed is to use a 

Cholesky factorization of  K i
II. To reduce memory usage and increase speed a sparse Cholesky 

factorization has to be implemented, this method is explained below.

In case of (7), KBB is sparse, but K̄ i
BB are not. To solve this system of equations an sparse version 

of  conjugate  gradient  was  implemented,  the  matrix  (KBB−∑i=1
p K̄ i

BB) is  not  assembled,  but 
maintained distributed.
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Matrix storage

Matrix storage

An efficient method to store and operate matrices of this kind of problems is the Compressed 
Row Storage (CRS) [Saad03 p362]. This method is suitable when we want to access entries of 
each row of a matrix A sequentially.

For each row i  of A we will have two vectors, a vector vi
A that will contain the non-zero values of 

the row, and a vector  j i
A with their respective column indexes. For example a matrix A and its 

CRS representation

A=(8 4 0 0 0 0
0 0 1 3 0 0
2 0 1 0 7 0
0 9 3 0 0 1
0 0 0 0 0 5

), 
8 4
1 2
1 3
3 4
2 1
1 3

7
5

9 3
2 3

1
6

5
6

v4
A=(9,3, 1)

j 4
A=(2,3, 6)

The size of the row will be denoted by ∣vi
A∣ or by ∣ j iA∣. Therefore the q th non zero value of the 

row i  of A will be denoted by (vi
A)q and the index of this value as ( j iA)q, with q=1,… ,∣vi

A∣.
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Cholesky factorization for sparse matrices

Cholesky factorization for sparse matrices

For full matrices the computational complexity of Cholesky factorization A=LLT is O (n3).

To calculate entries of  L

Li j=
1

L j j (Ai j−∑
k=1

j−1

Li k L j k), for i> j

L j j=√A j j−∑
k=1

j−1

L j k
2 .

We use four strategies to reduce time and memory usage when performing this factorization on 
sparse matrices:

1. Reordering of rows and columns of the matrix to reduce fill-in in L. This is equivalent to use 
a permutation matrix to reorder the system (P A PT)(P x )=(P b ).

2. Use symbolic Cholesky factorization to obtain an exact L factor (non zero entries in L).
3. Organize operations to improve cache usage.
4. Parallelize the factorization.
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Cholesky factorization for sparse matrices

Matrix reordering
We want to reorder rows and columns of A, in a way that the number of non-zero entries of L are 
reduced. η(L ) indicates the number of non-zero entries of L.

A=         L=

The stiffness matrix to the left  A∈ℝ556×556, with  η( A)=1810. To the right the lower triangular 
matrix L, with η(L )=8729.
There are several heuristics like the minimum degree algorithm [Geor81] or a nested dissection 
method [Kary99].
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Cholesky factorization for sparse matrices

By reordering we have a matrix A '  with η(A ' )=1810 and its factorization L '  with η(L ' )=3215
. Both factorizations solve the same system of equations.

A '=         L '=

We reduce the factorization fill-in by
η(L ' )=3215
η(L )=8729

=0.368.

To determine a “good” reordering for a matrix A that minimize the fill-in of L is an NP complete 
problem [Yann81].
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Cholesky factorization for sparse matrices

Symbolic Cholesky factorization
The  algorithm  to  determine  the  Li j entries  that  area  non-zero  is  called  symbolic  Cholesky 
factorization [Gall90].
Let be, for all columns j=1…n,

a j ≝ {k> j ∣ Ak j≠0 },
l j ≝ {k> j ∣ Lk j≠0 }.

The sets r j will register the columns of L which structure will affect the column j of L.

r j ← ∅, j ← 1…n
for j ← 1…n
l j ← a j

for i∈r j

l j ← l j∪l i∖ { j }
end_for

p ← {min {i∈l j } if l j≠∅
j other

r p ← r p∪{ j }
end_for

  
A=(

a1 1 a1 2 a1 6

a21 a2 2 a2 3 a2 4

a3 2 a33 a35

a4 2 a4 4

a53 a55 a5 6

a61 a65 a6 6

)
a2= {3,4 }

  
L=(

l 1 1

l 2 1 l 2 2

l 3 2 l 3 3

l 4 2 l 4 3 l 4 4

l 5 3 l 5 4 l55

l 6 1 l 6 2 l 6 3 l 6 4 l65 l 66

)
l 2={3,4,6}

This algorithm is very efficient, its complexity in time and space has an order of  O (η(L)).
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Cholesky factorization for sparse matrices

Parallelization of the factorization
The calculation of the non-zero Li j entries can be done in parallel if we fill L column by column 
[Heat91].
Let J (i ) be the indexes of the non-zero values of the row i  of L. Formulae to calculate Li j are:

Li j=
1

L j j (Ai j− ∑
k∈(J (i)∩J ( j ))

k < j

Li k L j k), para i> j

L j j=√A j j− ∑
k∈J ( j )

k < j

L j k
2

.

Core 1

Core 2

Core N

The paralellization was made using the OpenMP schema.
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Cholesky factorization for sparse matrices

How efficient is it?
The next table shows results solving a 2D Poisson equation problem, comparing Cholesky and 
conjugate gradient with Jacobi preconditioning. Several discretizations where used.

