
FEMT, Open Source Tools for Solving Large
Systems of Equations in Parallel

Miguel Vargas-Felix, Salvador Botello-Rionda

Abstract—We present a new open source library and tools for
solving large linear systems of equations with sparse matrices
resulting from simulations with finite element, finite volume and
finite differences.

FEMT is a multi-platform software (Windows, GNU/Linux,
Mac OS), released as open source (GNU LGPL). FEMT can run
from laptops up to clusters of computers. It has been
programmed in modern standard C++, also has modules to
access it easily from many programming languages, like Fortran,
Python, Java, C++, C, etc.

In this work we will describe the tools and the solvers that are
used, there are three kind: direct, iterative and domain
decomposition. Direct and iterative solvers are designed to run in
parallel in multi-core computers using OpenMP. The domain
decomposition solver has been designed to run in clusters of
computers using a combination of MPI (Message Passing
Interface) and OpenMP.

The interchange of information is done using pipes (memory
allocated files). This makes easy to use the solvers included in
FEMT from existing simulation codes without large code
changes.

We will show some numerical results of finite element
simulation of solid deformation and heat diffusion, with systems
of equations that have from a few million, to more than eight
hundred million degrees of freedom.

Index Terms—Numerical Linear Algebra, Sparse Matrices,
Parallel Computing, Direct and Iterative Solvers, Schur
Substructuration, Finite Element Method, Finite Volume
Method.

I. INTRODUCTION

EMT aims to help people that use finite element, finite
differences or isogeometric analisys to easily incorporate a

solver for the sparse systems generated. The FEMT package is
divided in three parts:

F
▪ The library, called also FEMT, was developed in standard

C++ using templates extensively. It includes several routines
for solving sparse systems of equations, like conjugate
gradient, biconjugate gradient, Cholesky and LU
factorizations, these were implemented with OpenMP
parallelization support. Also, the library includes an
implementation of the Schur substructuring method, it was
implemented with MPI to run in clusters of computers.

▪ A set of tools for using the solvers included in the FEMT
library in a easy way from any programming language. The
motivation for these tools is to adapt the FEMT library to
simulation codes developed in languages different to C++,
this is common among research groups. There are two kinds

of tools, one is to resolve finite element or isogeometric
analisys problems (works using elemental matrices), the
other is to solve problems from finite volume or finite
differences (works using sparse matrices).

▪ Finite element simulation modules for GiD. GiD is a pre and
post-processor developed by CIMNE, with it you can design
a geometries, set materials and boundary conditions, mesh it,
call a FEMT solver module and visualize the results. The
modules (problem types) implemented so far are: linear solid
deformation (static and dynamic), heat diffusion (static and
dynamic) and electric potential (it calculates also capacitance
matrices and sensitivity maps). These problem types use the
FEMT library for solving the finite element problems.
Several examples with different geometries are included
We will show some numerical results of finite element sim-

ulation of solid deformation and heat diffusion, with systems
of equations that have from a few million, to more than one
hundred million degrees of freedom.

Source code, building instructions, tutorials and extra docu-
mentation can be found at:
http://www.cimat.mx/~miguelvargas/FEMT

II. PARALLELIZATION

A. Parallelization on multi-core computers

Tendency in modern computers is to increase the processing
units (cores) to process data in parallel. FEMT uses OpenMP,
it is a programming model that uses multiple threads to paral-
lelize in multi-core computers. This model consists in com-
piler directives inserted in the source code to parallelize sec-
tions of code. All cores have access to the same memory, this
model is known as shared memory schema.

In modern computers with shared memory architecture the
processor is a lot faster than the memory [1].

Processor 0

RAM
Bus

L
1

L
2

ca
ch

e

Core 0

L
1Core 1

Processor 1

L
1

L
2

ca
ch

e

Core 0

L
1Core 1

RAM

C
ac

h
e

co
h

er
en

ce

Bus

Figure 1. Schematic of a multi-processor and multi-core
computer.

To overcome this, a high speed memory called cache exists
between the processor and RAM. This cache reads blocks of
data from RAM meanwhile the processor is busy, using an
heuristic to predict what the program will require to read next.

Miguel Vargas-Felix is with Centre for Mathematical Research (CIMAT).
Jalisco Alley w/n, Mineral de Valenciana, Guanajuato, Mexico 36240 (e-mail:
miguelvargas@cimat.mx)
Salvador Botello-Rionda is with Centre for Mathematical Research (CIMAT).
Jalisco Alley w/n, Mineral de Valenciana, Guanajuato, Mexico 36240 (e-mail:
botello@cimat.mx)

http://www.cimat.mx/~miguelvargas/FEMT

Modern processor have several caches that are organized by
levels (L1, L2, etc), L1 cache is next to the core. It is impor-
tant to considerate the cache when programming high perfor-
mance applications, the next table indicates the number of
clock cycles needed to access each kind of memory by a Pen-
tium M processor:

Access to CPU cycles
CPU registers <=1

L1 cache 3
L2 cache 14

RAM 240

A big bottleneck in multi-core systems with shared memory
is that only one core can access the RAM at the same time.
Another bottleneck is the cache consistency. If two or more
cores are accessing the same RAM data then different copies
of this data could exists in each core’s cache, if a core modi-
fies its cache copy then the system will need to update all
caches and RAM, to keep consistency is complex and expen-
sive [2]. Also, it is necessary to consider that cache circuits are
designed to be more efficient when reading continuous mem-
ory data in an ascendent sequence [2].

To avoid lose of performance due to wait for RAM access
and synchronization times due to cache inconsistency several
strategies can be use:
▪ Work with continuous memory blocks.
▪ Access memory in sequence.
▪ Each core should work in an independent memory area.

The routines in FEMT were programmed to reduce these
bottlenecks.

B. Computer clusters and MPI

Using domain decomposition a large system of equations
can be divided into smaller problems that can be processed on
several computers on a cluster, working concurrently to com-
plete the global solution. A cluster (also known as Beowulf
cluster [3]) consists of several multi-core computers (nodes)
connected with a high speed network.

Slave nodes

Master node

Network switch

External
network

Figure 2. Diagram of a Beowulf cluster of computers.

To parallelize the program and move data among nodes we
used the Message Passing Interface (MPI) schema [4], it con-
tains set of tools that makes easy to start several instances of a
program (processes) and run them in parallel. Also, MPI has
several libraries with a rich set of routines to send and receive
data messages among processes in an efficient way. MPI is the
standard for scientific applications on clusters.

III. TOOLS FOR SOLVING LARGE SYSTEMS OF EQUATIONS IN PARALLEL

To adapt existing simulation codes, with tens or hundreds of
thousands lines of code, to a new library with solvers, could

imply to have a step learning curve and to rewrite a large
amount of sections of code. The tools included with FEMT of-
fer an alternative, add a single function to the code, this func-
tion saves the needed information into an archive (with a sim-
ple format). This archive is read by a program (FEMSolver
and EqnSolver), process the information, solves the system of
equations using parallelized routines, and return the solution in
other archive. This archive is read by the same function in the
simulation code.

