
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Abstract—Finite element analysis of elastic deformation of
three-dimensional complex structures using a fine mesh could
require to solve systems of equations with several million
variables.

Domain decomposition is used to separate workload, instead of
solving a huge system of equations, the domain is partitioned and
for each partition a smaller system of equations is solved, all
partitions are solved in parallel. Each partition is solved in a
single MPI (Message Passing Interface) process, updates of
boundary conditions among processes is done through MPI
message routines.

Parallelization of solvers is also done by using OpenMP.
Algorithms for solving systems of equations are implemented to
run in multi-core processors, we will try two kinds of solvers:
iterative (preconditioned conjugate gradient) and direct
(Cholesky factorization). We will discuss some strategies to make
these solvers parallelizable.

Numerical experiments were done using a program that we
created from scratch, it was programed in C++ and tested in a
Beowulf cluster with multi-core nodes.

Different configurations for domain decompositions are tested,
for instance, using many small partitions each one using a single
core, or fewer partitions using several cores that share memory.
This kind of experiments becomes very useful when one is
looking for an adequate compromise between solution time and
memory requirements when a Beowulf cluster is used.

Index terms — Parallel computing, domain decomposition,
finite element method, sparse systems, linear algebra.

I. INTRODUCTION

his is a high performance/large-scale application case
study of the finite element method for solid mechanics.

Our goal is to calculate displacements, strain and stress of
solids discretized with large meshes (millions of elements)
using parallel computing.

T
We want to calculate linear inner displacements of a solid

resulting from forces or displacements imposed on its
boundaries.

 Manuscript received March 31, 2011.
J. Miguel Vargas-Felix and Salvador Botello-Rionda are with the Center of

Mathematical Resarch (CIMAT), Guanajuato, Gto. 36240 México (e-mail:
miguelvargas@cimat.mx and botello@cimat.mx).

The displacement vector inside the domain is defined as

u(x , y , z)=(u(x , y , z)
v (x , y , z)
w(x , y , z)),

the strain vector ε is

ε=(
ε x

ε y

ε y

γx y

γ y z

γz x

)=(
∂u
∂ x
∂ v
∂ y
∂w
∂ z

∂u
∂ y

+∂v
∂ x

∂v
∂ z

+∂w
∂ y

∂w
∂ x

+∂u
∂ z

)=(
∂
∂ x

0 0

0 ∂
∂ y

0

0 0 ∂
∂ z

∂
∂ y

∂
∂ x

0

0 ∂
∂ z

∂
∂ y

∂
∂ z

0 ∂
∂ x

)(u
v
w)=Ε u, (1)

where ε x, ε y and ε z are normal strains; γx, γx and γx are shear
strains. We define a differential operator Ε .

Stress vector is defined as
σ=(σ x ,σ y ,σz ,τ x y , τ y z , τ zx)

T,
where σ x, σ y and σ z are normal stresses; τ x, τ x and τ x are
tangential stresses.

Stress an strain are related by
σ=Dε; (2)

D is called the constitutive matrix, it depends on Young
moduli and Poisson coefficients characteristic of media.

Solution is found using the finite element method with the
Galerkin weighted residuals. This means that we solve the
integral problem in each element using a weak formulation.

Comparison of solution strategies for structure
deformation using hybrid OpenMP-MPI methods

J. M. Vargas-Felix, S. Botello-Rionda

mailto:miguelvargas@cimat.mx
mailto:botello@cimat.mx

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

The integral expression of equilibrium in elasticity problems
can be obtained using the principle of virtual work [Zien05
pp65-71],

∫
V
δε Tσ dV=∫

V
δuT b dV +∮

A
δuT t dA+∑

i
δui

T q i, (3)

here b, t and q are the vectors of mass, boundary and punctual
forces respectively. The weight functions for weak formulation
are chosen to be the interpolation functions of the element,
these are N i, i=1,… ,M. M is the number of nodes of the
element, ui is the coordinate of the i th node, we have that

u=∑
i=1

M

N i ui. (4)

Using (4), we can rewrite (1) as:

ε=∑
i=1

M

Ε N i ui,

or in a more compact form

ε=(Ε N 1 Ε N 2 ⋯ Ε N M)(u1

u2

⋮
uM
)=B u.

