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Abstract—Finite  element  analysis  of  elastic  deformation  of 
three-dimensional  complex  structures  using  a  fine  mesh  could 
require  to  solve  systems  of  equations  with  several  million 
variables.

Domain decomposition is used to separate workload, instead of 
solving a huge system of equations, the domain is partitioned and 
for each partition  a  smaller system of  equations  is  solved,  all 
partitions  are  solved  in  parallel.  Each  partition  is  solved in  a 
single  MPI  (Message  Passing  Interface)  process,  updates  of 
boundary  conditions  among  processes  is  done  through  MPI 
message routines.

Parallelization  of  solvers  is  also  done  by  using  OpenMP. 
Algorithms for solving systems of equations are implemented to 
run in multi-core processors,  we will  try two kinds of  solvers: 
iterative  (preconditioned  conjugate  gradient)  and  direct 
(Cholesky factorization). We will discuss some strategies to make 
these solvers parallelizable.

Numerical  experiments  were done using a program that we 
created from scratch, it was programed in C++ and tested in a 
Beowulf cluster with multi-core nodes.

Different configurations for domain decompositions are tested, 
for instance, using many small partitions each one using a single 
core, or fewer partitions using several cores that share memory. 
This  kind  of  experiments  becomes  very  useful  when  one  is 
looking for an adequate compromise between solution time and 
memory requirements when a Beowulf cluster is used.

Index  terms —  Parallel  computing,  domain  decomposition, 
finite element method, sparse systems, linear algebra.

I. INTRODUCTION

his  is  a  high  performance/large-scale  application  case 
study of the finite element method for solid mechanics. 

Our  goal  is  to  calculate  displacements,  strain  and  stress  of 
solids  discretized  with  large  meshes  (millions  of  elements) 
using parallel computing.

T
We want to calculate linear inner displacements of a solid 

resulting  from  forces  or  displacements  imposed  on  its 
boundaries.
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The displacement vector inside the domain is defined as
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where ε x, ε y and ε z are normal strains; γx, γx and γx are shear 
strains. We define a differential operator Ε .

Stress vector is defined as
σ=(σ x ,σ y ,σz ,τ x y , τ y z , τ zx )

T,
where  σ x,  σ y and  σ z are normal stresses;  τ x,  τ x and  τ x are 
tangential stresses.

Stress an strain are related by
σ=Dε; (2)

D is  called  the  constitutive  matrix,  it  depends  on  Young 
moduli and Poisson coefficients characteristic of media.

Solution is found using the finite element method with the 
Galerkin  weighted  residuals.  This  means  that  we  solve  the 
integral  problem in each element using a weak formulation. 
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The integral expression of equilibrium in elasticity problems 
can be obtained using the principle of virtual  work [Zien05 
pp65-71],

∫
V
δε Tσ dV=∫

V
δuT b dV +∮

A
δuT t dA+∑

i
δui

T q i, (3)

here b, t and q are the vectors of mass, boundary and punctual 
forces respectively. The weight functions for weak formulation 
are  chosen to be the interpolation functions of  the element, 
these  are  N i,  i=1,… ,M.  M is  the  number  of  nodes  of  the 
element, ui is the coordinate of the i th node, we have that

u=∑
i=1

M

N i ui. (4)

Using (4), we can rewrite (1) as:

ε=∑
i=1

M

Ε N i ui,

or in a more compact form

ε=(Ε N 1 Ε N 2 ⋯ Ε N M )( u1

u2

⋮
uM
)=B u.

Now we can express (2) as σ=D Bu, and then (3) by

∫
V e
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By integrating (5) we obtain a system of equations for each 
element,

K e ue= f b
e+ f t

e+qe .
All systems of equations are assembled in a global system of 
equations,

K u= f .
K  is  called  the  stiffness  matrix,  if  enough  boundary 

conditions are applied, it will be symmetric positive definite 
(SPD). By construction it is sparse with storage requirements 
of order  O(n),  where  n is  the total  number of nodes in the 
domain.  By  solving  this  system  we  will  obtain  the 
displacements of all nodes in the domain. The solution of this 
system of equations is the task that we want do using parallel 
computing.

