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SUMMARY

The finite element method is used to solve problems like solid deformation and heat diffusion in 
domains with complex geometries. This kind of geometries requires discretization with millions of 
elements, this is equivalent to solve systems of equations with millions of variables. The aim is to 
use computer clusters to solve this systems.
The solution method used is Schur substructuration. Using it is possible to divide a large system of 
equations into many small ones to solve them more efficiently. This method allows parallelization.

MPI (Message Passing Interface) is used to distribute the systems of equations to solve each one in 
a  computer  of  a  cluster.  Each system of  equations  is  solved using  a  solver  implemented  with 
OpenMP. The systems of equations are sparse.

PROBLEM DESCRIPTION

SOLID DEFORMATION

We want to calculate linear inner displacements of a solid resulting from forces or displacements 
imposed on its boundaries.
The displacement vector inside the domain is defined as

u (x , y , z )=(
u( x , y , z )
v ( x , y , z )
w(x , y , z)),

the strain vector ε is
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Problem description

Where u is the displacement vector, ε the stain, σ  the stress. D is called the constitutive matrix.

We define a differential operator Ε.
Stress vector is defined as

σ=(σ x ,σ y ,σ z , τ x y ,τ y z , τz x )
T,

where σ x, σ y and σ z are normal stresses; τx, τx and τx are tangential stresses.

Stress an strain are related by
σ=Dε; (1)

D is  called  the  constitutive  matrix,  it  depends  on  Young  moduli  and  Poisson  coefficients 
characteristic of media.
Solution is found using the finite element method with the Galerkin weighted residuals. This means 
that  we  solve  the  integral  problem  in  each  element  using  a  weak  formulation.  The  integral 
expression of equilibrium in elasticity problems can be obtained using the principle of virtual work 
[Zien05 pp65-71].,

∫
V

δε
T
σ dV =∫

V

δuTb dV+∮
A

δuT t dA+∑
i

δui
Tq i, (2)

here  b,  t  and  q are the vectors of mass, boundary and punctual forces respectively. The weight 
functions for weak formulation are chosen to be the interpolation functions of the element, these are 
N i, i=1,… , M . M  is the number of nodes of the element, ui is the coordinate of the i th node, we 
have that

u=∑
i=1

M

N iui. (3)

Using (3), we can rewrite (1) as:

ε=∑
i=1

M

Ε N iui,

or in a more compact form

ε=(Ε N 1 Ε N 2 ⋯ Ε N M )(
u1

u2

⋮
uM

)=Bu.

Now we can express (6) as σ=D Bu, and then (2) by

∫
V e

BTD B dV e

⏟
K e

u=∫
V e

b dV e

⏟
f b

e

+∮
Ae

t dAe

⏟
f t

e

+ qe

. (4)

By integrating (4) we obtain a system of equations for each element,

K eue
= f b

e
+ f t

e
+ qe.

All systems of equations are assembled in a global system of equations,
K u= f .

K  is called the stiffness matrix, if enough boundary conditions are applied, it will be symmetric 
positive definite (SPD). By construction it is sparse with storage requirements of order O(n), where 
n is  the  total  number  of  nodes  in  the  domain.  By  solving  this  system  we  will  obtain  the 
displacements of all nodes in the domain.
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Problem description

HEAT DIFFUSION

The other problem that we want to solve is the stationary case of the heat diffusion, it is modeled 
using the Poisson equation,

∂
∂ x (k

∂ϕ

∂ x )+ ∂
∂ y (k

∂ ϕ

∂ y )+ ∂
∂ z (k

∂ϕ

∂ z )=S ( x , y , z ), (5)

where ϕ ( x , y , z ) is the unknown temperature distributed on the domain. Lets define the flux vector

q=k(
∂ϕ

∂ x
∂ϕ

∂ y
∂ϕ

∂ z
).

Boundary conditions could be Dirichlet

ϕ ( x , y)=ϕ̄( x , y ) en Γϕ,

or Neumann

q ( x , y )= q̄( x , y ) en Γϕ.

