
Solution of dynamic solid deformation using
hybrid parallelization with MPI and OpenMP

MSc. Miguel Vargas-Félix
ISUM 2012

1/24

Problem description

Problem description

We want to solve large scale dynamic problems with linear deformation modeled with the finite
element method.

ε=(
∂
∂ x

0 0

0 ∂
∂ y

0

0 0 ∂
∂ z

∂
∂ y

∂
∂ x

0

0 ∂
∂ z

∂
∂ y

∂
∂ z

0 ∂
∂ x

)(u1

u 2

u3
)

σ=D (ε−ε 0)+σ 0

Where u is the displacement vector, ε the stain, σ the stress. D is called the constitutive matrix.
The solution is found using the finite element method with the Galerkin weighted residuals.

2/24

Schur substructuring method

Schur substructuring method

This is a domain decomposition method without overlapping [Krui04].

Γ f

Γd

Ω

i j

Finite element domain (left), domain discretization (center), partitioning (right).

We start with a system of equations resulting from a finite element problem
Kd=f , (1)

where K is a symmetric positive definite matrix of size n×n.

If we divide the geometry into p partitions, the idea is to split the workload to let each partition to
be handled by a computer in the cluster.

3/24

Schur substructuring method

K 1
II

K 1
IB

K 2
II

K 2
IB

K 3
II
K 3

IB

KBB

K 2
IB

 (K1
II 0 0 K1

IB

0 K2
II 0 K2

IB

0 0 K3
II K3

IB

K1
BI K 2

BI K3
BI KBB)

Figure 1. Partitioning example.

We can arrange (reorder variables) of the system of equations to have the following form

(
K1

II 0 K1
IB

K2
II K2

IB

0 K3
II K3

IB

⋮ ⋱ ⋮
K p

II K p
IB

K1
BI K2

BI K3
BI ⋯ K p

BI K BB
)(
d1

I

d2
I

d3
I

⋮
d p

I

dB
)=(

f 1
I

f 2
I

f 3
I

⋮
f p

I

f B
). (2)

The superscript II denotes entries that capture the relationship between nodes inside a partition.
BB is used to indicate entries in the matrix that relate nodes on the boundary. Finally IB and BI
are used for entries with values dependent of nodes in the boundary and nodes inside the partition.

4/24

Schur substructuring method

Thus, the system can be separated in p different systems,

(Ki
II K i

IB

K i
BI KBB)(di

I

dB)=(f i
I

f B), i=1… p.

For each partition i the vector of unknowns di
I as

di
I=(Ki

II)−1(f i
I−Ki

IBdB). (3)

After applying Gaussian elimination by blocks on (2), the reduced system of equations becomes

(KBB−∑
i=1

p

K i
BI (Ki

II)−1
K i

IB)dB=fB−∑
i=1

p

Ki
BI(Ki

II)−1
f i

I. (4)

Once the vector dB is computed using (4), we can calculate the internal unknowns di
I with (3).

It is not necessary to calculate the inverse in (4).

Let’s define K̄ i
BB=Ki

BI(K i
II)−1K i

IB, to calculate it [Sori00], we proceed column by column using an
extra vector t, and solving for c=1…n

K i
II t=[Ki

IB]c, (5)
note that many [K i

IB]c are null. Next we can complete K i
BB with,

[K̄ i
BB]c=K i

BI t.

5/24

Schur substructuring method

Now lets define f̄ i
B=K i

BI(K i
II)−1 f i

I, in this case only one system has to be solved
K i

II t=f i
I, (6)

and then
f̄ i

B=K i
BI t.

Each K̄ i
BB and f̄ i

B holds the contribution of each partition to (4), this can be written as

(KBB−∑
i=1

p

K̄ i
BB)dB=fB−∑

i=1

p

f̄ i
B, (7)

once (7) is solved, we can calculate the inner results of each partition using (3).

Since Ki
II is sparse and has to be solved many times in (5), a efficient way to proceed is to use a

Cholesky factorization of K i
II. To reduce memory usage and increase speed a sparse Cholesky

factorization has to be implemented, this method is explained below.

In case of (7), KBB is sparse, but K̄ i
BB are not. To solve this system of equations an sparse version

of conjugate gradient was implemented, the matrix (KBB−∑i=1
p K̄ i

BB) is not assembled, but
maintained distributed.

6/24

Matrix storage

Matrix storage

An efficient method to store and operate matrices of this kind of problems is the Compressed
Row Storage (CRS) [Saad03 p362]. This method is suitable when we want to access entries of
each row of a matrix A sequentially.