To make the interchange of data efficient and fast, FEMT
tools uses a kind of archive that is not saved on disk, but into
the RAM, these archives are called named pipes. From the
point of view of the function that saves and writes data, it is
just a normal file. But it has the advantage of being stored on
the RAM, making the interchange of data fast. Is a easy and
efficient way of communicate two programs, its use is very
common on Unix like systems (Linux, Mac OS or BSD). Win-
dows operating system also supports this kind of files, but its
usage is less common.

In conclusion, knowing how to write and read archives in
any programming language allows to use the tools and solvers
included in FEMT. The following sections describe these
tools.

A. FEMSolver

FEMSolver is a program that assembles and solves finite el-
ement problems in parallel using the FEMT library on
multi-core computers. It uses a very simple interface using
pipes.

The sequence is as follows, first FEMSolver is executed, it
will create the named pipes for data interchange, then it will
wait until the simulation program sends data.

The simulation program only needs to write to the data pipe
(default name for this file is /tmp/FEMData) the information
that describes the finite element problem: connectivity matrix,
elemental matrices, vector of independent terms, and vector of
fixed conditions. FEMSolver reads this data, assembles the
global matrix, makes the reduction of this using the fixed con-
ditions and calls the solver routine. After solving the system of
equations FEMSolver returns the result vector in another pipe
(by default /tmp/FEMResult).

Finite element
simulation program
Finite element
simulation program

Connectivity
matrix

Elemental
matrices

Dirichlet
conditions

Neumann
conditions

Data pipe
/tmp/FEMData

Data pipe
/tmp/FEMData

Results pipe
/tmp/FEMResult

Results pipe
/tmp/FEMResult

FEMSolverFEMSolver

Solution
vector

FEMT routines:
- Direct solvers
- Iterative solvers
- Preconditioning
- Reordering
- Matrix assembler
- Parallelization

Figure 3. FEMSolver communication schema.

Before running FEMSolver the user can specify which kind
of solver to use, the preconditioner type and the number of
threads (cores) to use for parallelization.

This flexible schema allows an used using any program-
ming language (C/C++, Fortran, Python, C#, Java, etc.) to
solve large systems of equations resulting from finite element
discretizations.

In multi-step problems, where the matrix remains constant a
direct solver can be used, FEMSolver can be used to effi-
ciently solve problems like linear dynamic deformations, tran-
sient heat diffusion, etc.

B. FEMSolver.Schur

FEMSolver.Schur is a similar program to FEMSolver, but
instead of solving the system of equations using a single com-
puter, it can use a cluster of computers to distribute the work-
load and solve even larger systems of equations.

Finite element
simulation program
Finite element
simulation program

Connectivity
matrix

Elemental
matrices

Dirichlet
conditions

Neumann
conditions

Data pipe
/tmp/FEMData

Data pipe
/tmp/FEMData

Results pipe
/tmp/FEMResult

Results pipe
/tmp/FEMResult

FEMSolver.SchurFEMSolver.Schur

Solution
vector

FEMT routines:
- Direct solvers
- Schur substructuration
- Preconditioning
- Reordering
- Matrix assembler
- Parallelization

Computer cluster

Figure 4. FEMSolver.Schur communication schema.

This tool uses the Schur substructuring method to divide the
solution of the system of equations into several small parts. It
uses the MPI technology to handle communication between
nodes in the cluster. This makes high performance computing
(HPC) easy to use to solve very large systems of equations.
Below in the document we will present some numerical exper-
iments with matrices with more than one hundred million
equations solved in a mid-size cluster.

C. EqnSolver

This program was designed to solve systems of equations
from finite volume and finite differences problems. It works in
a similar way than FEMSolver, but instead of mesh and ele-
mental matrices, it takes as input a sparse matrix.

Simulation
program
Simulation
program

Sparse
matrix

Independent
terms vector

Fixed
conditions

Data pipe
/tmp/EqnData

Data pipe
/tmp/EqnData

Results pipe
/tmp/EqnResult
Results pipe

/tmp/EqnResult

EqnSolverEqnSolver

Solution
vector

FEMT routines:
- Direct solvers
- Iterative solvers
- Preconditioning
- Reordering
- Parallelization

Figure 5. EqnSolver communication schema.

D. EqnSolver.Schur

It uses the same input data as EqnSolver, but uses a cluster
of computers parallelize the solution of the system of equa-
tions, it uses the Schur substructuring method to do so.

Simulation
program
Simulation
program

Sparse
matrix

Independent
terms vector

Fixed
conditions

Data pipe
/tmp/EqnData

Data pipe
/tmp/EqnData

Results pipe
/tmp/EqnResult
Results pipe

/tmp/EqnResult

EqnSolver.SchurEqnSolver.Schur

Solution
vector

FEMT routines:
- Direct solvers
- Iterative solvers
- Preconditioning
- Reordering
- Parallelization

Computer cluster

Figure 6. EqnSolver.Schur communication schema.

E. MatSolver

Another simple way to access the FEMT library solvers is
through systems of equations written in the MatLab file for-
mat, MatSolver reads this file, calls any of the solvers avail-
able and stores the result in a file with MatLab format.

MatLab file
with a system
of equations

MatSolverMatSolver

MatLab file
with the
solution

FEMT routines:
- MatLab file routines
- Direct solvers
- Iterative solvers
- Preconditioning
- Reordering
- Parallelization

Figure 7. MatSolver, it uses MatLab files as input and output
formats.

IV. SPARSE MATRICES

In problems simulated with finite element or finite volume
methods is common to have to solve linear system of equa-
tions Ax=b.

Relation between adjacent nodes is captured as entries in a
matrix. Because a node has adjacency with only a few others,
the resulting matrix has a very sparse structure.

i j

k

 A=(
∘ ∘ ∘ ∘ ∘ ∘ ∘ ⋯
∘ ai i ∘ ai j ∘ 0 ∘ ⋯

∘ ∘ ∘ ∘ ∘ ∘ ∘ ⋯
∘ a j i ∘ a j j ∘ 0 ∘ ⋯

∘ ∘ ∘ ∘ ∘ ∘ ∘ ⋯
∘ 0 ∘ 0 ∘ a k k ∘ ⋯

∘ ∘ ∘ ∘ ∘ ∘ ∘ ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

)
Figure 8. Discretized domain (mesh) and its matrix

representation.

Lets define the notation η(A), it indicates the number of
non-zero entries of A. For example figure 9, A∈ℝ556×556 has
309,136 entries, with η(A)=1810, this means that only the
0.58% of the entries are non zero.

Figure 9. Black dots indicates a non zero entries in the matrix.

In finite element problems all matrices have symmetric
structure, and depending on the problem symmetric values or
not.