In complex domains is complicated to obtain a solution ϕ ( x , y) that satisfies (5). We will look for 

an approximate solution ϕ that satisfies

f (ϕ( x , y ))=0,

in the sense of a weighted integral, like

∫
Ω

W f (ϕ ( x , y))dx dy=0,

where W =W ( x , y) is a weighting function.

Reformulating the problem as a weighted integral

∫
Ω

W [ ∂
∂ x(k

∂ ϕ

∂ x)+ ∂
∂ y (k

∂ ϕ

∂ y )−S ]d Ω+ W [ϕ−ϕ̄]+ W [ q−q̄ ]⏟
Boundary conditions

=0.

Integrating by parts

W k
∂ϕ

∂ x∣
ω

−∫
Ω

∂W
∂ x

k
∂ϕ

∂ x
d Ω+ W k

∂ϕ

∂ y∣
ω

−∫
Ω

∂W
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k
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∂ y
d Ω−∫

Ω

W Sd Ω+ W [ϕ−ϕ̄]+ W [ q−q̄ ]=0,

using the definition of flux vector

W qx∣ω
−∫

Ω

∂W
∂ x

k
∂ϕ

∂ x
d Ω+ W q y∣ω

−∫
Ω

∂ W
∂ y

k
∂ϕ

∂ y
d Ω−∫

Ω

W S d Ω+ W [ϕ−ϕ̄]+ W [ q−q̄ ]=0.

There are several ways to select weight functions  W ( x , y ) when element equations are build. We 
used the Galerkin method, in this one the shape functions are used as weight functions

∑
i=1

3

[ N iqx∣ω−∫
Ω

∂N i

∂x
k

∂ϕ

∂x
d Ω+ N iq y∣ω−∫

Ω

∂ N i

∂ y
k

∂ϕ

∂ y
d Ω−∫

Ω

N iS d Ω+ N i (ϕ−ϕ̄)+ N i (q−q̄)]=0.
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Schur complement method

SCHUR COMPLEMENT METHOD

This is a domain decomposition method with no overlapping [Krui04], the basic idea is to split a 
large  system  of  equations  into  smaller  systems  that  can  be  solved  independently  in  different 
computers in parallel.

Γ f

Γd

Ω

   
i j

Figure 1. Finite element domain (left), domain discretization (center), partitioning (right).

We start with a system of equations resulting from a finite element problem
K d=f , (6)

where K  is a symmetric positive definite matrix of size n×n.
If we divide the geometry into p partitions, the idea is to split the workload to let each partition to 
be handled by a computer in the cluster.

   

Figure 2. Partitioning example.

We can arrange (reorder variables) of the system of equations to have the following form

(
K1

II 0 K1
IB

K 2
II K2

IB

0 K3
II K3

IB

⋮ ⋱ ⋮

K p
II K p

IB

K 1
BI K2

BI K3
BI

⋯ K p
BI K BB

)(
d1

I

d2
I

d3
I

⋮

d p
I

dB
)=(

f 1
I

f 2
I

f 3
I

⋮

f p
I

f B
). (7)

The superscript II denotes entries that capture the relationship between nodes inside a partition. BB 
is used to indicate entries in the matrix that relate nodes on the boundary. Finally IB and BI are used 
for entries with values dependent of nodes in the boundary and nodes inside the partition.
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Schur complement method
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Figure 3. Substructuring example with three partitions.

Thus, the system can be separated in p different systems,

(K i
II K i

IB

K i
BI KBB)(d i

I

dB)=( f i
I

f B), i=1… p.

For each partition i the vector of unknowns d i
I as

d i
I
=(K i

II)
−1

(f i
I
−Ki

IBdB). (8)

After applying Gaussian elimination by blocks on (7), the reduced system of equations becomes

(KBB−∑
i=1

p

Ki
BI (K i

II )
−1

Ki
IB)dB=f B−∑

i=1

p

Ki
BI(Ki

II )
−1

f i
I. (9)

Once the vector dB is computed using (9), we can calculate the internal unknowns d i
I with (8).