For each row i of A we will have two vectors, a vector vi
A that will contain the non-zero values of

the row, and a vector j i
A with their respective column indexes. For example a matrix A and its

CRS representation

A=(8 4 0 0 0 0
0 0 1 3 0 0
2 0 1 0 7 0
0 9 3 0 0 1
0 0 0 0 0 5

),
8 4
1 2
1 3
3 4
2 1
1 3

7
5

9 3
2 3

1
6

5
6

v4
A=(9,3, 1)

j 4
A=(2,3, 6)

The size of the row will be denoted by ∣vi
A∣ or by ∣ j iA∣. Therefore the q th non zero value of the

row i of A will be denoted by (vi
A)q and the index of this value as (j iA)q, with q=1,… ,∣vi

A∣.

7/24

Cholesky factorization for sparse matrices

Cholesky factorization for sparse matrices

For full matrices the computational complexity of Cholesky factorization A=LLT is O (n3).

To calculate entries of L

Li j=
1

L j j (Ai j−∑
k=1

j−1

Li k L j k), for i> j

L j j=√A j j−∑
k=1

j−1

L j k
2 .

We use four strategies to reduce time and memory usage when performing this factorization on
sparse matrices:

1. Reordering of rows and columns of the matrix to reduce fill-in in L. This is equivalent to use
a permutation matrix to reorder the system (P A PT)(P x)=(P b).

2. Use symbolic Cholesky factorization to obtain an exact L factor (non zero entries in L).
3. Organize operations to improve cache usage.
4. Parallelize the factorization.

8/24

Cholesky factorization for sparse matrices

Matrix reordering
We want to reorder rows and columns of A, in a way that the number of non-zero entries of L are
reduced. η(L) indicates the number of non-zero entries of L.

A= L=

The stiffness matrix to the left A∈ℝ556×556, with η(A)=1810. To the right the lower triangular
matrix L, with η(L)=8729.
There are several heuristics like the minimum degree algorithm [Geor81] or a nested dissection
method [Kary99].

9/24

Cholesky factorization for sparse matrices

By reordering we have a matrix A ' with η(A ')=1810 and its factorization L ' with η(L ')=3215
. Both factorizations solve the same system of equations.

A '= L '=

We reduce the factorization fill-in by
η(L ')=3215
η(L)=8729

=0.368.

To determine a “good” reordering for a matrix A that minimize the fill-in of L is an NP complete
problem [Yann81].

10/24

Cholesky factorization for sparse matrices

Symbolic Cholesky factorization
The algorithm to determine the Li j entries that area non-zero is called symbolic Cholesky
factorization [Gall90].
Let be, for all columns j=1…n,

a j ≝ {k> j ∣ Ak j≠0 },
l j ≝ {k> j ∣ Lk j≠0 }.

The sets r j will register the columns of L which structure will affect the column j of L.

r j ← ∅, j ← 1…n
for j ← 1…n
l j ← a j

for i∈r j

l j ← l j∪l i∖ { j }
end_for

p ← {min {i∈l j } if l j≠∅
j other

r p ← r p∪{ j }
end_for

A=(

a1 1 a1 2 a1 6

a21 a2 2 a2 3 a2 4

a3 2 a33 a35

a4 2 a4 4

a53 a55 a5 6

a61 a65 a6 6

)
a2= {3,4 }

L=(

l 1 1

l 2 1 l 2 2

l 3 2 l 3 3

l 4 2 l 4 3 l 4 4

l 5 3 l 5 4 l55

l 6 1 l 6 2 l 6 3 l 6 4 l65 l 66

)
l 2={3,4,6}

This algorithm is very efficient, its complexity in time and space has an order of O (η(L)).
11/24

Cholesky factorization for sparse matrices

Parallelization of the factorization
The calculation of the non-zero Li j entries can be done in parallel if we fill L column by column
[Heat91].
Let J (i) be the indexes of the non-zero values of the row i of L. Formulae to calculate Li j are:

Li j=
1

L j j (Ai j− ∑
k∈(J (i)∩J (j))

k < j

Li k L j k), para i> j

L j j=√A j j− ∑
k∈J (j)

k < j

L j k
2

.

Core 1

Core 2

Core N

The paralellization was made using the OpenMP schema.
12/24

Cholesky factorization for sparse matrices

How efficient is it?
The next table shows results solving a 2D Poisson equation problem, comparing Cholesky and
conjugate gradient with Jacobi preconditioning. Several discretizations where used.