Now we can express (2) as σ=D Bu, and then (3) by

∫
V e

BT D B dV e

⏟
K e

u=∫
V e

b dV e

⏟
f b

e

+∮
Ae

t dAe

⏟
f t

e

+q e

. (5)

By integrating (5) we obtain a system of equations for each
element,

K e ue= f b
e+ f t

e+qe .
All systems of equations are assembled in a global system of
equations,

K u= f .
K is called the stiffness matrix, if enough boundary

conditions are applied, it will be symmetric positive definite
(SPD). By construction it is sparse with storage requirements
of order O(n), where n is the total number of nodes in the
domain. By solving this system we will obtain the
displacements of all nodes in the domain. The solution of this
system of equations is the task that we want do using parallel
computing.

II. DOMAIN DECOMPOSITION

We can separate a huge finite element problem into smaller
problems by partitioning the mesh to create sub-domains. In
this case we will use domain decomposition with overlapping,
these methods were first studied by Schwarz [Tose05]. For
each sub-domain a system of equations with a SPD matrix is
assembled thus we can solve it using solver algorithms that are
implemented to run in parallel, such as Cholesky factorization
or preconditioned conjugate gradient.

The domain decomposition algorithm we used is parallel
Schwarz alternating method [Smit96], this is an iterative
algorithm. We start with a domain Ω with boundary ∂Ω.

Ω2
Ω1

∂Ω2

Ω

∂Ω

∂Ω1

Let L be a differential operator such that L x=y in Ω.
Dirichlet conditions x=b are applied on ∂Ω. The domain is
divided in two partitions Ω1 and Ω2 with boundaries ∂Ω1 and
∂Ω2 respectively.

Partitions are overlapped, now Ω=Ω1∪Ω2 and Ω1∩Ω2≠∅.

Γ2 Γ1

∂Ω1∖ Γ1 ∂Ω2∖ Γ2

We define artificial boundaries Γ1 and Γ2, these are part of
Ω1 and Ω2, and are inside Ω.

Schwarz alternating method consists on solving each
partition independently, fixing Dirichlet conditions in artificial
boundaries with values from adjacent partition resulting from
previous iteration.
x 1

0, x 2
0, initial approximations

ε tolerance
i ← 0
while ∥x1

i −x 1
i−1∥>ε or ∥x 2

i −x 2
i−1∥>ε

solve solve
L x 1

i=y in Ω1 L x 2
i=y in Ω2

with x 1
i=b on ∂Ω 1∖Γ 1 with x 2

i =b on ∂Ω 2∖Γ2

x 1
i ← x 2

i−1∣Γ 1
on Γ 1 x 2

i ← x1
i−1∣Γ 2

on Γ 2

i ← i+1
When the L operator has a matrix representation,

alternating Schwarz algorithm corresponds (due to
overlapping) to the iterative Gauss-Seidel by blocks [Smit96
p13].

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

In finite element problems, overlapping is adding to each
partition one or several layers of elements adjacent to the
boundary between partitions.

Ω1

Ω2

Γ2

Γ1

One layer

Ω1

Ω2

Γ1

Γ2

Two layers

A. Convergence speed
There is a degradation on the convergence speed when the

number of partitions raise [Smith96 p53]. Next image shows a
pathological case of domain decomposition.

Ω

Ω1 Ω2 Ω3 ΩN

In each iteration of the alternating Schwarz method
information is only transmitted to adjacent partitions.
Therefore, if we have a boundary condition different to zero in
the boundary of Ω1, and we start in iteration 0, it will take N
iterations for the local solution of partition ΩN to be different
to 0.

The Schwarz algorithm typically converge at a speed that is
independent (or slightly independent) of mesh density when
the overlapping is large enough [Smith96 p74].

A deeper study of theory of Schwarz algorithms can be
found in [Tose05].

III. COMPUTER CLUSTERS AND MPI
We developed a software program that runs in parallel in a

Beowulf cluster [Ster95]. A Beowulf cluster consists of several
multi-core computers (nodes) connected with a high speed
network.

S
la

ve
 n

od
es

Master node

Network switch

External
network

In our software implementation each partition is assigned to
one process. To parallelize the program and move data among
nodes we used the Message Passing Interface (MPI) schema
[MPIF08], it contains set of tools that makes easy to start
several instances of a program (processes) and run them in
parallel. Also, MPI has several libraries with a rich set of

routines to send and receive data messages among processes in
an efficient way. MPI can be configured to execute one or
several processes per node.

For partitioning the mesh we used the METIS library
[Kary99].