A. Matrix storage

An efficient method to store and operate matrices of this
kind of problems is the Compressed Row Storage (CRS) [5].
This method is suitable when we want to access entries of
each row of a matrix A sequentially. For each row i of A we
will have two vectors, a vector v i

A that will contain the non-

zero values of the row, and a vector ji
A with their respective

column indexes. An simple example for this storage method is
shown in figure 10.

A=(
8 4 0 0 0 0
0 0 1 3 0 0
2 0 1 0 7 0
0 9 3 0 0 1
0 0 0 0 0 5

),
8 4
1 2
1 3
3 4
2 1
1 3

7
5

9 3
2 3

1
6

5
6

v4
A
=(9,3, 1)

j 4
A
=(2,3, 6)

Figure 10. Example for compressed row storage method.

The number of non-zero entries for the i-th row will be de-
noted by ∣vi

A∣ or by ∣ j i
A∣. Therefore the q th non zero value of

the row i of A will be denoted by (vi
A)q and the index of this

value as (j i
A)q, with q=1,… ,∣v i

A∣.
If we do not order entries of each row, then to search an en-

try with certain column index will have a cost of O (∣vi
A∣) in the

worst case. To improve it we will keep v i
A and ji

A ordered by

the indexes ji
A. Then we could perform a binary algorithm to

have an search cost of O (log2∣v i
A∣).

The main advantage of using Compressed Row Storage is
when data in each row is stored continuously and accessed in a
sequential way, this is important because we will have and ef-
ficient processor cache usage [2].

V. CHOLESKY FACTORIZATION FOR SPARSE MATRICES

The cost of using Cholesky factorization A=L LT is expen-
sive if we want to solve systems of equations with full matri-
ces, but for sparse matrices we could reduce this cost signifi-
cantly if we use reordering strategies and we store factor ma-
trices using CRS identifying non zero entries using symbolic
factorization. With these strategies we could maintain memory
and time requirements near to O (n). Also Cholesky factoriza-
tion could be implemented in parallel.

Formulae to calculate L entries are

Li j=
1

L j j
(Ai j−∑

k=1

j−1

Li k L j k), for i> j ; (1)

L j j=√A j j−∑
k=1

j−1

L j k
2 . (2)

A. Reordering rows and columns

By reordering the rows and columns of a SPD matrix A we
could reduce the fill-in (the number of non-zero entries) of L.
The next images show the non zero entries of A∈ℝ556×556 and
the non zero entries of its Cholesky factorization L.

Figure 11. Left: non-zero entries of A . Right: non-zero entries
of L (Cholesky factorization of A)

The number of non zero entries of A is η(A)=1810, and
for L is η(L)=8729 . The next images show A with an effi-
cient reordering by rows and columns.

Figure 12. Left: non-zero entries of reordered A . Right: non-
zero entries of L .

By reordering we have a new factorization with
η(L)=3215 , reducing the fill-in to 0.368 of the size of the not
reordered version. Both factorizations allow us to solve the
same system of equations. Calculating the optimum ordering
that minimizes the number the fill-in is an NP-complete prob-
lem [6], but there are heuristics that generate an acceptable or-
dering in a reduced time. The most common reordering heuris-
tic to reduce fill-in is the minimum degree algorithm, the basic
version is presented in [7], more advanced versions can be
found in [8].

There are more complex algorithms that perform better in
terms of time and memory requirements, the nested dissection
algorithm developed by Karypis and Kumar [9] included in
METIS library gives very good results.

B. Symbolic Cholesky factorization

This algorithm identifies non zero entries of L, a deep ex-
planation could be found in [10].

For an sparse matrix A, we define
a j ≝ {k> j ∣ Ak j≠0}, j=1…n,

as the set of non zero entries of column j of the strictly lower
triangular part of A.

In similar way, for matrix L we define the set
l j ≝ {k> j ∣ Lk j≠0}, j=1…n.

We also use sets define sets r j that will contain columns of
L which structure will affect the column j of L. The algorithm
is:

r j ← ∅, j ← 1…n
for j ← 1…n
∙ l j ← a j

∙ for i∈r j

∙ ∙ l j ← l j∪ l i∖ { j}

∙ p ← {min {i∈l j} if l j≠∅

j other case
∙ r p ← r p∪{ j}

For the next example matrix column 2, a 2 and l 2 will be:

A=(
a1 1 a12 a16

a21 a22 a2 3 a2 4

a32 a33 a3 5

a42 a4 4

a53 a5 5 a56

a61 a6 5 a66

)
a2= {3,4 }

L=(

l 1 1

l 2 1 l 2 2

l 3 2 l 3 3

l 4 2 l 4 3 l 4 4

l 5 3 l 5 4 l5 5

l 6 1 l 6 2 l 6 3 l 6 4 l6 5 l 66

)
l 2={3,4, 6}

Figure 13. Example matrix, showing how a 2 and l 2 are formed.

This algorithm is very efficient, complexity in time and
memory usage has an order of O (η(L)). Symbolic factoriza-
tion could be seen as a sequence of elimination graphs [7].

C. Filling entries in parallel

Once non zero entries are determined we can rewrite (1)
and (2) as

Li j=
1

L j j (Ai j− ∑
k∈ j i

L
∩ j j

L

k< j

Li k L jk), for i> j ;

L j j=√A j j−∑
k∈ j j

L

k< j

L j k
2 .

The resulting algorithm to fill non zero entries is [11]:
for j ← 1…n
∙ L j j ← A j j

∙ for q ← 1…∣v j
L
∣

∙ ∙ L j j ← L j j−(v j
L
)q(v j

L
)q

∙ L j j ← √L j j

∙ L j j
T

← L j j

∙ parallel for q ← 1…∣ j j
LT

∣
∙ ∙ i ← (j j

LT

)q
∙ ∙ L i j ← Ai j

∙ ∙ r ← 1; ρ ← (ji
L)r

∙ ∙ s ← 1; σ ← (j i
L)s

∙ ∙ repeat
∙ ∙ ∙ while ρ<σ

∙ ∙ ∙ ∙ r ← r+1; ρ ← (ji
L)r

∙ ∙ ∙ while ρ>σ
∙ ∙ ∙ ∙ s ← s+1; σ ← (j i

L)s
∙ ∙ ∙ while ρ=σ
∙ ∙ ∙ ∙ if ρ= j
∙ ∙ ∙ ∙ ∙ exit repeat
∙ ∙ ∙ ∙ Li j ← Li j−(v i

L)r(v j
L)s

∙ ∙ ∙ ∙ r ← r+1; ρ ← (ji
L)r

∙ ∙ ∙ ∙ s ← s+1; σ ← (j i
L)s

∙ ∙ L i j ←
Li j

L j j

∙ ∙ L j i
T
← Li j

This algorithm could be parallelized if we fill column by
column. Entries of each column can be calculated in parallel
with OpenMP, because there are no dependence among them
[12]. Calculus of each column is divided among cores.