It is not necessary to calculate the inverse in (9). Let’s define K̄ i
BB=Ki

BI (K i
II)−1K i

IB, to calculate it 
[Sori00], we proceed column by column using an extra vector t , and solving for c=1…n

K i
II t=[K i

IB ]c, (10)

note that many [K i
IB ]c are null. Next we can complete K i

BB with,

[ K̄i
BB]c=K i

BI t.

Now lets define f̄ i
B=Ki

BI(K i
II)−1f i

I, in this case only one system has to be solved

K i
II t=f i

I, (11)

and then

f̄ i
B
=Ki

BIt .

Each K̄ i
BB and f̄ i

B holds the contribution of each partition to (9), this can be written as

(KBB−∑
i=1

p

K̄i
BB)dB=f B−∑

i=1

p

f̄ i
B, (12)

once (12) is solved, we can calculate the inner results of each partition using (8).

Since K i
II is sparse and has to be solved many times in (10), a efficient way to proceed is to use a 

Cholesky factorization of  K i
II.  To reduce memory usage and increase  speed a  sparse Cholesky 

factorization has to be implemented, this method is explained below.

In case of (12), KBB is sparse, but K̄ i
BB are not. To solve this system of equations an sparse version 

of  conjugate  gradient  was  implemented,  the  matrix  (K BB−∑i=1
p K̄ i

BB) is  not  assembled,  but 
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Schur complement method

maintained distributed. In the conjugate gradient method is only important to know how to multiply 
the  matrix  by  the  descent  direction,  in  our  implementation  each  K̄ i

BB is  maintained  in  their 
respective computer and the multiplication is done in a distributed way an the resulted vector is 
formed with contributions from all partitions. To improve the convergence of the conjugate gradient 
a Jacobi preconditioned is used. This algorithm is described below.

One benefit of this method is that the condition number of the system is reduced when solving (12), 
this decreases the number of iterations needed to converge.

SPARSE MATRICES

Considering all elements we assemble a system of equations (with certain Dirichlet or Neumann 
boundary conditions) to solve a linear system of equations

A x=b.

Relation between adjacent nodes is captured as entries in a matrix. Because a node has adjacency 
with only a few others, the resulting matrix has a very sparse structure.

i j



∂ 

    A=
° ° ° ° ° ° ° ° ⋯
° a i i ° a j i ° ° ° ° ⋯

° ° ° ° ° ° ° ° ⋯
° a i j ° a j j ° ° ° ° ⋯

° ° ° ° ° ° ° ° ⋯
° ° ° ° ° ° ° ° ⋯
° ° ° ° ° ° ° ° ⋯
° ° ° ° ° ° ° ° ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱


Figure 4. Discretized domain (mesh) and its matrix representation.

Lets define the notation η(A ), it indicates the number of non-zero entries of A.

For example, A∈ℝ556×556 has 309,136 entries, with η(A )=1810, this means that only the 0.58% of 
the entries are non zero.

Figure 5. Black dots indicates a non zero entry in the matrix

In finite element problems all matrices have symmetric structure, and depending on the problem 
symmetric values or not.
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Sparse matrices

MATRIX STORAGE

An efficient method to store and operate matrices of this kind of problems is the Compressed Row 
Storage (CRS) [Saad03 p362]. This method is suitable when we want to access entries of each row 
of a matrix A sequentially.

For each row i of A we will have two vectors, a vector v i
A that will contain the non-zero values of 

the row, and a vector j i
A with their respective column indexes. For example a matrix A and its CRS 

representation

A=(
8 4 0 0 0 0
0 0 1 3 0 0
2 0 1 0 7 0
0 9 3 0 0 1
0 0 0 0 0 5

), 

8 4
1 2
1 3
3 4
2 1
1 3

7
5

9 3
2 3

1
6

5
6

v4
A
=(9,3, 1)

j 4
A
=(2,3, 6)

The size of the row will be denoted by ∣vi
A∣ or by ∣ jiA∣. Therefore the q th non zero value of the row 

i of A will be denoted by (v i
A)q and the index of this value as ( jiA)q, with q=1,… ,∣v i

A∣.
If we do not order entries of each row, then to search an entry with certain column index will have a 
cost of O(∣vi

A∣) in the worst case. To improve it we will keep v i
A and j i

A ordered by the indexes j i
A. 

