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Description of the problem

Description of the problem

This is a high performance/large scale application case studie of the finite element method for 
solid mechanics. Our goal is to calculate linear deformation, stain an stress of solids dicretized 
with large meshes (millions of elements) using parallel computing.
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Where u is the displacement vector,  the stain,  the stress. D is called the constitutive matrix.
The solution is found using the finite element method with the Galerkin weighted residuals.
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Description of the problem

By discretizing the domain, and applying boundary conditions (imposed displacements or applied 
forces), we assemble a linear system of equations

K u= f ,
where  K is the stiffness matrix,  u is the displacement vector and  f  is the force vector. If the 
problem is well-defined K is symmetric positive definite (SPD). This matrix is also sparse.
Our goal now is to solve big SPD systems of equations using parallel computing implemented in a 
Beowulf cluster. A group of multicore computers connected in a network.
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We will combine shared and distributed memory techniques.
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“Divide et impera” with MPI

“Divide et impera” with MPI

To distribute workload in big problems we partitionate the domain into several subdomains.
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Domain decomposition (Schwarz alternating method)

Domain decomposition (Schwarz alternating method)

This is an iterative method to split a big problem in small problems.
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We have a domain  with boundary ∂.
L is a differential operator L x= y in .
Dirichlet conditions x=b on ∂.
The domain is divided in two partitions 1

and 2 with boundaries ∂1 and ∂2.

Partitions 1 y 2 are overlapped, =1∪2.
1 and 2 are artificial boundaries, they belong 
to ∂1 and ∂2 and exist inside .
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Domain decomposition (Schwarz alternating method)
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Domain decomposition (Schwarz alternating method)

Implementation using MPI
MPI (Message Passing Interface is a set of routines and programs to make easy to implement and 
administrate  applications  that  ejecute several  processes  at  the  same  time.  It  has  routines  to 
transmit data with great efficiency. It could be used in Beowulf clusters.
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• The idea is to assing a MPI process to handle and solve each partition.
• OpenMP is used in each MPI process to solve the system of equations of the partition.
• Values on artificial boundaries are interchanged using MPI message routines.
• Schwarz iterations continue until global convergence is achived.
• For partitioning we used METIS library.
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Domain decomposition (Schwarz alternating method)
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Solving SPD sparse systems ofequations using shared memory

Solving SPD sparse systems of
equations using shared memory

A simple but powerful way to program a multicore computer with shared memory is OpenMP.
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In modern computers the processor is a lot faster than 
the  memory,  between  them a  high  speed  memory  is 
used to improve data access. The cache.
The most importat issue to achieve high performance is 
to use the cache efficiently.

Access to Cycles
Register ≤ 1

L1 ~ 3
L2 ~ 14

Main memory ~ 240

• Work with use continuous memory blocks.
• Access memory in sequence.
• Each core should work in an  independent memory 

area.
Algorithms to solve our system of equations should take care of this.
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Solving SPD sparse systems ofequations using shared memory

Parallel preconditioned conjugate gradient for sparse matrices

Preconditioning M  A x−b=0 is used to 
improve CG convergence.
Preconditioners must be sparse.

We tested three different preconditioners:

• Jacobi M−1=diag  A −1.

• Incomplete Cholesky factorization 
M−1=G lG l

T, G l≈L.

• Factorized sparse approximate inverese 
M=H l

TH l, H l≈L
−1.

Matrix-vector and dot products are parallelized 
using OpenMP.
Compress row storage method is used to store matrices.
Only non-zero entries and their indexes are stored.
Entries in each row are contiguos and sorted to improve cache access.
Each processor core works with a group of rows to parallelize the operations.
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r0  b−A x0, initial residual
p0  M r0, initial descent direction
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Solving SPD sparse systems ofequations using shared memory

It looks like:

Vector<T> g(n); // Gradient
Vector<T> p(n); // Descent direcction
Vector<T> w(n); // w = A*p

double gg = 0.0;
#pragma omp parallel for default(shared) reduction(+:gg) schedule(guided)
for (int i = 1; i <= n; ++i)
{

int* __restrict A_index_i = A.index[i];
double* __restrict A_entry_i = A.entry[i];

double sum = 0.0;
int k_max = A.count[i];
for (register int k = 1; k <= k_max; ++k)
{

sum += A_entry_i[k]*x.entry[A_index_i[k]];
}
g.entry[i] = sum - b.entry[i]; // g = AX - b;
p.entry[i] = -g.entry[i]; // p = -g
gg += g.entry[i]*g.entry[i]; // gg = g'*g