II. DOMAIN DECOMPOSITION

We can separate a huge finite element problem into smaller 
problems by partitioning the mesh to create sub-domains. In 
this case we will use domain decomposition with overlapping, 
these  methods  were  first  studied  by Schwarz  [Tose05].  For 
each sub-domain a system of equations with a SPD matrix is 
assembled thus we can solve it using solver algorithms that are 
implemented to run in parallel, such as Cholesky factorization 
or preconditioned conjugate gradient.

The domain decomposition algorithm we used  is  parallel 
Schwarz  alternating  method  [Smit96],  this  is  an  iterative 
algorithm. We start with a domain Ω with boundary ∂Ω.

Ω2
Ω1

∂Ω2

Ω

∂Ω

∂Ω1

Let  L be  a  differential  operator  such  that  L x=y in  Ω. 
Dirichlet conditions  x=b are applied on  ∂Ω. The domain is 
divided in two partitions Ω1 and Ω2 with boundaries ∂Ω1 and 
∂Ω2 respectively.

Partitions are overlapped, now Ω=Ω1∪Ω2 and Ω1∩Ω2≠∅.

Γ2 Γ1

∂Ω1∖ Γ1 ∂Ω2∖ Γ2

We define artificial boundaries Γ1 and Γ2, these are part of 
Ω1 and Ω2, and are inside Ω.

Schwarz  alternating  method  consists  on  solving  each 
partition independently, fixing Dirichlet conditions in artificial 
boundaries with values from adjacent partition resulting from 
previous iteration.
x 1

0, x 2
0, initial approximations

ε tolerance
i ← 0
while ∥x1

i −x 1
i−1∥>ε or ∥x 2

i −x 2
i−1∥>ε

solve solve
L x 1

i=y in Ω1 L x 2
i=y in Ω2

with x 1
i=b on ∂Ω 1∖Γ 1 with x 2

i =b on ∂Ω 2∖Γ2

x 1
i ← x 2

i−1∣Γ 1
on Γ 1 x 2

i ← x1
i−1∣Γ 2

on Γ 2

i ← i+1
When  the  L operator  has  a  matrix  representation, 

alternating  Schwarz  algorithm  corresponds  (due  to 
overlapping) to the iterative Gauss-Seidel by blocks [Smit96 
p13].
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In finite element problems, overlapping is adding to each 
partition  one  or  several  layers  of  elements  adjacent  to  the 
boundary between partitions.

Ω1

Ω2

Γ2

Γ1

One layer

Ω1

Ω2

Γ1

Γ2

Two layers

A. Convergence speed
There is a degradation on the convergence speed when the 

number of partitions raise [Smith96 p53]. Next image shows a 
pathological case of domain decomposition.

Ω

Ω1 Ω2 Ω3 ΩN

In  each  iteration  of  the  alternating  Schwarz  method 
information  is  only  transmitted  to  adjacent  partitions. 
Therefore, if we have a boundary condition different to zero in 
the boundary of Ω1, and we start in iteration 0, it will take N 
iterations for the local solution of partition ΩN to be different 
to 0.

The Schwarz algorithm typically converge at a speed that is 
independent (or slightly independent) of mesh density when 
the overlapping is large enough [Smith96 p74].

A deeper  study of  theory  of  Schwarz  algorithms  can  be 
found in [Tose05].

III. COMPUTER CLUSTERS AND MPI
We developed a software program that runs in parallel in a 

Beowulf cluster [Ster95]. A Beowulf cluster consists of several 
multi-core  computers  (nodes)  connected  with  a  high  speed 
network.

S
la

ve
 n

od
es

Master node

Network switch

External
network

In our software implementation each partition is assigned to 
one process. To parallelize the program and move data among 
nodes we used the Message Passing Interface (MPI) schema 
[MPIF08],  it  contains  set  of  tools  that  makes  easy to  start 
several instances  of a program (processes) and run them in 
parallel.  Also,  MPI  has  several  libraries  with  a  rich  set  of 

routines to send and receive data messages among processes in 
an  efficient  way.  MPI can  be  configured  to  execute  one  or 
several processes per node.