Core 1

Core 2

Core N

Figure 14. Calculation order to parallelize the Cholesky
factorization.

Cholesky solver is particularly efficient because the stiff-
ness matrix is factorized once.

D. LDL’ factorization

A similar schema can be used for this factorization, formu-
lae to calculate L entries are

Li j=
1
D j

(Ai j−∑
k=1

j−1

Li k L j k Dk), for i> j

D j=A j j−∑
k=1

j−1

L j k
2 D k.

Using sparse matrices, we can use the following

Li j=
1
D j

(Ai j− ∑
k∈(J (i)∩J (j))

k < j

Li k L j k D k), for i> j

D j=A j j− ∑
k∈J (i)

k < j

L j k
2 D k

.

E. Numerical experiments

The next charts and table shows results solving a 2D Pois-
son equation problem, comparing Cholesky and conjugate gra-
dient with Jacobi preconditioning. Several discretizations
where used, from 1,000 equations up to 10,000,000 equations.

1,000 10,000 100,000 1,000,000 10,000,000
0

0

1

10

100

1,000

10,000

0.1 0.1
0.2

0.5

2.9

19.2

89.7

543.1

3,386.6

0.1
0.1

0.3

1.0

3.8

15.8

69.4

409.4

2,780.7

Cholesky
CGJ

Number of equations

Ti
m

e
 [s

]

1,000 10,000 100,000 1,000,000 10,000,000
0

1

10

100

1,000

10,000

0.4

1.3

4.3

13.6

44.1

134.9

393.2

1,343.5

4,656.1

0.7

2.6

10.2

38.2

145.3

512.5

1,747.3

7,134.4

32,703.9

Cholesky
CGJ

Number of equations

M
e

m
or

y
[M

eg
ab

yt
es

]

Figure 15. Number of equations vs. time (top) and number of
equations vs. memory (bottom).

The tests were run in a computer with 8 Intel Xeon E5620
cores running at 2.40GHz and with 32GB of memory.

Equations nnz(A) nnz(L)
Cholesky

time [s]
CGJ

time [s]
1,006 6,140 14,722 0.09 0.08
3,110 20,112 62,363 0.14 0.10

10,014 67,052 265,566 0.31 0.18
31,615 215,807 1’059,714 1.01 0.45

102,233 705,689 4’162,084 3.81 2.89
312,248 2’168,286 14’697,188 15.82 19.17
909,540 6’336,942 48’748,327 69.35 89.66

3’105,275 21’681,667 188’982,798 409.37 543.11
10’757,887 75’202,303 743’643,820 2780.73 3386.61

VI. LU FACTORIZATION FOR SPARSE MATRICES

Symbolic Cholesky factorization could be use to determine
the structure of the LU factorization if the matrix has symmet-
ric structure, like the ones resulting of the finite element and
finite volume methods. The minimum degree algorithm gives
also a good ordering for factorization. In this case Land U T

will have the same structure.
Formulae to calculate L and U (using Doolittle’s algorithm)

are

U i j=Ai j−∑
k=1

j−1

Li k U k j
 for i> j ,

L j i=
1

U i i

(A j i−∑
k=1

i−1

L j k U k i) for i> j ,

U i i=Ai i−∑
k=1

i−1

Lik U k i
, Li i=1.

By storing these matrices using sparse compressed row, we
can rewrite them as

U i j=Ai j− ∑
k∈(J (i)∩J (j))

k< j

Li k U jk
 for i> j ,

L j i=
1

U i i

(A j i− ∑
k∈(J (j)∩J (i))

k <i

L j k U i k) for i> j ,

U i i=Ai i− ∑
k∈ J (i)

k<i

Lik U i k
, L i i=1.

To parallelize the algorithm, the fill of U must be done row
by row, each row filled in parallel, L must be filled column by
column, each one in parallel. The sequence to fill L y U in
parallel is shown in the following figures.

Core 1

Core 2

Core N

Core 1 Core 2 Core N

Figure 16. Calculation order to parallelize the LU factorization.

Similarity to the Cholesky algorithm, to improve perfor-
mance we will store L, U and U T matrices using CRS. It is
shown in the next algorithm [11]:

for j ← 1…n
∙ U j j ← A j j

∙ For q ← 1…(∣V j(L)∣−1)

∙ ∙ U j j ← U j j−V j
q
(L)V j

q
(U)

∙ L j j ← 1

∙ U j j
T

← U j j

∙ parallel for q ← 2…∣J j(LT
)∣

∙ ∙ i ← J j
q
(LT

)

∙ ∙ L i j ← Ai j

∙ ∙ U j i
T
← A j i

∙ ∙ r ← 1; ρ ← J i
r
(L)

∙ ∙ s ← 1; σ ← J j
s
(L)

∙ ∙ repeat
∙ ∙ ∙ while ρ<σ
∙ ∙ ∙ ∙ r ← r+1; ρ ← J i

r
(L)

∙ ∙ ∙ while ρ>σ
∙ ∙ ∙ ∙ s ← s+1; σ ← J j

s
(L)

∙ ∙ ∙ while ρ=σ
∙ ∙ ∙ ∙ if ρ= j
∙ ∙ ∙ ∙ ∙ exit repeat loop
∙ ∙ ∙ ∙ Li j ← Li j−V i

r
(L)V j

s
(U T

)

∙ ∙ ∙ ∙ U j i
T
← U j i

T
−V j

s
(L)V i

r
(U T

)

∙ ∙ ∙ ∙ r ← r+1
∙ ∙ ∙ ∙ ρ ← J i

r
(L)

∙ ∙ ∙ ∙ s ← s+1
∙ ∙ ∙ ∙ σ ← J j

s
(L)

∙ ∙ Li j ←
Li j

U j j

∙ ∙ L j i
T
← Li j

∙ ∙ U j i ← U i j
T

VII. PARALLEL PRECONDITIONED CONJUGATE GRADIENT

Conjugate gradient (CG) is a natural choice to solve sys-
tems of equations with SPD matrices, we will discuss some
strategies to improve convergence rate and make it suitable to
solve large sparse systems using parallelization.

A. Preconditioning

The condition number κ of a non singular matrix A∈ℝm×m,
given a norm ∥⋅∥ is defined as

κ(A)=∥A∥⋅∥A−1
∥.

For the norm ∥⋅∥2,

κ2(A)=∥A∥2⋅∥A−1∥2=
σmax(A)

σmin(A)
,

where σ is a singular value of A.
For a SPD matrix,

κ(A)=
λmax(A)

λmin(A)
,

where λ is an eigenvalue of A.
A system of equations A x=b is bad conditioned if a small

change in the values of A or b results in a large change in x .
In well conditioned systems a small change of A or b pro-
duces an small change in x . Matrices with a condition number
near to 1 are well conditioned.

A preconditioner for a matrix A is another matrix M such
that M A has a lower condition number
κ(M A)<κ (A).