Then we could perform a binary algorithm to have an search cost of O (log 2∣v i
A∣).

The  main  advantage  of  using  Compressed  Row  Storage  is  when  data  in  each  row  is  stored 
continuously and accessed in a sequential way, this is important because we will have and efficient 
processor cache usage [Drep07].

CHOLESKY FACTORIZATION FOR SPARSE MATRICES

The cost of using Cholesky factorization  A=L LT is expensive if we want to solve systems of 
equations with full matrices, but for sparse matrices we could reduce this cost significantly if we 
use reordering strategies and we store factor matrices using CRS identifying non zero entries using 
symbolic factorization. With these strategies we could maintain memory and time requirements near 
to O(n). Also Cholesky factorization could be implemented in parallel.

Formulae to calculate L entries are

L i j=
1

L j j
(Ai j−∑

k=1

j−1

L i k L j k), for i> j; (13)

L j j=√ A j j−∑
k=1

j−1

L j k
2 . (14)

REORDERING ROWS AND COLUMNS

By reordering the rows and columns of a SPD matrix A  we could reduce the fill-in (the number of 
non-zero entries) of L. The next images show the non zero entries of A∈ℝ

556×556  and the non zero 
entries of its Cholesky factorization L.
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Cholesky factorization for sparse matrices

 

Figure 6. Left: non-zero entries of A . Right: non-zero entries of L (Cholesky factorization of A )

The number of non zero entries of A  is η(A)=1810 , and  for L is η(L)=8729. The next images 
show A  with an efficient reordering by rows and columns.

 

Figure 7. Left: non-zero entries of reordered A . Right: non-zero entries of L .

By reordering we have a new factorization with  η(L)=3215, reducing the fill-in to 0.368 of the 
size  of  the  not  reordered  version.  Both  factorizations  allow  us  to  solve  the  same  system  of 
equations.

The most common reordering heuristic to reduce fill-in is the minimum degree algorithm, the basic 
version is presented in  [Geor81 p116]:

Let be a matrix A and its corresponding graph G 0

i ← 1
repeat

Let node x i in Gi−1( X i−1 , E i−1) have minimum degree
Form a new elimination graph Gi( X i ,E i) as follow:

Eliminate x i and its edges from Gi−1

Add edges make adj(x1) adjacent pairs in Gi

i ← i+ 1
while i< ∣X∣

More advanced versions of this algorithm can be consulted in [Geor89].
There are more complex algorithms that perform better in terms of time and memory requirements, 
the nested dissection algorithm developed by Karypis and Kumar [Kary99] included in METIS 
library gives very good results.
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Cholesky factorization for sparse matrices

Symbolic Cholesky factorization

This algorithm identifies non zero entries of L, a deep explanation could be found in [Gall90 p86-
88].
For an sparse matrix A, we define

a j ≝ {k> j ∣ Ak j≠0}, j=1…n,
as the set of non zero entries of column j of the strictly lower triangular part of A.

In similar way, for matrix L we define the set
l j ≝ {k> j ∣ Lk j≠0}, j=1…n.

We also use sets define sets r j that will contain columns of L which structure will affect the column 
j of L. The algorithm is:

r j ← ∅, j ← 1…n
for j ← 1…n
l j ← a j

for i∈r j

l j ← l j∪l i ∖ { j }
end_for

p ← {min {i∈ l j} si l j≠∅

j otro caso
r p ← r p∪{ j }

end_for

For the next example matrix column 2, a2 and l 2 will be:

A=(
a1 1 a12 a16

a21 a22 a2 3 a2 4

a32 a33 a35

a42 a4 4

a53 a55 a56

a61 a65 a66

)
a2={3,4 }

  
L=(

l 1 1

l 2 1 l 2 2

l 3 2 l 3 3

l 4 2 l 4 3 l 44

l 5 3 l 54 l5 5

l 6 1 l 6 2 l 6 3 l 64 l6 5 l 66

)
l 2={3, 4,6}

Figure 8. Example matrix, showing how a 2 and l 2 are formed.