IV. OPENMP
Using domain decomposition with MPI we could have a

partition assigned to each node of a cluster, we can solve all
partitions concurrently. If each node is a multi-core computer
we can also parallelize the solution of the system of equations
of each partition. To implement this parallelization we use the
OpenMP model.

This parallelization model consists in compiler directives
inserted in the source code to parallelize sections of code. All
cores have access to the same memory, this model is known as
shared memory schema.

In modern computers with shared memory architecture the
processor is a lot faster than the memory [Wulf95].

Motherboard
Processor
Core

32
K

B
L1

Core

32
K

B
L1

Processor
Core

32
K

B
L1

Core
32

K
B

L1

Bu
s

RAM

4M
B

 c
ac

he
 L

2
4M

B
 c

ac
he

 L
2

To overcome this, a high speed memory called cache exists
between the processor and RAM. This cache reads blocks of
data from RAM meanwhile the processor is busy, using an
heuristic to predict what the program will require to read next.
Modern processor have several caches that are organized by
levels (L1, L2, etc), L1 cache is next to the core. It is
important to considerate the cache when programming high
performance applications, the next table indicates the number
of clock cycles needed to access each kind of memory by a
Pentium M processor:

Access to CPU cycles
CPU registers <=1

L1 cache 3
L2 cache 14

RAM 240
A big bottleneck in multi-core systems with shared memory

is that only one core can access the RAM at the same time.
Another bottleneck is the cache consistency. If two or more

cores are accessing the same RAM data then different copies
of this data could exists in each core’s cache, if a core
modifies its cache copy then the system will need to update all
caches and RAM, to keep consistency is complex and
expensive [Drep07]. Also, it is necesary to consider that cache
circuits are designed to be more efficient when reading
continuous memory data in an ascendent sequence [Drep07
p15].

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

To avoid lose of performance due to wait for RAM access
and synchronization times due to cache inconsistency several
strategies can be use:
• Work with continuous memory blocks.

• Access memory in sequence.

• Each core should work in an independent memory area.
Algorithms to solve our system of equations should take

care of these strategies.

V. MATRIX STORAGE

An efficient method to store and operate matrices of this
kind of problems is the Compressed Row Storage (CRS)
[Saad03 p362]. This method is suitable when we want to
access entries of each row of a matrix A sequentially.

For each row i of A we will have two vectors, a vector v i
A

that will contain the non-zero values of the row, and a vector
j i

A with their respective column indexes. For example a matrix
A and its CRS representation

A=(
8 4 0 0 0 0
0 0 1 3 0 0
2 0 1 0 7 0
0 9 3 0 0 1
0 0 0 0 0 5

),

8 4
1 2
1 3
3 4
2 1
1 3

7
5

9 3
2 3

1
6

5
6

v4
A=(9,3, 1)

j 4
A=(2,3, 6)

The size of the row will be denoted by ∣v i
A∣ or by ∣ j i

A∣.
Therefore the q th non zero value of the row i of A will be
denoted by (v i

A)q and the index of this value as (j i
A)q, with

q=1,… ,∣vi
A∣.

If we do not order entries of each row, then to search an
entry with certain column index will have a cost of O(∣vi

A∣) in

the worst case. To improve it we will keep v i
A and j i

A ordered
by the indexes j i

A. Then we could perform a binary algorithm

to have an search cost of O (log2∣v i
A∣).

The main advantage of using Compressed Row Storage is
when data in each row is stored continuously and accessed in a
sequential way, this is important because we will have and
efficient processor cache usage [Drep07].

VI. PARALLEL CHOLESKY FOR SPARSE MATRICES

The cost of using Cholesky factorization A=L LT is
expensive if we want to solve systems of equations with full
matrices, but for sparse matrices we could reduce this cost
significantly if we use reordering strategies and we store factor
matrices using CRS identifying non zero entries using
symbolic factorization. With this strategies we could maintain
memory and time requirements near to O(n). Also Cholesky
factorization could be implemented in parallel.

Formulae to calculate L entries are

Li j=
1

L j j(Ai j−∑
k=1

j−1

Li k L jk) , for i> j; (6)

L j j=√A j j−∑
k=1

j−1

L j k
2 . (7)

A. Reordering rows and columns
By reordering the rows and columns of a SPD matrix A we

could reduce the fill-in (the number of non-zero entries) of L.
The next images show the non zero entries of A∈ℝ556×556 and
the non zero entries of its Cholesky factorization L.

The number of non zero entries of A is η(A)=1810, and
for L is η(L)=8729 . The next images show A with reordering
by rows and columns.