In iterative stationary methods (like Gauss-Seidel) and more
general methods of Krylov subspace (like conjugate gradient)
a preconditioner reduces the condition number and also the
amount of steps necessary for the algorithm to converge.

Instead of solving
A x−b=0,

with preconditioning we solve
M (A x−b)=0.

The preconditioned conjugate gradient algorithm is:
x 0, initial approximation
r 0 ← b−A x0, initial gradient
q0 ← M r0

p0 ← q0, initial descent direction
k ← 0
while ∥r k∥>ε

∙ αk ← −
rk

T qk

p k
T A pk

∙ x k +1 ← xk+αk pk

∙ r k+ 1 ← r k−αk A pk

∙ q k+1 ← M r k+1

∙ βk ←
r k+1

T qk+1

r k
Tq k

∙ p k+1 ← q k+1+βk pk

∙ k ← k+1
For large and sparse systems of equations it is necessary to

choose preconditioners that are also sparse.
We used the Jacobi preconditioner, it is suitable for sparse

systems with SPD matrices. The diagonal part of M−1 is
stored as a vector,
M−1

=(diag (A))−1.
Parallelization of this algorithm is straightforward, because

the calculus of each entry of q k is independent.
Parallelization of the preconditioned CG is done using

OpenMP, operations parallelized are matrix-vector, dot prod-
ucts and vector sums. To synchronize threads has a computa-
tional cost, it is possible to modify to CG to reduce this costs
maintaining numerical stability [13].

B. Jacobi preconditioner

The diagonal part of M−1 is stored as a vector,

(M−1)i j={
1
Ai i

si i= j

0 si i≠ j
.

Parallelization of this algorithm is straightforward, because
the calculus of each entry of q k is independent.

C. Incomplete Cholesky factorization preconditioner

This preconditioner has the form
M=Hk D Hk

T,
where Hk is a lower triangular sparse matrix that have struc-
ture similar to the Cholesky factorization of A. he structure of
H0 is equal to the structure of the lower triangular form of A.
For 0<k<n, k diagonals will be added to the preconditioner
using the symbolic factorization, for k=n, the structure of Hk

will be equal to the structure of L (Cholesky factorization of
A). The values of Hk will be filled using the formulas for the
Cholesky factorization,

H i j=
1
D j
(Ai j−∑

k=1

j−1

H i k H jk Dk), for i> j ;

D j=A j j−∑
k=1

j−1

H jk
2 D k.

This preconditioner could not be SPD [14], to avoid this
problem the algorithm of Munksgaard [15] is used, it consists
of two strategies:
▪ Add a perturbation to the diagonal of A with a factor α ,

D j j=α A j j−∑
k=1

j−1

H j k
2 D k,

this will make the preconditioner to be SPD. The value of α
can be found by try and error.

▪ Create a perturbation in the pivots to increase stability if they
are negative or near zero,
if D j j≤u(∑k≠ j

∣a j k∣), then

D j j={∑k≠ j
∣a jk∣ if ∑

k≠ j
∣a j k∣≠0

1 if ∑
k≠ j

∣a j k∣=0
.

An adequate value for u is 0.01.
The use of this preconditioner implies to solve a system of

equations in each CG step using a backward and a forward
substitution algorithm, this operations are fast given the spar-
sity of Hk . Unfortunately the dependency of values makes
these substitutions very hard to parallelize.

D. Factorized sparse approximate inverse preconditioner

The aim of this preconditioner is to construct M to be an
approximation of the inverse of A with the property of being
sparse. The inverse of a sparse matrix is not necessary sparse.

Figure 17. Structure of an sparse matrix (left), and its inverse
(right).

A way to create an approximate inverse is to minimize the
Frobenius norm of the residual I−A M ,

F (M)=∥I−A M∥F
2. (3)

The Frobenius norm is defined as

∥A∥F=√∑
i=1

m

∑
j=1

n

∣ai j∣
2=√tr (AT A).

It is possible to separate (3) into decoupled sums of
2-norms for each column [16],

F (M)=∥I−A M∥F
2=∑

j=1

n

∥e j−Am j∥2
2,

where e j is the j-th column of I and m j is the j-th column of
M . With this separation we can parallelize the construction of
the preconditioner.

The factorized sparse approximate inverse preconditioner
[17] creates a preconditioner

M=G l
TG l

,

where G is a lower triangular matrix such that

G l≈L−1,

where L is the Cholesky factor of A. l is a positive integer that
indicates a level of sparsity of the matrix.

Instead of minimizing (3), we minimize ∥I−G l L∥F
2, it is

noticeable that this can be done without knowing L, solving
the equations

(G l L LT
)i j=(L

T
)i j

, (i , j)∈S L
,

this is equivalent to
(G l A)i j=(I)i j

, (i , j)∈S L
,

S L contains the structure of G l .
This preconditioner has these features:

M is SPD if there are no zeroes in the diagonal of G l .

The algorithm to construct the preconditioner is parallelizable.
This algorithm is stable if A is SPD.

The algorithm to calculate the entries of G l is:
Let Sl be the structure of G l

for j ← 1…n
∙ for ∀(i , j)∈Sl

∙ ∙ solve (A Gl)i j=δi j

Entries of G l are calculated by rows. To solve (A Gl)i j=δi j

means that, if m=η((Gl) j) is the number of non zero entries
of the column j of G l , then we have to solve a small SPD sys-
tem of size m×m.

A simple way to define a structure S l for G l is to simply
take the lower triangular part of A .

Another way is to construct S l from the structure take from

Ã, Ã2, ..., Ãl ,
where Ã is a truncated version of A,

Ãi j={1 if i= j or ∣(D−1 /2 A D−1/2)i j∣> t
0 other case

,

the threshold t is a non negative number and the diagonal ma-
trix D is

D̃i i={∣Ai i∣ if ∣Ai i∣>0
1 other case

.

Powers Ãl can be calculated combining rows of Ã. Lets de-
note the k-th row of Ãl as Ã k , :

l ,

Ã k , :
l
= Ãk , :

l−1 Ã.

The structure S l will be the lower triangular part of Ãl .

With this truncated Ãl , a G̃ l is calculated using the previous
algorithm to create a preconditioner M=G̃ l

TG̃ l .
The vector q k ← M rk is calculated with two matrix-vector

products,
M r k=G̃ l

T
(G̃ l r k).

E. Numerical experiments

First we will show results for the parallelization of solvers
with OpenMP. The next example is a 2D solid deformation
with 501,264 elements, 502,681 nodes. A system of equations
with 1’005.362 variables is formed, the number of non zero
entries are η(K)=18 ' 062,500 , η(L)=111 ' 873,237 . The tol-
erance used in CG methods is ∥r k∥≥1×10−5.