For  partitioning  the  mesh  we  used  the  METIS  library 
[Kary99].

IV. OPENMP
Using domain decomposition with MPI we could have a 

partition assigned to each node of a cluster, we can solve all 
partitions concurrently. If each node is a multi-core computer 
we can also parallelize the solution of the system of equations 
of each partition. To implement this parallelization we use the 
OpenMP model.

This  parallelization  model  consists  in  compiler  directives 
inserted in the source code to parallelize sections of code. All 
cores have access to the same memory, this model is known as 
shared memory schema.

In modern computers with shared memory architecture the 
processor is a lot faster than the memory [Wulf95].
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To overcome this, a high speed memory called cache exists 
between the processor and RAM. This cache reads blocks of 
data from RAM meanwhile the processor is  busy,  using an 
heuristic to predict what the program will require to read next. 
Modern processor have several caches that are organized by 
levels  (L1,  L2,  etc),  L1  cache  is  next  to  the  core.  It  is 
important  to considerate the cache when programming high 
performance applications, the next table indicates the number 
of clock cycles needed to access each kind of memory by a 
Pentium M processor:

Access to CPU cycles
CPU registers <=1

L1 cache 3
L2 cache 14

RAM 240
A big bottleneck in multi-core systems with shared memory 

is that only one core can access the RAM at the same time.
Another bottleneck is the cache consistency. If two or more 

cores are accessing the same RAM data then different copies 
of  this  data  could  exists  in  each  core’s  cache,  if  a  core 
modifies its cache copy then the system will need to update all 
caches  and  RAM,  to  keep  consistency  is  complex  and 
expensive [Drep07]. Also, it is necesary to consider that cache 
circuits  are  designed  to  be  more  efficient  when  reading 
continuous memory data  in  an ascendent  sequence [Drep07 
p15].
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To avoid lose of performance due to wait for RAM access 
and synchronization times due to cache inconsistency several 
strategies can be use:
• Work with continuous memory blocks.

• Access memory in sequence.

• Each core should work in an independent memory area.
Algorithms to solve our system of  equations should take 

care of these strategies.

V. MATRIX STORAGE

An efficient  method to store and operate matrices of this 
kind  of  problems  is  the  Compressed  Row  Storage  (CRS) 
[Saad03  p362].  This  method  is  suitable  when  we  want  to 
access entries of each row of a matrix A sequentially.

For each row i of A we will have two vectors, a vector v i
A 

that will contain the non-zero values of the row, and a vector 
j i

A with their respective column indexes. For example a matrix 
A and its CRS representation

A=(
8 4 0 0 0 0
0 0 1 3 0 0
2 0 1 0 7 0
0 9 3 0 0 1
0 0 0 0 0 5

), 

8 4
1 2
1 3
3 4
2 1
1 3

7
5

9 3
2 3

1
6

5
6

v4
A=(9,3, 1)

j 4
A=(2,3, 6)

The size of  the  row will  be  denoted  by  ∣v i
A∣ or  by  ∣ j i

A∣. 
Therefore the  q th non zero value of the row  i of  A will be 
denoted by  (v i

A)q and the index  of this value as  ( j i
A)q,  with 

q=1,… ,∣vi
A∣.

If  we do not order entries of each row, then to search an 
entry with certain column index will have a cost of O(∣vi

A∣) in 

the worst case. To improve it we will keep v i
A and j i

A ordered 
by the indexes j i

A. Then we could perform a binary algorithm 

to have an search cost of O (log2∣v i
A∣).

The main advantage of using Compressed Row Storage is 
when data in each row is stored continuously and accessed in a 
sequential  way,  this  is  important  because  we will  have  and 
efficient processor cache usage [Drep07].

VI. PARALLEL CHOLESKY FOR SPARSE MATRICES

The  cost  of  using  Cholesky  factorization  A=L LT is 
expensive if we want to solve systems of equations with full 
matrices,  but  for  sparse matrices  we could  reduce  this  cost 
significantly if we use reordering strategies and we store factor 
matrices  using  CRS  identifying  non  zero  entries  using 
symbolic factorization. With this strategies we could maintain 
memory and time requirements near to  O(n). Also Cholesky 
factorization could be implemented in parallel.