This algorithm is very efficient, complexity in time and memory usage has an order of  O(η(L)). 
Symbolic factorization could be seen as a sequence of elimination graphs [Geor81 pp92-100].

FILLING ENTRIES IN PARALLEL

Once non zero entries are determined we can rewrite (13) and (14) as

L i j=
1

L j j(Ai j− ∑
k ∈ ji

L
∩ j j

L

k < j

Li k L j k), for i> j;

L j j=√ A j j−∑
k∈ j j

L

k < j

L j k
2

.
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Cholesky factorization for sparse matrices

The resulting algorithm to fill non zero entries is [Varg10]:

for j ← 1…n
L j j ← A j j

for q ← 1…∣v j
L
∣

L j j ← L j j−(v j
L
)q(v j

L
)q

L j j ← √ L j j

L j j
T

← L j j

parallel for q ← 1…∣ j j
LT

∣
i ← ( j j

LT

)q

L i j ← Ai j

r ← 1; ρ ← ( j iL)r

s ← 1; σ ← ( j iL)s

repeat

while ρ< σ

r ← r+ 1; ρ ← ( j iL)r

while ρ> σ

s ← s+ 1; σ ← ( j iL)s

while ρ=σ

if ρ= j
exit repeat

L i j ← Li j−(v i
L)r (v j

L)s

r ← r+ 1; ρ ← ( j iL)r

s ← s+ 1; σ ← ( j iL)s

L i j ←
Li j

L j j

L j i
T

← Li j

This algorithm could be parallelized if we fill column by column. Entries of each column can be 
calculated in parallel with OpenMP, because there are no dependence among them [Heat91 pp442-
445]. Calculus of each column is divided among cores.

Core 1

Core 2

Core N

Figure 9. Calculation order to parallelize the Cholesky factorization.

Cholesky solver is particularly efficient because the stiffness matrix is factorized once. The domain 
is  partitioned  in  many small  sub-domains  to  have  small  and  fast  Cholesky factorizations.  The 
parallelization was made using the OpenMP schema.

PARALLEL PRECONDITIONED CONJUGATE GRADIENT

Conjugate gradient (CG) is a natural choice to solve systems of equations with SPD matrices, we 
will discuss some strategies to improve convergence rate and make it suitable to solve large sparse 
systems using parallelization.

The condition number κ of a non singular matrix A∈ℝ
m×m, given a norm ∥⋅∥ is defined as

κ(A)=∥A∥⋅∥A−1∥.
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Parallel preconditioned conjugate gradient

For the norm ∥⋅∥2,

κ2(A)=∥A∥2⋅∥A
−1∥2=

σmax (A)

σmin(A)
,

where σ is a singular value of A.

For a SPD matrix,

κ(A)=
λmax(A)

λmin(A)
,

where λ  is an eigenvalue of A.
A system of equations Ax=b is bad conditioned if a small change in the values of A or b results in 
a large change in x. In well conditioned systems a small change of A or b produces an small change 
in x. Matrices with a condition number near to 1 are well conditioned.

A preconditioner for a matrix A is another matrix M  such that M A has a lower condition number
κ(M A)< κ(A).

In iterative stationary methods (like Gauss-Seidel) and more general methods of Krylov subspace 
(like conjugate gradient) a preconditioner reduces the condition number and also the amount of 
steps necessary for the algorithm to converge.
Instead of solving

Ax−b=0,
with preconditioning we solve

M (A x−b)=0.

The preconditioned conjugate gradient algorithm is:

x0, initial approximation
r0 ← b−Ax0, initial gradient
q0 ← M r0

p0 ← q0, initial descent direction
k ← 0
while ∥rk∥> ε

αk ← −
rk

Tqk

pk
T A pk

xk+ 1 ← x k+ αk pk

rk+ 1 ← rk−αk A pk

qk +1 ← M r k+ 1

βk ←
r k+ 1

T qk+ 1

rk
Tqk

pk+ 1 ← qk+ 1+ βk pk

k ← k+ 1

For large and sparse systems of equations it is necessary to choose preconditioners that are also 
sparse.
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Parallel preconditioned conjugate gradient

We used the Jacobi preconditioner, it is suitable for sparse systems with SPD matrices. The diagonal 
part of M−1 is stored as a vector,

M−1=(diag(A))−1.