Cholesky CG CG-Jacobi CG-IChol CG-FSAI
0

50

100

150

200

250

300

350

400

450 1 core
2 cores
4 cores
8 cores

Ti
m

e
 [s

]

Solver 1 core
[s]

2 cores
[s]

4 cores
[s]

8 cores
[s]

Steps Memory
[bytes]

Cholesky 227 131 82 65 3,051,144,550
CG 457 306 258 260 9,251 317,929,450
CG-Jacobi 369 245 212 214 6,895 325,972,366
CG-IChol 154 122 113 118 1,384 586,380,322
CG-FSAI 320 187 156 152 3,953 430,291,930

The next example is a 3D solid model of a building that sus-
tain deformation due to self-weight. Basement has fixed dis-
placements.

The domain was discretized in 264,250 elements, 326,228
nodes, 978,684 variables, η(K)=69 ’ 255,522 .

Cholesky CG CG-Jacobi CG-FSAI
0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0
1 core
2 cores
4 cores
6 cores
8 cores

T
im

e
[m

]

Solver 1 core
[m]

2 cores
[m]

4 cores
[m]

6 cores
[m]

8 cores
[m]

Memory
[bytes]

Cholesky 143 74 44 34 32 19,864,132,056
CG 388 245 152 147 142 922,437,575
CG-Jacobi 160 93 57 54 55 923,360,936
CG-FSAI 74 45 27 25 24 1,440,239,572

In this model, conjugate gradient with incomplete Cholesky
factorization failed to converge.

VIII. PARALLEL BICONJUGATED GRADIENT

The biconjugate gradient method is based on the conjugate
gradient method, it solves linear systems of equations
A x=b,

in this case A∈ℝm×m does not need to be symmetric.
This method requires to calculate a pseudo-gradient g̃ k and

a pseudo-direction of descent p̃ k. The algorithm construcs the
pseudo-gradients g̃ k to be orthogonal to the gradients g k, simi-
larly, the pseudo-directions of descent p̃ k to be A-orthogonal
to the descent directions p k [18].

If the matrix A is symmetric, then this method is equivalent
to the conjugate gradient.

The drawbacks are, it does not assure convergence in n iter-
ations as conjugate gradient does, it requires to do two ma-
trix-vector multiplications.

The algorithm is [18]:
ε, tolerance
x 0, initial coordinate
g 0 ← A x 0−b, initial gradient
g̃ 0 ← g 0, initial pseudo-gradient
p0 ← −g 0, initial descent direction
p̄0 ← p0, initial pseudo-direction of descent
k ← 0
while ∥g k∥>ε

∙ w ← A p k

∙ w̃ ← AT p̃k

∙ αk ← −
g̃ k

T g k

p̃k
T w

∙ x k +1 ← xk+αk pk

∙ g k +1 ← g k+αw
∙ g̃ k +1 ← g̃ k+α w̃

∙ βk ←
g̃ k+1

T g k+1

g̃ k
T g k

∙ p k+1 ← −g k+1+βk+1 p k

∙ p̃ k+1 ← − g̃ k+1+βk+1 p̃ k

∙ k ← k+1
This method can also be preconditioned.

ε, tolerance
x 0, initial coordinate
g 0 ← A x 0−b, initial gradient

g̃ 0 ← g 0
T, initial pseudo-gradient

q0 ← M−1 g 0

q̃0 ← g̃ 0 M−1

p0 ← −q0, initial descent direction
p̄0 ← −q̃0, initial pseudo-direction of descent
k ← 0
while ∥g k∥>ε

∙ w ← A p k

∙ w̃ ← p̃k A

∙ αk ← −
q̃k g k

p̃ k w
∙ x k +1 ← xk+αk pk

∙ g k +1 ← g k+αw
∙ g̃ k +1 ← g̃ k+α w̃

∙ q k+1 ← M−1 g k+1

∙ q̃ k+1 ← g̃ k+1 M −1

∙ βk ←
g̃ k+1q k+ 1

g̃k q k

∙ p k+1 ← −qk +1+βk+1 pk

∙ p̃ k+1 ← −q̃k +1+βk+1 p̃k

∙ k ← k+1
Preconditioners for this solver are Jacobi, incomplete LU

factorization [19] and factorized sparse approximate inverse
for non-symmetric matrices [20]. These are counterparts of the
preconditioners for the symmetric case.

IX. SCHUR SUSTRUCTURING METHOD

This is a domain decomposition method with no overlap-
ping [21], the basic idea is to split a large system of equations
into smaller systems that can be solved independently in dif-
ferent computers in parallel.

Γ f

Γd

Ω

i j

Figure 18. Finite element domain (left), domain discretization
(center), partitioning (right).

We start with a system of equations resulting from a finite
element problem
K d=f , (4)

where K is a symmetric positive definite matrix of size n×n.

A. Partitioning

If we divide the geometry into p partitions, the idea is to
split the workload to let each partition to be handled by a com-
puter in the cluster [22].

Figure 19. Partitioning example.

We can arrange (reorder variables) of the system of equa-
tions to have the following form

K 1
II

K 1
IB

K2
II

K 2
IB

K3
II

K3
IB

KBB

K 2
IB

 (
K1

II 0 0 K1
IB

0 K2
II 0 K2

IB

0 0 K3
II K3

IB

K1
BI K 2

BI K3
BI KBB)

Figure 20. Substructuring example with three partitions.

The superscript II denotes entries that capture the relation-
ship between nodes inside a partition. BB is used to indicate
entries in the matrix that relate nodes on the boundary. Finally
and are used for entries with values dependent of nodes in the
boundary and nodes inside the partition.

On a more general example

(
K1

II 0 K 1
IB

K2
II K 2

IB

0 K3
II K 3

IB

⋮ ⋱ ⋮

K p
II K p

IB

K1
BI K2

BI K3
BI

⋯ K p
BI KBB

)(
d1

I

d2
I

d3
I

⋮

d p
I

dB
)=(

f 1
I

f 2
I

f 3
I

⋮

f p
I

f B
). (5)

Thus, the system can be separated in p different systems,

(K i
II Ki

IB

K i
BI KBB)(di

I

dB)=(f i
I

f B), i=1… p.

For partitioning the mesh we used the METIS library [9].

B. Schur complement method

For each partition i the vector of unknowns di
I as

di
I
=(K i

II)
−1

(f i
I
−Ki

IB dB). (6)

After applying Gaussian elimination by blocks on (5), the
reduced system of equations becomes

(KBB−∑
i=1

p

K i
BI(K i

II)
−1

Ki
IB)d B=f B−∑

i=1

p

Ki
BI (K i

II)
−1

f i
I. (7)

Once the vector dB is computed using (7), we can calculate
the internal unknowns di

I with (6).
It is not necessary to calculate the inverse in (7). Let’s de-

fine K̄ i
BB
=K i

BI(K i
II)
−1

K i
IB, to calculate it [23], we proceed col-

umn by column using an extra vector t , and solving for
c=1…n

K i
II t=[K i

IB]c, (8)

note that many [K i
IB]c are null. Next we can complete K i

BB

with,

[K̄ i
BB]c=Ki

BI t.