Formulae to calculate L entries are

Li j=
1

L j j(Ai j−∑
k=1

j−1

Li k L jk) , for i> j; (6)

L j j=√A j j−∑
k=1

j−1

L j k
2 . (7)

A. Reordering rows and columns
By reordering the rows and columns of a SPD matrix A  we 

could reduce the fill-in (the number of non-zero entries) of L. 
The next images show the non zero entries of A∈ℝ556×556  and 
the non zero entries of its Cholesky factorization L.

 

The number of non zero entries of  A  is  η(A)=1810, and 
for L is η(L)=8729 . The next images show A  with reordering 
by rows and columns.

 

By reordering we have a new factorization with η(L)=3215
, reducing the fill-in to 0.368 of the size of the not reordered 
version. Both factorizations allow us to solve the same system 
of equations.

The most common reordering heuristic to reduce fill-in is 
the minimum degree algorithm, the basic version is presented 
in  [Geor81 p116]:
Let be a matrix A and its corresponding graph G0

i ← 1
repeat

Let node x i in Gi−1(X i−1 , E i−1) have minimum degree
Form a new elimination graph Gi(X i , E i) as follow:

Eliminate x i and its edges from Gi−1

Add edges make adj(x1) adjacent pairs in Gi

i ← i+1
while i<∣X∣

More advanced versions of this algorithm can be consulted 
in [Geor89].

There are more complex algorithms that perform better in 
terms of time and memory requirements, the nested dissection 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

algorithm  developed  by  Karypis  and  Kumar  [Kary99] 
included in METIS library gives very good results.

B. Symbolic Cholesky factorization
This  algorithm  identifies  non  zero  entries  of  L,  a  deep 

explanation could be found in [Gall90 p86-88].
For an sparse matrix A, we define

a j ≝ {k> j ∣ Ak j≠0}, j=1…n,
as the set of non zero entries of column j of the strictly lower 
triangular part of A.

In similar way, for matrix L we define the set
l j ≝ {k> j ∣ Lk j≠0}, j=1…n.

We also use sets define sets r j that will contain columns of 
L which structure will affect the column j of L. The algorithm 
is:
for j ← 1…n

r j ← ∅
l j ← a j

for i∈r j

l j ← l j∪l i∖ { j}

p ← {min {i∈l j} if l j≠∅
j other case

r p ← r p∪{ j}
This  algorithm  is  very  efficient,  complexity  in  time  and 

memory  usage  has  an  order  of  O(η(L)).  Symbolic 
factorization  could  be  seen  as  a  sequence  of  elimination 
graphs [Geor81 pp92-100].

C. Filling entries in parallel
Once non zero entries are determined we can rewrite (6) 

and (7) as

Li j=
1

L j j(Ai j− ∑
k∈ j i

L∩ j j
L

k< j

Li k L jk), for i> j;

L j j=√A j j−∑
k ∈ j j

L

k< j

L j k
2

.

The resulting algorithm to fill non zero entries is:
for j ← 1…n

L j j ← A j j

for q ← 1…∣v j
L∣

L j j ← L j j−(v j
L)q(v j

L)q
L j j ← √L j j

L j j
T ← L j j

parallel for q ← 1…∣ j j
LT∣

i ← ( j j
LT)q

Li j ← Ai j

r ← 1; ρ ← ( j i
L)r

s ← 1; σ ← ( ji
L)s

repeat
while ρ<σ

r ← r+1; ρ ← ( j i
L)r

while ρ>σ
s ← s+1; σ ← ( ji

L)s
while ρ=σ

if ρ= j
exit repeat

Li j ← Li j−(v i
L)r(v j

L)s
r ← r+1; ρ ← ( j i

L)r
s ← s+1; σ ← ( ji

L)s
Li j ←

Li j

L j j

L j i
T ← Li j

This algorithm could be parallelized if we fill  column by 
column. Entries of each column can be calculated in parallel 
with OpenMP, because there are no dependence among them 
[Heat91  pp442-445].  Calculus  of  each  column  is  divided 
among cores.