Parallelization of  this  algorithm is  straightforward,  because  the calculus  of  each entry of  qk  is 
independent.

Parallelization of the preconditioned CG is done using OpenMP, operations parallelized are matrix-
vector, dot products and vector sums. To synchronize threads has a computational cost, it is possible 
to modify to CG to reduce this costs maintaining numerical stability [DAze93].

COMPUTER CLUSTERS AND MPI

We developed a software program that runs in parallel in a Beowulf cluster [Ster95]. A Beowulf  
cluster consists of several multi-core computers (nodes) connected with a high speed network.

S
la

ve
 n

od
es

Master node

Network switch

External
network

Figure 10. Diagram of a Beowulf cluster of computers.

In our software implementation each partition is assigned to one process. To parallelize the program 
and move data among nodes we used the Message Passing Interface (MPI) schema [MPIF08], it 
contains set of tools that makes easy to start several instances  of a program (processes) and run 
them in parallel. Also, MPI has several libraries with a rich set of routines to send and receive data 
messages among processes in an efficient way. MPI can be configured to execute one or several 
processes per node.
For partitioning the mesh we used the METIS library [Kary99].

PARALLELIZATION USING MULTI-CORE COMPUTERS

Using domain decomposition with MPI we could have a partition assigned to each node of a cluster, 
we  can  solve  all  partitions  concurrently.  If  each  node  is  a  multi-core  computer  we  can  also 
parallelize  the  solution  of  the  system  of  equations  of  each  partition.  To  implement  this 
parallelization we use the OpenMP model.
This parallelization model consists in compiler directives inserted in the source code to parallelize 
sections of code. All cores have access to the same memory, this model is known as shared memory 
schema.

In modern computers with shared memory architecture the processor is a lot faster than the memory 
[Wulf95].

12/19



Parallelization using multi-core computers

Motherboard

Processor
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32
K

B
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B
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4M
B

 c
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 L

2
4M

B
 c
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 L
2

Figure 11. Schematic of a multi-processor and multi-core computer.

To overcome this, a high speed memory called cache exists between the processor and RAM. This 
cache reads blocks of data from RAM meanwhile the processor is busy, using an heuristic to predict 
what  the  program  will  require  to  read  next.  Modern  processor  have  several  caches  that  are 
organized by levels (L1, L2, etc), L1 cache is next to the core. It is important to considerate the 
cache when programming high performance applications, the next table indicates the number of 
clock cycles needed to access each kind of memory by a Pentium M processor:

Access to CPU cycles
CPU registers <=1

L1 cache 3
L2 cache 14

RAM 240

A big bottleneck in multi-core systems with shared memory is that only one core can access the 
RAM at the same time.
Another bottleneck is the cache consistency. If two or more cores are accessing the same RAM data 
then different copies of this data could exists in each core’s cache, if a core modifies its cache copy 
then the system will  need to  update all  caches  and RAM, to keep consistency is  complex and 
expensive [Drep07]. Also, it is necessary to consider that cache circuits are designed to be more 
efficient when reading continuous memory data in an ascendent sequence [Drep07 p15].

To avoid lose of performance due to wait for RAM access and synchronization times due to cache 
inconsistency several strategies can be use:

• Work with continuous memory blocks.

• Access memory in sequence.

• Each core should work in an independent memory area.
Algorithms to solve our system of equations should take care of these strategies.

NUMERICAL EXPERIMENTS

We are going to present just a couple examples, these were executed in a cluster with 15 nodes, 
each one with two dual core Intel Xeon E5502 (1.87GHz) processors, a total of 60 cores. A node is 
used as a master process to load the geometry and the problem parameters, partition an split the 
systems  of  equations.  The  other  14  nodes  are  used  to  solve  the  system of  equations  of  each 
partition. Times are in seconds. Tolerance used is 1x10-10.
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SOLID DEFORMATION

The problem tested is a 3D solid model of a building that is deformed due to self weight. The 
geometry is divided in 1’336,832 elements, with 1’708,273 nodes, with three degrees of freedom 
per node the resulting system of equations has 5’124,819 unknowns. 