Equations nnz(A) nnz(L) Cholesky [s] CGJ [s]
1,006 6,140 14,722 0.086 0.081
3,110 20,112 62,363 0.137 0.103

10,014 67,052 265,566 0.309 0.184
31,615 215,807 1’059,714 1.008 0.454

102,233 705,689 4’162,084 3.810 2.891
312,248 2’168,286 14’697,188 15.819 19.165
909,540 6’336,942 48’748,327 69.353 89.660

3’105,275 21’681,667 188’982,798 409.365 543.110
10’757,887 75’202,303 743’643,820 2,780.734 3,386.609
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32,703,892,477
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Numerical experiment, building deformation

Numerical experiment, building deformation

We useda cluster  with 15 nodes,  each one with two dual  core  Intel  Xeon E5502 (1.87GHz) 
processors, a total of 60 cores.

The problem tested is a 3D solid model of a building that is deformed due to self weight. The 
geometry is divided in 1’336,832 elements, with 1’708,273 nodes, with three degrees of freedom 
per node the resulting system of equations has 5’124,819 unknowns. Tolerance used is 1x10-10.

 

Substructuration of the domain (left) resulting deformation (right)
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Numerical experiment, building deformation

Number of 
processes

Partitioning
time [s]

Inversion time 
(Cholesky) [s]

Schur complement 
time (CG) [s]

CG steps Total time [s]

14 47.6 18520.8 4444.5 6927 23025.0
28 45.7 6269.5 2444.5 8119 8771.6
56 44.1 2257.1 2296.3 9627 4608.9

14 28 56
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Number of 
processes

Master 
process 
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Slave 
processes 

[GB]

Total 
memory 

[GB]
14 1.89 73.00 74.89
28 1.43 67.88 69.32
56 1.43 62.97 64.41

15/24



Larger systems of equations

Larger systems of equations

To test solution times in larger systems of equations we set a simple geometry. We calculated the 
temperature distribution of a metalic square with Dirichlet conditions on all boundaries.

1°C
2°C
3°C
4°C

        

The domain was discretized using quadrilaterals with nine nodes, the discretization made was 
from 25 million nodes up to 150 million nodes.
In all cases we divided the domain into 116 partitions, each partition is solved in one core.
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Larger systems of equations

25,010,001 50,027,329 75,012,921 100,020,001 125,014,761 150,038,001
0
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Schur complement time (CG) [min]
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Total time [min]

Number of equations
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]

Equations Partitioning
time [min]

Inversion 
time 

(Cholesky) 
[min]

Schur 
complement 

time (CG) [min]

CG steps Total time 
[min]

25,010,001 6.2 17.3 4.7 872.0 29.4
50,027,329 13.3 43.7 6.3 1012.0 65.4
75,012,921 20.6 80.2 4.3 1136.0 108.3

100,020,001 28.5 115.1 5.4 1225.0 152.9
125,014,761 38.3 173.5 7.5 1329.0 224.2
150,038,001 49.3 224.1 8.9 1362.0 288.5
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Larger systems of equations
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Equations Master process 
[GB]

Average slave 
processes [GB]

Slave 
processes [GB]

Total memory 
[GB]

25,010,001 4.05 0.41 47.74 51.79
50,027,329 8.10 0.87 101.21 109.31
75,012,921 12.15 1.37 158.54 170.68

100,020,001 16.20 1.88 217.51 233.71
125,014,761 20.25 2.38 276.04 296.29
150,038,001 24.30 2.92 338.29 362.60
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Dynamic problem formulation

Dynamic problem formulation

The Hilber-Hughes-Taylor (HHT) method [Hilb77] is used to solve a dynamic problem, equations 
of motion have the form

Mü+Cu̇+Ku=F ( t ),
where M, C and K are the mass, damping and stiffness matrices of size n×n, these are constant, 
F is the  time depending force.
The integration formulas depend on two parameters β and γ,

ui+1=ui+h u̇i+
h2

2 [(1−2β) üi+2β üi+1],

u̇i+1=u̇i+h [(1−γ ) üi+γ üi+1 ],
they are used to discretize the equations of motion at time t i+1, h is the step size,

Müi+1+(1+α )Cu̇i+1−αCu̇i+(1+α )Kui+1−αKui=F ( t̃ i+1),
where t̃ i+1=t n+(1+α )h.

The HTT method is second order accurate and unconditionally stable with
−1 /3≤α≤0, β=(1−α )2/4 and γ=(1−2α ) /2.
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Infante Henrique bridge over the Douro river, Portugal

Infante Henrique bridge over the Douro river, Portugal
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Infante Henrique bridge over the Douro river, Portugal

Simulation
Simulation of a 18 wheels 36 metric tons truck
crossing the Infante D. Henrique Bridge.
Pre and post-process using GiD (http://gid.cimne.upc.es).

Nodes 332,462
Elements 1’381,944
Element type Tetrahedron
Time steps 372
HHT alpha factor 0
Rayleigh damping a 0.5
Rayleigh damping b 0.5
Degrees of freedom 997,386
nnz(K) 38’302,119
Partitioning time 32.9 s
Factorization time 87.3 s
Time per step (CGJ) 132.9 s

Total time 13.7 h
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Thank you!Questions?

Thank you!
Questions?

miguelvargas@cimat.mx
http://www.cimat.mx/~miguelvargas
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