Equations nnz(A) nnz(L) Cholesky [s] CGJ [s]
1,006 6,140 14,722 0.086 0.081
3,110 20,112 62,363 0.137 0.103

10,014 67,052 265,566 0.309 0.184
31,615 215,807 1’059,714 1.008 0.454

102,233 705,689 4’162,084 3.810 2.891
312,248 2’168,286 14’697,188 15.819 19.165
909,540 6’336,942 48’748,327 69.353 89.660

3’105,275 21’681,667 188’982,798 409.365 543.110
10’757,887 75’202,303 743’643,820 2,780.734 3,386.609

1,000 10,000 100,000 1,000,000 10,000,000
0

0

1

10

100

1,000

10,000

0.1 0.1
0.2

0.5

2.9

19.2

89.7

543.1

3,386.6

0.1
0.1

0.3

1.0

3.8

15.8

69.4

409.4

2,780.7

Cholesky
CGJ

Equations

Ti
m

e
[s

]

1,000 10,000 100,000 1,000,000 10,000,000
1E+5

1E+6

1E+7

1E+8

1E+9

1E+10

417,838

1,314,142

4,276,214

13,581,143

44,071,337

134,859,928

393,243,516

1,343,496,475

4,656,139,711

707,464

2,632,403

10,168,743

38,186,672

145,330,127

512,535,099

1,747,287,767

7,134,437,212

32,703,892,477

Cholesky
CGJ

Equations

M
em

or
y

[b
yt

es
]

13/24

Numerical experiment, building deformation

Numerical experiment, building deformation

We useda cluster with 15 nodes, each one with two dual core Intel Xeon E5502 (1.87GHz)
processors, a total of 60 cores.

The problem tested is a 3D solid model of a building that is deformed due to self weight. The
geometry is divided in 1’336,832 elements, with 1’708,273 nodes, with three degrees of freedom
per node the resulting system of equations has 5’124,819 unknowns. Tolerance used is 1x10-10.

Substructuration of the domain (left) resulting deformation (right)

14/24

Numerical experiment, building deformation

Number of
processes

Partitioning
time [s]

Inversion time
(Cholesky) [s]

Schur complement
time (CG) [s]

CG steps Total time [s]

14 47.6 18520.8 4444.5 6927 23025.0
28 45.7 6269.5 2444.5 8119 8771.6
56 44.1 2257.1 2296.3 9627 4608.9

14 28 56
0

5000

10000

15000

20000
Schur complement time (CG)
[s]
Inversion time (Cholesky) [s]
Partitioning time [s]

Number of processes

Ti
m

e
[s

]

14 28 56
0

10

20

30

40

50

60

70

80 Slave processes [GB]

Number of processes
M

em
or

y [
G

ig
a

by
te

s]

Number of
processes

Master
process

[GB]

Slave
processes

[GB]

Total
memory

[GB]
14 1.89 73.00 74.89
28 1.43 67.88 69.32
56 1.43 62.97 64.41

15/24

Larger systems of equations

Larger systems of equations

To test solution times in larger systems of equations we set a simple geometry. We calculated the
temperature distribution of a metalic square with Dirichlet conditions on all boundaries.

1°C
2°C
3°C
4°C

The domain was discretized using quadrilaterals with nine nodes, the discretization made was
from 25 million nodes up to 150 million nodes.
In all cases we divided the domain into 116 partitions, each partition is solved in one core.

16/24

Larger systems of equations

25,010,001 50,027,329 75,012,921 100,020,001 125,014,761 150,038,001
0

50

100

150

200

250

300
Schur complement time (CG) [min]
Inversion time (Cholesky) [min]
Partitioning time [min]
Total time [min]

Number of equations

Ti
m

e
[m

in
]

Equations Partitioning
time [min]

Inversion
time

(Cholesky)
[min]

Schur
complement

time (CG) [min]

CG steps Total time
[min]

25,010,001 6.2 17.3 4.7 872.0 29.4
50,027,329 13.3 43.7 6.3 1012.0 65.4
75,012,921 20.6 80.2 4.3 1136.0 108.3

100,020,001 28.5 115.1 5.4 1225.0 152.9
125,014,761 38.3 173.5 7.5 1329.0 224.2
150,038,001 49.3 224.1 8.9 1362.0 288.5

17/24

Larger systems of equations

25,010,001 50,027,329 75,012,921 100,020,001 125,014,761 150,038,001
0

50

100

150

200

250

300

350 Slave processes [GB]
Master process [GB]

Number of equations

M
em

or
y [

G
ig

a
by

te
s]