Now lets define f̄ i
B
=K i

BI (K i
II)
−1

f i
I, in this case only one sys-

tem has to be solved

K i
II t=f i

I, (9)

and then

f̄ i
B
=Ki

BI t.

Each K̄ i
BB and f̄ i

B holds the contribution of each partition to
(7), this can be written as

(KBB−∑
i=1

p

K̄ i
BB)dB=f B−∑

i=1

p

f̄ i
B, (10)

once (10) is solved, we can calculate the inner results of each
partition using (6).

Since K i
II is sparse and has to be solved many times in (8), a

efficient way to proceed is to use a Cholesky factorization of
K i

II. To reduce memory usage and increase speed a sparse
Cholesky factorization has to be implemented, this method is
explained below.

In case of (10), K BB is sparse, but K̄ i
BB are not. To solve this

system of equations an sparse version of conjugate gradient

was implemented, the matrix (KBB−∑
i=1

p

K̄ i
BB) is not assem-

bled, but maintained distributed. In the conjugate gradient
method is only important to know how to multiply the matrix
by the descent direction, in our implementation each K̄ i

BB is
maintained in their respective computer and the multiplication
is done in a distributed way an the resulted vector is formed
with contributions from all partitions. To improve the conver-
gence of the conjugate gradient a Jacobi preconditioner is
used. This algorithm is described below.

One benefit of this method is that the condition number of
the system is reduced when solving (10), this decreases the
number of iterations needed to converge.

C. Numerical experiments

We present a couple examples, these were executed in a
cluster with 15 nodes, each one with two dual core Intel Xeon
E5502 (1.87GHz) processors, a total of 60 cores. A node is
used as a master process to load the geometry and the problem
parameters, partition an split the systems of equations. The
other 14 nodes are used to solve the system of equations of
each partition. Times are in seconds. Tolerance used is 1x10-10.

Solid deformation. The problem tested is a 3D solid model
of a building that is deformed due to self weight. The geome-
try is divided in 1’336,832 elements, with 1’708,273 nodes,
with three degrees of freedom per node the resulting system of
equations has 5’124,819 unknowns.

Figure 21. Substructuration of the domain (left) ad the resulting
deformation (right)

Number of
processes

Partition
time [s]

Inversion
time [s]

Schur c.
time [s]

CG steps Total
time [s]

14 47.6 18521 4445 6927 23025
28 45.7 6270 2445 8119 8772
56 44.1 2257 2296 9627 4609

14 28 56
0

5000

10000

15000

20000

Schur complement time (CG)
[s]
Inversion time (Cholesky) [s]
Partitioning time [s]

Number of processes

T
im

e
 [s

]

14 28 56
0

10

20

30

40

50

60

70

80 Slave processes [GB]

Number of processes

M
e

m
o

ry
 [G

ig
a

 b
yt

e
s

]

Number of
processes

Master process
[gigabytes]

Slave processes
[gigabytes]

Total memory
[gigabytes]

14 1.89 73.00 74.89
28 1.43 67.88 69.32
56 1.43 62.97 64.41

Heat diffusion. This is a 3D model of a heat sink, in this
problem the base of the heat sink is set to a certain tempera-
ture and heat is lost in all the surfaces at a fixed rate. The ge-
ometry is divided in 4’493,232 elements, with 1’084,185
nodes. The system of equations solved had 1’084,185 un-
knowns.

Figure 22. Sub-structuration of the domain (left) ad the
resulting temperature (right)

Number of
processes

Partition
time [s]

Inversion
time [s]

Schur c.
time [s]

CG steps Total
time [s]

14 144.9 798.5 68.1 307 1020.5
28 146.6 242.0 52.1 348 467.1
56 144.2 82.8 27.6 391 264.0

14 28 56
0

200

400

600

800

1000 Schur complement time (CG)

Inversion time (Cholesky)

Partitioning

Number of processes

T
im

e
 [s

]

14 28 56
0

2

4

6

8

10

12

14

16 Slave processes Master process

Number of processes

M
e

m
o

ry
 [G

ig
a

 b
yt

e
s

]

Number of
processes

Master process
[gigabytes]

Slave processes
[gigabytes]

Total memory
[gigabytes]

14 9.03 5.67 14.70
28 9.03 5.38 14.41
56 9.03 4.80 13.82

D. Larger systems of equations

To test solution times in larger systems of equations we set
a simple geometry. We calculated the temperature distribution
of a unitary metallic square with Dirichlet conditions on all
boundaries.

1°C
2°C
3°C
4°C

Figure 23. Domain and boundary conditions.

The domain was discretized using quadrilaterals with nine
nodes, the discretization made was from 25 million nodes up
to 800 million nodes. In all cases we divided the domain into
960 partitions. In this case we used a cluster with 81 nodes,
each one with two CPU E5-2620 processors (with 6 cores per
processor), a total of 972 cores. A node is used as a master
process that loads the geometry and the problem parameters
and splits the systems of equations. Tolerance used was 1x10-

10.
Number of
equations

Time
[hours]

Memory
[GB]

25,010,001 00:10:00 38,127,911,928
50,027,329 00:22:21 82,291,561,272
75,012,921 00:34:24 128,852,868,872

100,020,001 00:46:14 176,982,703,608
125,014,761 00:59:20 224,876,901,752
150,038,001 01:10:32 275,868,154,968
200,081,025 01:37:42 380,487,437,704
250,050,969 02:03:05 485,244,957,896
300,086,329 02:29:11 598,995,145,840
400,040,001 03:24:50 812,439,074,088
500,103,769 04:26:51 1,034,046,442,776
600,103,009 05:16:07 1,263,423,250,648
700,078,681 06:15:05 1,451,719,027,176
800,154,369 07:18:15 1,690,025,398,632

0 200,000,000 400,000,000 600,000,000 800,000,000

0

1

2

3

4

5

6

7

8

Figure 24. Number of equations vs. solution time (in hours).

E. Speed-up

To test the speed-up of the Schur substructuring method we
used the problem defined in section D with 25,010,001 equa-

tions, using from 4 to 80 parallel processes. Results are shown
in the next table, and in figure 25.

Processes Time [min] Memory [bytes]
4 300.2 76,957,081,832
8 165.6 67,884,179,856

16 69.4 59,350,255,936
24 41.3 55,276,709,976
32 30.1 53,020,499,256
40 24.1 51,385,832,424
48 21.3 49,783,503,696
56 18.0 48,852,531,880
64 17.5 48,360,392,536
72 15.4 47,395,019,288
80 14.9 47,303,011,304

0 10 20 30 40 50 60 70 80
0.0

50.0

100.0

150.0

200.0

250.0

300.0

Time [m]

Ideal time [m]

Number of processes

T
im

e
 [m

]

Figure 25.Number of processes vs solution time in minutes.