Figure 12. Substructuration of the domain.

Number of 
processes

Partitioning
time [s]

Inversion time 
(Cholesky) [s]

Schur complement 
time (CG) [s]

CG steps Total time [s]

14 47.6 18520.8 4444.5 6927 23025.0
28 45.7 6269.5 2444.5 8119 8771.6
56 44.1 2257.1 2296.3 9627 4608.9
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Number of 
processes

Master process 
[GB]

Slave processes 
[GB]

Total memory 
[GB]

14 1.89 73.00 74.89
28 1.43 67.88 69.32
56 1.43 62.97 64.41
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Figure 13. Resulting deformation.

HEAT DIFFUSION

This is a 3D model of a heat sink, in this problem the base of the heat sink is set to a certain  
temperature and heat is lost in all the surfaces at a fixed rate. The geometry is divided in 4’493,232 
elements, with 1’084,185 nodes. The system of equations solved had 1’084,185 unknowns.

Number of 
processes

Partitioning
time [s]

Inversion 
time 

(Cholesky) 
[s]

Schur 
complement 
time (CG) [s]

CG steps Total time [s]

14 144.9 798.5 68.1 307 1020.5
28 146.6 242.0 52.1 348 467.1
56 144.2 82.8 27.6 391 264.0

Figure 14. Substructuration of the domain.

Number of 
processes

Master process 
[GB]

Slave processes 
[GB]

Total memory 
[GB]

14 9.03 5.67 14.70
28 9.03 5.38 14.41
56 9.03 4.80 13.82
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Figure 15. Resulting temperature distribution.

LARGE SYSTEMS OF EQUATIONS

To test solution times in larger systems of equations we set a simple geometry. We calculated the 
temperature distribution of a metallic square with Dirichlet conditions on all boundaries.

1°C
2°C
3°C
4°C

Figure 16. Geometry example.

The domain was discretized using quadrilaterals with nine nodes, the discretization made was from 
25 million nodes up to 150 million nodes. In all cases we divided the domain into 116 partitions.
In this case we used a larger cluster with mixed equipment 15 nodes with 4 Intel Xeon E5502 cores 
and 14 nodes with 4 AMD Opteron 2350 cores, a total of 116 cores. A node is used as a master  
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process  to  load  the  geometry  and  the  problem  parameters,  partition  an  split  the  systems  of 
equations. Tolerance used was 1x10-10.

Equations Partitioning
time [min]

Inversion 
time 

(Cholesky) 
[min]

Schur 
complement 

time (CG) [min]

CG steps Total time 
[min]

25,010,001 6.2 17.3 4.7 872.0 29.4
50,027,329 13.3 43.7 6.3 1012.0 65.4
75,012,921 20.6 80.2 4.3 1136.0 108.3

100,020,001 28.5 115.1 5.4 1225.0 152.9
125,014,761 38.3 173.5 7.5 1329.0 224.2
150,038,001 49.3 224.1 8.9 1362.0 288.5
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Total time [min]
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T
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]

Equations Master 
process [GB]

Average slave 
processes 

[GB]

Slave 
processes 

[GB]

Total 
memory 

[GB]
25,010,001 4.05 0.41 47.74 51.79
50,027,329 8.10 0.87 101.21 109.31
75,012,921 12.15 1.37 158.54 170.68

100,020,001 16.20 1.88 217.51 233.71
125,014,761 20.25 2.38 276.04 296.29
150,038,001 24.30 2.92 338.29 362.60
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CONCLUSIONS

We presented just a few case studies of the usage of  the Schur sub structuring method for complex 
geometries with large number of degrees of freedom.
It is difficult to measure speed-up when working with complex geometries, the partitioning routines 
that we used [Kary99] have heuristics that try to divide equally the number of nodes, thus the shape 
of the partitions for each mesh could vary a lot.  Nevertheless results have a linear tendency in 
reduction of solution times.