Equations Master process
[GB]

Average slave
processes [GB]

Slave
processes [GB]

Total memory
[GB]

25,010,001 4.05 0.41 47.74 51.79
50,027,329 8.10 0.87 101.21 109.31
75,012,921 12.15 1.37 158.54 170.68

100,020,001 16.20 1.88 217.51 233.71
125,014,761 20.25 2.38 276.04 296.29
150,038,001 24.30 2.92 338.29 362.60

18/24

Dynamic problem formulation

Dynamic problem formulation

The Hilber-Hughes-Taylor (HHT) method [Hilb77] is used to solve a dynamic problem, equations
of motion have the form

Mü+Cu̇+Ku=F (t),
where M, C and K are the mass, damping and stiffness matrices of size n×n, these are constant,
F is the time depending force.
The integration formulas depend on two parameters β and γ,

ui+1=ui+h u̇i+
h2

2 [(1−2β) üi+2β üi+1],

u̇i+1=u̇i+h [(1−γ) üi+γ üi+1],
they are used to discretize the equations of motion at time t i+1, h is the step size,

Müi+1+(1+α)Cu̇i+1−αCu̇i+(1+α)Kui+1−αKui=F (t̃ i+1),
where t̃ i+1=t n+(1+α)h.

The HTT method is second order accurate and unconditionally stable with
−1 /3≤α≤0, β=(1−α)2/4 and γ=(1−2α) /2.

19/24

Infante Henrique bridge over the Douro river, Portugal

Infante Henrique bridge over the Douro river, Portugal

20/24

Infante Henrique bridge over the Douro river, Portugal

Simulation
Simulation of a 18 wheels 36 metric tons truck
crossing the Infante D. Henrique Bridge.
Pre and post-process using GiD (http://gid.cimne.upc.es).

Nodes 332,462
Elements 1’381,944
Element type Tetrahedron
Time steps 372
HHT alpha factor 0
Rayleigh damping a 0.5
Rayleigh damping b 0.5
Degrees of freedom 997,386
nnz(K) 38’302,119
Partitioning time 32.9 s
Factorization time 87.3 s
Time per step (CGJ) 132.9 s

Total time 13.7 h

21/24

http://en.structurae.de/structures/data/index.cfm?id=s0004697
http://gid.cimne.upc.es/

Thank you!Questions?

Thank you!
Questions?

miguelvargas@cimat.mx
http://www.cimat.mx/~miguelvargas

22/24

http://www.cimat.mx/~miguelvargas
mailto:miguelvargas@cimat.mx

References

References

[Gall90] K. A. Gallivan, M. T. Heath, E. Ng, J. M. Ortega, B. W. Peyton, R. J. Plemmons, C. H.
Romine, A. H. Sameh, R. G. Voigt, Parallel Algorithms for Matrix Computations, SIAM, 1990.
[Geor81] A. George, J. W. H. Liu. Computer solution of large sparse positive definite systems.
Prentice-Hall, 1981
[Heat91] M T. Heath, E. Ng, B. W. Peyton. Parallel Algorithms for Sparse Linear Systems.
SIAM Review, Vol. 33, No. 3, pp. 420-460, 1991.
[Hilb77] H. M. Hilber, T. J. R. Hughes, and R. L. Taylor. Improved numerical dissipation for
time integration algorithms in structural dynamics. Earthquake Eng. and Struct. Dynamics,
5:283–292, 1977.
[Kary99] G. Karypis, V. Kumar. A Fast and Highly Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM Journal on Scientific Computing, Vol. 20-1, pp. 359-392, 1999.
[Krui04] J. Kruis. “Domain Decomposition Methods on Parallel Computers”. Progress in
Engineering Computational Technology, pp 299-322. Saxe-Coburg Publications. Stirling,
Scotland, UK. 2004.
[MPIF08]Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
Version 2.1. University of Tennessee, 2008.
[Saad03] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.

23/24

References

[Sori00] M. Soria-Guerrero. Parallel multigrid algorithms for computational fluid dynamics and
heat transfer. Universitat Politècnica de Catalunya. Departament de Màquines i Motors Tèrmics.
2000. http://www.tesisenred.net/handle/10803/6678
[Yann81] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Journal on
Algebraic Discrete Methods, Volume 2, Issue 1, pp 77-79, March, 1981.

24/24

http://www.tesisenred.net/handle/10803/6678