Core 1

Core 2

Core N

Cholesky  solver  is  particularly  efficient  because  the 
stiffness matrix is factorized once. The domain is partitioned 
in many small sub-domains to have small and fast Cholesky 
factorizations.

VII. PARALLEL PRECONDITIONED CONJUGATE 
GRADIENT

Conjugate  gradient  (CG)  is  a  natural  choice  to  solve 
systems of equations with SPD matrices, we will discuss some 
strategies to improve convergence rate and make it suitable to 
solve large sparse systems using parallelization.

The condition number κ of a non singular matrix A∈ℝm×m, 
given a norm ∥⋅∥ is defined as

κ(A)=∥A∥⋅∥A−1∥.
For the norm ∥⋅∥2,

κ2(A)=∥A∥2⋅∥A−1∥2=
σmax(A)
σmin(A) ,

where σ is a singular value of A.
For a SPD matrix,

κ(A)=
λmax(A)
λmin(A) ,

where λ is an eigenvalue of A.
A system of equations A x=b is bad conditioned if a small 

change in the values of A or b results in a large change in x. 
In  well  conditioned  systems  a  small  change  of  A or  b 
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produces  an  small  change  in  x.  Matrices  with  a  condition 
number near to 1 are well conditioned.

A preconditioner for a matrix  A is another matrix  M such 
that M A has a lower condition number

κ(M A)<κ(A).
In iterative stationary methods (like Gauss-Seidel) and more 

general methods of Krylov subspace (like conjugate gradient) 
a  preconditioner  reduces the condition number and also the 
amount of steps necessary for the algorithm to converge.

Instead of solving
A x−b=0,

with preconditioning we solve
M (A x−b)=0.

The preconditioned conjugate gradient algorithm is:
x 0, initial approximation
r0 ← b−A x 0, initial gradient
q 0 ← M r0

p 0 ← q0, initial descent direction
k ← 0
while ∥rk∥>ε

αk ← −
rk

T qk

p k
T A p k

x k+1 ← x k+αk pk

rk+1 ← rk−αk A p k

q k+1 ← M r k+1

βk ←
r k+1

T q k+1

rk
T qk

p k+1 ← q k+1+βk pk

k ← k +1
For large and sparse systems of equations it is necessary to 

choose preconditioners that are also sparse.
We will talk about three kinds of preconditioners suitable 

for sparse systems with SPD matrices:

• Jacobi M −1=(diag (A))−1.

• Incomplete Cholesky factorization M −1=Gl Gl
T, Gl≈L.

• Factorized sparse approximate inverse M=Hl
T H l, H l≈L−1

.
For  the  first  two  preconditioners,  M is  not  constructed, 

instead  M −1 is  defined  and  we  have  to  solve  a  system of 
equations in each step to obtain q k

M −1 q k=rk.
Parallelization  of  the  preconditioned  CG  is  done  using 

OpenMP,  operations  parallelized  are  matrix-vector,  dot 
products  and  vector  sums.  To  synchronize  threads  has  a 
computational cost, it is possible to modify to CG to reduce 
this costs maintaining numerical stability [DAze93].

A. Jacobi preconditioner
The diagonal part of M −1 is stored as a vector,

M −1=(diag (A))−1.

Parallelization of this algorithm is straightforward, because 
the calculus of each entry of q k is independent.

B. Incomplete Cholesky factorization preconditioner
This preconditioner has the form

M −1=Gl Gl
T,

where  Gl  is  a  lower  triangular  sparse  matrix  that  have 
structure similar to the Cholesky factorization of A.

• The structure of G0  is equal to the structure of the lower tri-
angular form of A.

• The structure of Gm  is equal to the structure of L (complete 
Cholesky factorization of A).

• For 0<l<m the structure of Gl  is creating having a number 
of entries between  L and the lower triangular form of  A, 
making easy to control the sparsity of the preconditioner.
Values of Gl  are filled using (6) and (7). This preconditioner 

is not always stable [Golu96 p535].
The use of this preconditioner implies to solve a system of 

equations in each CG step using a backward and a forward 
substitution  algorithm,  this  operations  are  fast  given  the 
sparsity of Gl . Unfortunately the dependency of values makes 
these substitutions very hard to parallelize.