In this case we used the Jacobi preconditioner, but there are other preconditioners that lead to better 
convergence that could be interesting to test, like the family of methods called FETI (finite element 
tearing and interconnect) [Farh91].

REFERENCES

[Drep07] U. Drepper. What Every Programmer Should Know About Memory. Red Hat, Inc. 2007.

[Farh91] C. Farhat and F. X. Roux, A method of finite element tearing and interconnecting and its 
parallel solution algorithm, Internat. J. Numer. Meths. Engrg. 32, 1205-1227 (1991)

[Gall90] K. A. Gallivan, M. T. Heath, E. Ng, J. M. Ortega, B. W. Peyton, R. J. Plemmons, C. H. 
Romine, A. H. Sameh, R. G. Voigt, Parallel Algorithms for Matrix Computations, 
SIAM, 1990.

[Geor81] A. George, J. W. H. Liu. Computer solution of large sparse positive definite systems. 
Prentice-Hall, 1981.

[Geor89] A. George, J. W. H. Liu. The evolution of the minimum degree ordering algorithm. 
SIAM Review Vol 31-1, pp 1-19, 1989.

[Heat91] M T. Heath, E. Ng, B. W. Peyton. Parallel Algorithms for Sparse Linear Systems. SIAM 
Review,  Vol. 33, No. 3, pp. 420-460, 1991.

18/19



References

[Hilb77] H. M. Hilber, T. J. R. Hughes, and R. L. Taylor. Improved numerical dissipation for time 
integration algorithms in structural dynamics. Earthquake Eng. and Struct. Dynamics, 
5:283–292, 1977.

[Kary99] G. Karypis, V. Kumar. A Fast and Highly Quality Multilevel Scheme for Partitioning 
Irregular Graphs. SIAM Journal on Scientific Computing, Vol. 20-1, pp. 359-392, 1999.

[Krui04] J. Kruis. “Domain Decomposition Methods on Parallel Computers”. Progress in 
Engineering Computational Technology, pp 299-322. Saxe-Coburg Publications. 
Stirling, Scotland, UK. 2004.

[MPIF08] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version 
2.1. University of Tennessee, 2008.

[Saad03] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.

[Sori00] M. Soria-Guerrero. Parallel multigrid algorithms for computational fluid dynamics and 
heat transfer.  Universitat Politècnica de Catalunya. Departament de Màquines i Motors 
Tèrmics. 2000. http://www.tesisenred.net/handle/10803/6678

[Ster95] T. Sterling, D. J. Becker, D. Savarese, J. E. Dorband, U. A. Ranawake, C. V. Packer. 
BEOWULF: A Parallel Workstation For Scientific Computation. Proceedings of the 
24th International Conference on Parallel Processing, 1995.

[Varg10] J. M. Vargas-Felix, S. Botello-Rionda. “Parallel Direct Solvers for Finite Element 
Problems”. Comunicaciones del CIMAT, I-10-08 (CC), 2010.

[Wulf95] W. A. Wulf , S. A. Mckee. Hitting the Memory Wall: Implications of the Obvious. 
Computer Architecture News, 23(1):20-24, March 1995.

[Yann81] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Journal on 
Algebraic Discrete Methods, Volume 2, Issue 1, pp 77-79, March, 1981.

[Zien05] O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, The Finite Element Method: Its Basis and 
Fundamentals. Sixth edition, 2005.

19/19

http://www.tesisenred.net/handle/10803/6678

	Summary
	Problem description
	Solid deformation
	Heat diffusion

	Schur complement method
	Sparse matrices
	Matrix storage

	Cholesky factorization for sparse matrices
	Reordering rows and columns
	Symbolic Cholesky factorization
	Filling entries in parallel

	Parallel preconditioned conjugate gradient
	Computer clusters and MPI
	Parallelization using multi‑core computers
	Numerical experiments
	Solid deformation
	Heat diffusion
	Large systems of equations

	Conclusions
	References