The Schur substructuring method can not be used with a
single partition, thus, to plot the speed-up chart in figure 26 we
defined the time taken to solve the system of equations with
four processes/partitions as the serial time (t 4), with this

speed-up=
t 4

t n

.

0 10 20 30 40 50 60 70 80
0

5

10

15

20

Speed-up

Ideal speed-up

Number of processes

S
p

e
e

d
-u

p

Figure 26.Schur substructuring method speed-up.

The resulting speed-up appears to be better than the ideal,
the explanation for this behavior is that with less partitions
each parallel process has to handle more memory, and mem-
ory access is not linear, many bottlenecks exists, like “page
faults”, “cache misses”, “collisions on the bus” on NUMA sys-
tems, and others [2].

X. CONCLUSIONS AND FUTURE WORK

We have presented a set of tools for solving large linear sys-
tems of equations that is easily adaptable to an existing simu-
lation code in any programming language. This is important,
because for large simulation codes, it takes a lot of time and is
expensive to translate all code to use a new technology that
uses a different storage method. All solvers are designed to run
efficiently on multi-core computers.

In the future we will include more solvers, like biconjugate
gradient stabilized method, GMRES, and implement more pre-
conditioners. Because the software is released as open source
we welcome collaboration from the scientific community to
make it better.

XI. FEMT LICENSE

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied
warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library Gen-
eral Public
License along with this library; if not, write to the Free
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

XII. REFERENCES

[1] W. A. Wulf , S. A. Mckee. Hitting the Memory Wall: Implications of the
Obvious. Computer Architecture News, 23(1):20-24, March 1995.

[2] U. Drepper. What Every Programmer Should Know About Memory. Red
Hat, Inc. 2007.

[3] T. Sterling, D. J. Becker, D. Savarese, J. E. Dorband, U. A. Ranawake,
C. V. Packer. BEOWULF: A Parallel Workstation For Scientific
Computation. Proceedings of the 24th International Conference on
Parallel Processing, 1995.

[4] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard, Version 2.1. University of Tennessee, 2008.

[5] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.
[6] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM

Journal on Algebraic Discrete Methods, Volume 2, Issue 1, pp 77-79,
March, 1981.

[7] A. George, J. W. H. Liu. Computer solution of large sparse positive
definite systems. Prentice-Hall, 1981.

[8] A. George, J. W. H. Liu. The evolution of the minimum degree ordering
algorithm. SIAM Review Vol 31-1, pp 1-19, 1989.

[9] G. Karypis, V. Kumar. A Fast and Highly Quality Multilevel Scheme for
Partitioning Irregular Graphs. SIAM Journal on Scientific Computing,
Vol. 20-1, pp. 359-392, 1999.

[10] K. A. Gallivan, M. T. Heath, E. Ng, J. M. Ortega, B. W. Peyton, R. J.
Plemmons, C. H. Romine, A. H. Sameh, R. G. Voigt, Parallel Algorithms
for Matrix Computations, SIAM, 1990.

[11] M. Vargas-Felix, S. Botello-Rionda. “Parallel Direct Solvers for Finite
Element Problems”. Comunicaciones del CIMAT, I-10-08 (CC), 2010.
http://www.cimat.mx/reportes/enlinea/I-10-08.pdf

[12] M T. Heath, E. Ng, B. W. Peyton. Parallel Algorithms for Sparse Linear
Systems. SIAM Review, Vol. 33, No. 3, pp. 420-460, 1991.

[13] E. F. D'Azevedo, V. L. Eijkhout, C. H. Romine. Conjugate Gradient
Algorithms with Reduced Synchronization Overhead on Distributed
Memory Multiprocessors. Lapack Working Note 56. 1993.

[14] G. H. Golub, C. F. Van Loan. Matrix Computations. Third edition. The
Johns Hopkins University Press, 1996.

http://www.cimat.mx/reportes/enlinea/I-10-08.pdf

[15] N. Munksgaard. Solving Sparse Symmetric Sets of Linear Equations by
Preconditioned Conjugate Gradients. ACM Transactions on
Mathematical Software, Vol 6-2, pp. 206-219. 1980.

[16] E. Chow, Y. Saad. Approximate Inverse Preconditioners via Sparse-
Sparse Iterations. SIAM Journal on Scientific Computing. Vol. 19-3, pp.
995-1023. 1998.

[17] E. Chow. Parallel implementation and practical use of sparse
approximate inverse preconditioners with a priori sparsity patterns.
International Journal of High Performance Computing, Vol 15. pp 56-74,
2001.

[18] U. Meier-Yang. Preconditioned conjugate gradient-like methods for
nonsymmetric linear systems. University of Illinois. 1994.

[19] V. Eijkhout. On the Existence Problem of Incomplete Factorisation
Methods. Lapack Working Note 144, UT-CS-99-435. 1999.

[20] A. Y. Yeremin, A. A. Nikishin. Factorized-Sparse-Approximate-Inverse
Preconditionings of Linear Systems with Unsymmetric Matrices. Journal
of Mathematical Sciences, Vol. 121-4. 2004.

[21] J. Kruis. “Domain Decomposition Methods on Parallel Computers”.
Progress in Engineering Computational Technology, pp 299-322. Saxe-
Coburg Publications. Stirling, Scotland, UK. 2004.

[22] M. Vargas-Felix, S. Botello-Rionda. Solution of finite element problems
using hybrid parallelization with MPI and OpenMP. Acta Universitaria.
Vol. 22-7, pp 14-24. 2012.

[23] M. Soria-Guerrero. Parallel multigrid algorithms for computational fluid
dynamics and heat transfer. Universitat Politècnica de Catalunya.
Departament de Màquines i Motors Tèrmics. 2000.
http://hdl.handle.net/10803/6678

http://hdl.handle.net/10803/6678

	I. Introduction
	II. Parallelization
	A. Parallelization on multi‑core computers
	B. Computer clusters and MPI

	III. Tools for solving large systems of equations in parallel
	A. FEMSolver
	B. FEMSolver.Schur
	C. EqnSolver
	D. EqnSolver.Schur
	E. MatSolver

	IV. Sparse matrices
	A. Matrix storage

	V. Cholesky factorization for sparse matrices
	A. Reordering rows and columns
	B. Symbolic Cholesky factorization
	C. Filling entries in parallel
	D. LDL’ factorization
	E. Numerical experiments

	VI. LU factorization for sparse matrices
	VII. Parallel preconditioned conjugate gradient
	A. Preconditioning
	B. Jacobi preconditioner
	C. Incomplete Cholesky factorization preconditioner
	D. Factorized sparse approximate inverse preconditioner
	E. Numerical experiments

	VIII. Parallel biconjugated gradient
	IX. Schur sustructuring method
	A. Partitioning
	B. Schur complement method
	C. Numerical experiments
	D. Larger systems of equations
	E. Speed‑up

	X. Conclusions and Future Work
	XI. FEMT license
	XII. References