C. Factorized sparse approximate inverse  
preconditioner

The aim of this preconditioner is to construct  M to be an 
approximation of the inverse of A with the property of being 
sparse. The inverse of a sparse matrix is not necessary sparse.

A way to create an approximate inverse is to minimize the 
Frobenius norm of the residual I−A M,

F (M )=∥I−A M∥F
2. (8)

The Frobenius norm is defined as

∥A∥F=√∑i=1

m

∑
j=1

n

∣a i j∣
2=√ tr(AT A).

It  is  possible  to  separate  (8)  into  decoupled  sums  of 
2-norms for each column [Chow98],

F (M )=∥I−A M∥F
2=∑

j=1

n

∥e j−A m j∥2
2,

where e j is the j-th column of I and m j is the j-th column of 
M. With this separation we can parallelize the construction of 
the preconditioner.

The  factorized  sparse  approximate  inverse  preconditioner 
[Chow01] creates a preconditioner

M=Gl
TGl,

where G is a lower triangular matrix such that
Gl≈L−1,

where L is the Cholesky factor of A. l is a positive integer that 
indicates a level of sparsity of the matrix.

Instead of  minimizing (8),  we minimize  ∥I−Gl L∥F
2,  it  is 

noticeable that this can be done without knowing  L, solving 
the equations
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(Gl L LT)i j=(LT)i j , (i , j)∈S L,
this is equivalent to

(Gl A)i j=(I )i j, (i , j)∈S L,
S L contains the structure of Gl .

This preconditioner has these features:
• M is SPD if there are no zeroes in the diagonal of Gl .

• The algorithm to construct the preconditioner is paralleliz-
able.

• This algorithm is stable if A is SPD.
The algorithm to calculate the entries of Gl  is:

Let S l  be the structure of Gl

for j ← 1…n
for ∀(i , j)∈Sl

solve (AGl)i j=δi j

Entries of Gl  are calculated by rows. To solve (AGl)i j=δi j 
means that, if m=η((Gl)j) is the number of non zero entries of 
the column j  of Gl , then we have to solve a small SPD system 
of size m×m.

A simple way to define a structure  Sl  for  Gl  is to simply 
take the lower triangular part of A .

Another way is to construct Sl  from the structure take from
Ã, Ã2, ..., Ãl ,

where Ã is a truncated version of A,

Ãi j={1 if i= j  o ∣(D−1/2 A D−1 /2)i j∣>threshold
0 other case

,

the  threshold  is  a  non  negative  number  and  the  diagonal 
matrix D is

D̃i i={∣Ai i∣ if ∣Ai i∣>0
1 other case

.

Powers  Ãl  can be calculated combining rows of  Ã.  Lets 
denote the k-th row of Ãl  as Ãk , :

l ,

Ãk , :
l = Ãk , :

l−1 Ã.
The structure  Sl  will  be  the  lower  triangular  part  of  Ãl . 

With this truncated  Ãl , a  G̃l  is calculated using the previous 
algorithm to create a preconditioner M=G̃l

TG̃l .
The  vector  q k ← M rk is  calculated  with  two  matrix-

vector products,
M rk=G̃l

T(G̃l rk ).

VIII. NUMERICAL EXPERIMENTS

A. Solutions with OpenMP
First we will show results for the parallelization of solvers 

with OpenMP. The next example is  a 2D solid deformation 
with 501,264 elements, 502,681 nodes. A system of equations 
with 1’005.362 variables is formed, the number of non zero 
entries are  η(K )=18 ' 062,500 ,  η(L)=111 ' 873,237 . Tolerance 

used in CG methods is ∥rk∥≥1×10−5.

Cholesky CG CG-Jacobi CG-IChol CG-FSAI
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450 1 core
2 cores
4 cores
8 cores

Ti
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e 
[s

]

Solver 1 core
time [s]

2 cores
time [s]

4 cores
time [s]

8 cores
time [s]

Steps Memory

Cholesky 227 131 82 65 3,051,144,550
CG 457 306 258 260 9,251 317,929,450
CG-Jacobi 369 245 212 214 6,895 325,972,366
CG-IChol 154 122 113 118 1,384 586,380,322
CG-FSAI 320 187 156 152 3,953 430,291,930

The next example is  a 3D solid model of a building that 
sustain  deformation due  to  self-weight.  Basement  has  fixed 
displacements.