}

int step = 0;
while (step < max_steps)
{

if (Norm(gg) <= tolerance) // Test termination condition
{

break;
}

double pw = 0.0;
#pragma omp parallel for default(shared) reduction(+:pw) schedule(guided)
for (int i = 1; i <= n; ++i)
{

int* __restrict A_index_i = A.index[i];

double* __restrict A_entry_i = A.entry[i];

double sum = 0.0;
int k_max = A.count[i];
for (register int k = 1; k <= k_max; ++k)
{

sum += A_entry_i[k]*p.entry[A_index_i[k]];
}
w.entry[i] = sum; // w = AP
pw += p.entry[i]*w.entry[i]; // pw = p'*w

}

double alpha = gg/pw; // alpha = (g'*g)/(p'*w)

double gngn = 0.0;
#pragma omp parallel for default(shared) reduction(+:gngn)
for (int i = 1; i <= n; ++i)
{

x.entry[i] += alpha*p.entry[i]; // Xn = x + alpha*p
g.entry[i] += alpha*w.entry[i]; // Gn = g + alpha*w
gngn += g.entry[i]*g.entry[i]; // gngn = Gn'*Gn

}

double beta = gngn/gg; // beta = (Gn'*Gn)/(g'*g)

#pragma omp parallel for default(shared)
for (int i = 1; i <= n; ++i)
{

p.entry[i] = beta*p.entry[i] - g.entry[i]; // Pn = -g + beta*p
}

gg = gngn;
++step;

}
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Solving SPD sparse systems ofequations using shared memory

Parallel Cholesky factorización for sparse matrices

K=L LT, it is expensive to store and 
calculate L entries

Li j=
1

L j j
K i j−∑

k=1

j−1

Li k L j k, for i j

L j j=K j j−∑
k=1

j−1

L j k
2 .

Stiffnes matrix Cholesky factorization

nnz K =1810 nnz L =8729

nnz K ' =1810 nnz L ' =3215
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Solving SPD sparse systems ofequations using shared memory

We used several strategies to make Cholesky factorization efficient:
• Matrix ordering to reduce factorization fill-in. Minimum degree algorithm or nested disection 

algorithm (METIS library).
• Symbolic Cholesky factorization to determine non-zero entries before calculation.
• Factorization matrix is stored using compress row storage to improve forward-substitution.
• LT is stored to improve speed of back-substitution.
• The fill of each column of L is calculated in parallel using OpenMP.

Core 1

Core 2

Core N

This algorithm is also used to generate the incomplete Cholesky preconditioner.
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Solving SPD sparse systems ofequations using shared memory

It looks like:

for (int j = 1; j <= L.columns; ++j)
{

double* __restrict L_entry_j = L.entry[j];
double* __restrict Lt_entry_j = Lt.entry[j];

double L_jj = A(j, j);
int L_count_j = L.count[j];
for (register int q = 1; q < L_count_j; ++q)
{

L_jj -= L_entry_j[q]*L_entry_j[q];
}
L_jj = sqrt(L_jj);
L_entry_j[L_count_j] = L_jj; // L(j)(j) = sqrt(A(j)(j)-sum(k=1, j-1, L(j)(k)*L(j)(k)))
Lt_entry_j[1] = L_jj;

int Lt_count_j = Lt.count[j];
#pragma omp parallel for default(shared) schedule(guided)
for (int q = 2; q <= Lt_count_j; ++q)
{

int i = Lt.index[j][q];

double* __restrict L_entry_i = L.entry[i];

double L_ij = A(i, j);

const register int* __restrict L_index_j = L.index[j];
const register int* __restrict L_index_i = L.index[i];

register int qi = 1;
register int qj = 1;
register int ki = L_index_i[qi];
register int kj = L_index_j[qj];

for (bool next = true; next; )
{

while (ki < kj)
{

++qi;
ki = L_index_i[qi];

}
while (ki > kj)
{

++qj;
kj = L_index_j[qj];

}
while (ki == kj)
{

if (ki == j)
{

next = false;
break;

}
L_ij -= L_entry_i[qi]*L_entry_j[qj];
++qi;
++qj;
ki = L_index_i[qi];
kj = L_index_j[qj];

}
}
L_ij /= L_jj;
L_entry_i[qi] = L_ij;  // L(i)(j) = (A(i)(j)-sum(k = 1, j-1, L(i)(k)*L(j)(k)))/L(j)(j)
Lt_entry_j[q] = L_ij;

}
}

14/29



Solving SPD sparse systems ofequations using shared memory

2D Solid (OpenMP only)
Next results are from a 2D solid problem with 
1,005,362 equations.