The domain was discretized in 264,250 elements, 326,228 
nodes, 978,684 variables, η(K )=69 ’255,522 .

Cholesky CG CG-Jacobi CG-FSAI
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1 core 2 cores 4 cores 6 cores 8 cores
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e 
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]

Solver 1 core
time [m]

2 cores
time [m]

4 cores
time [m]

6 cores
time [m]

8 cores
time [m]

Memory

Cholesky 143 74 44 34 32 19,864,132,056
CG 388 245 152 147 142 922,437,575
CG-Jacobi 160 93 57 54 55 923,360,936
CG-FSAI 74 45 27 25 24 1,440,239,572

In this model, conjugate gradient with incomplete Cholesky 
factorization failed to converge.

B. Solutions with MPI+OpenMP
Test  were  executed in  a  cluster  with 14 nodes,  each one 

with two dual core Intel Xeon E5502 (1.87GHz) processors, a 
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total of 56 cores.
The  problem  tested  is  the  same  3D  solid  model  of  a 

building.  Using  domain  decomposition  we  tested  the  this 
problem using the following configurations:
• 14 partitions in 14 computers, using 4 cores per solver.

• 28 partitions in 14 computers, using 2 cores per solver.

• 56 partitions in 14 computers, using 1 core per solver.

Parallel alternating Schwarz method is set to iterate until a 
global tolerance of ∥ui∥≤1×10−4 is reached for all partitions.

Solution times:

Cholesky CG-Jacobi CG-FSAI
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2,444
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1,941

686
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14 partitions
28 partitions
56 partitions

Ti
m

e 
[s

]

Partitions Cholesky CG-Jacobi CG-FSAI
14 347.3 2,444.2 847.5
28 177.5 1,940.5 685.9
56 165.3 2,234.8 757.9

Memory usage:

Cholesky CG-Jacobi CG-FSAI
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8,000,000,000
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12,000,000,000 14 partitions
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56 partitions
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]

Partitions Cholesky CG-Jacobi CG-FSAI
14 12,853,865,804 1,149,968,796 1,779,394,516
28 12,520,198,517 1,290,499,837 1,985,459,829
56 11,906,979,912 1,405,361,320 2,156,224,760

IX. CONCLUSIONS

We found that incomplete Cholesky factorization is unstable 
for some matrices, it is possible to stabilize the solver making 
the preconditioner  diagonal-dominant,  but  we have to use a 
heuristic to do so.

The  big  issue  for  domain  decomposition  with  iterative 
solvers is load balancing. Even thought partitioned meshes had 
almost the same number of nodes,  the condition number of 
each matrix  could vary a lot,  making difficult  to efficiently 
balance  workload  in  each  Schwarz  iteration.  The  following 
images  show  this  effect  in  several  iterations.  Left  image 
correspond to the workload of the fastest solved partition (less 
used  core),  right  image  shows  the  workload  of  the  slower 
solved partition (core used intensively).

It  is  complex to partition domains in such way that  each 
partition take the same time to be solved. This issue is less 
noticeable when Cholesky solver is used.

To  split  the  problem  using  domain  decomposition  with 
Cholesky works well, the fastest configuration was using one 
thread  per  solver.  The  obvious  drawback  is  the  memory 
consumption. We still  can solve larger  systems of equations 
using  CG with FSAI but it will take more time.

For future work, some strategies can be taken to improve 
convergence:
• Create from the problem mesh a coarse mesh to solve this 

first and have a two level solution, the coarse solution is 
used in the Schwartz algorithm and have a better approxim-
ation 

• It is possible to create the preconditioners from the overlap-
ping of partitions to improve convergence.

• Original alternating Schwarz algorithm does not solve both 
partitions at the same time, it alternates. Partition coloring 
could be used to solve in parallel all non adjacent partitions 
with color 1, and use these solutions as boundary conditions 
for all partitions with color 2, etc. Several colors could be 
used.
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