nnz K =18'062,500

Tolerance used in CG algorithms is 1x10-5

nnz L =111'873,237
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Solving SPD sparse systems ofequations using shared memory

3D solid (OpenMP only)
Elements: 264,250
Nodes: 326,228
Variables: 978,684
nnz(A): 69,255,522
nnz(L): 787,567,656
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Solver 1 core [m] 2 cores [m] 4 cores [m] 6 cores [m] 8 cores [m] Memory
Cholesky 142 73 43 34 31 19,864’132,056
CG 387 244 152 146 141 922’437,575
CG-Jacobi 159 93 57 53 54 923’360,936
CG-FSAI 73 45 27 24 23 1,440’239,572
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Now with MPI+OpenMP

Now with MPI+OpenMP

Simulation of a builiding that deformates by self-weight. Basement has fixed displacement. The 
domain was discretized in 264,250 elements, 326,228 nodes, 978,684 equations,
nnz(K) = 69’255,522.

We will solve it using a combination of distributed and shared memory schemas (MPI+OpenMP).
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Now with MPI+OpenMP

Results, domain decomposition (14 partitions, 4 threads per solver)
Running in 14 computers each one with 4 cores.

Solver Total
time [s]

Total
memory

Memory
per slave

Cholesky 347 12,853,865,804 917,054,441
CG-FSAI 848 1,779,394,516 126,020,778

CG-Jacobi 2,444 1,149,968,796 81,061,798
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Now with MPI+OpenMP

Results, domain decomposition (28 partitions, 2 threads per solver)
Running in 14 computers each one with 4 cores.

Solver Total
time [s]

Total
memory

Memory
per slave

Cholesky 178 12,520,198,517 893,173,100
CG-FSAI 686 1,985,459,829 140,691,765

CG-Jacobi 1,940 1,290,499,837 91,051,766
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Now with MPI+OpenMP

Results, domain decomposition (56 partitions, 1 thread per solver)
Running in 14 computers each one with 4 cores.

Solver Total
time [s]

Total
memory

Memory
per slave

Cholesky 165 11,906,979,912 849,323,496
CG-FSAI 758 2,156,224,760 152,840,985

CG-Jacobi 2,235 1,405,361,320 99,207,882
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Now with MPI+OpenMP

Comparison
264,250 elements,
326,228 nodes,
978,684 equations,
nnz(K) = 69’255,522.
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Now with MPI+OpenMP

A bigger example
Elements:
Nodes:
Equations:
nnz(K):
Partitions:
CPU cores:
Nodes:

3’652,992
4’011,469

12’034,407
794’270,862

124
128

31

Solver Time [m] Memory [GB]
Cholesky 130 260
CG 133,926 34
CG-Jacobi 42,510 34
CG-FSAI 11,239 42
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Now with MPI+OpenMP

Big systems of equations (2D solid)
Equations Time [h] Memory [GB] Cores Overlap Nodes
3,970,662 0.12 17 52 12 13

14,400,246 0.93 47 52 10 13
32,399,048 1.60 110 60 17 15
41,256,528 2.38 142 60 15 15
63,487,290 4.93 215 84 17 29
78,370,466 5.59 271 100 20 29
82,033,206 5.13 285 100 20 29
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Lessons learned

Lessons learned

We found that incomple Cholesky factorization is unstable for  some matrices, it  is posible to 
stabilize the solver making the preconditioner diagonal-domainant, but we have to use a heuristic.
The big issue with iterative solvers is load balancing:

    

It is complex to partition the domain in such way that local problems take the same time to be 
solved. This issue is less notizable when Cholesky solver is used.
To  split  the  problem  using  domain  decomposition  with  Cholesky  works  well,  the  fastest 
configuration was using one thread per solver. The good news is that memory is getting cheaper.
If memory is a concern we can use CG with FSAI.
Next step is to work with gross meshes to have improve approximations.
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Heat diffusion problems

Heat diffusion problems

Processor heat sink.

    

Degrees of freedom 1
Dimension 3
Element type Tetrahedron
Nodes per element 10
Elements 1’409,407
Nodes 2’267,539
Equations  2’267,539
Solver type Cholesky
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Heat diffusion problems

    

Partitions Cores per 
partition

Time [m] Memory 
[gbytes]

14 4 15.53 20.96
28 2 11.50 21.15
56 1 9.67 20.98
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¿Questions?

¿Questions?
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¿Questions?

Number of equations vs time (2D heat diffusion problem)
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¿Questions?

Number of equations vs memory (2D heat diffusion problem)
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