By reordering we have a new factorization with η(L)=3215
, reducing the fill-in to 0.368 of the size of the not reordered
version. Both factorizations allow us to solve the same system
of equations.

The most common reordering heuristic to reduce fill-in is
the minimum degree algorithm, the basic version is presented
in [Geor81 p116]:
Let be a matrix A and its corresponding graph G0

i ← 1
repeat

Let node x i in Gi−1(X i−1 , E i−1) have minimum degree
Form a new elimination graph Gi(X i , E i) as follow:

Eliminate x i and its edges from Gi−1

Add edges make adj(x1) adjacent pairs in Gi

i ← i+1
while i<∣X∣

More advanced versions of this algorithm can be consulted
in [Geor89].

There are more complex algorithms that perform better in
terms of time and memory requirements, the nested dissection

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

algorithm developed by Karypis and Kumar [Kary99]
included in METIS library gives very good results.

B. Symbolic Cholesky factorization
This algorithm identifies non zero entries of L, a deep

explanation could be found in [Gall90 p86-88].
For an sparse matrix A, we define

a j ≝ {k> j ∣ Ak j≠0}, j=1…n,
as the set of non zero entries of column j of the strictly lower
triangular part of A.

In similar way, for matrix L we define the set
l j ≝ {k> j ∣ Lk j≠0}, j=1…n.

We also use sets define sets r j that will contain columns of
L which structure will affect the column j of L. The algorithm
is:
for j ← 1…n

r j ← ∅
l j ← a j

for i∈r j

l j ← l j∪l i∖ { j}

p ← {min {i∈l j} if l j≠∅
j other case

r p ← r p∪{ j}
This algorithm is very efficient, complexity in time and

memory usage has an order of O(η(L)). Symbolic
factorization could be seen as a sequence of elimination
graphs [Geor81 pp92-100].

C. Filling entries in parallel
Once non zero entries are determined we can rewrite (6)

and (7) as

Li j=
1

L j j(Ai j− ∑
k∈ j i

L∩ j j
L

k< j

Li k L jk), for i> j;

L j j=√A j j−∑
k ∈ j j

L

k< j

L j k
2

.

The resulting algorithm to fill non zero entries is:
for j ← 1…n

L j j ← A j j

for q ← 1…∣v j
L∣

L j j ← L j j−(v j
L)q(v j

L)q
L j j ← √L j j

L j j
T ← L j j

parallel for q ← 1…∣ j j
LT∣

i ← (j j
LT)q

Li j ← Ai j

r ← 1; ρ ← (j i
L)r

s ← 1; σ ← (ji
L)s

repeat
while ρ<σ

r ← r+1; ρ ← (j i
L)r

while ρ>σ
s ← s+1; σ ← (ji

L)s
while ρ=σ

if ρ= j
exit repeat

Li j ← Li j−(v i
L)r(v j

L)s
r ← r+1; ρ ← (j i

L)r
s ← s+1; σ ← (ji

L)s
Li j ←

Li j

L j j

L j i
T ← Li j

This algorithm could be parallelized if we fill column by
column. Entries of each column can be calculated in parallel
with OpenMP, because there are no dependence among them
[Heat91 pp442-445]. Calculus of each column is divided
among cores.

Core 1

Core 2

Core N

Cholesky solver is particularly efficient because the
stiffness matrix is factorized once. The domain is partitioned
in many small sub-domains to have small and fast Cholesky
factorizations.

VII. PARALLEL PRECONDITIONED CONJUGATE
GRADIENT

Conjugate gradient (CG) is a natural choice to solve
systems of equations with SPD matrices, we will discuss some
strategies to improve convergence rate and make it suitable to
solve large sparse systems using parallelization.

The condition number κ of a non singular matrix A∈ℝm×m,
given a norm ∥⋅∥ is defined as

κ(A)=∥A∥⋅∥A−1∥.
For the norm ∥⋅∥2,

κ2(A)=∥A∥2⋅∥A−1∥2=
σmax(A)
σmin(A) ,

where σ is a singular value of A.
For a SPD matrix,

κ(A)=
λmax(A)
λmin(A) ,

where λ is an eigenvalue of A.
A system of equations A x=b is bad conditioned if a small

change in the values of A or b results in a large change in x.
In well conditioned systems a small change of A or b

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

produces an small change in x. Matrices with a condition
number near to 1 are well conditioned.

A preconditioner for a matrix A is another matrix M such
that M A has a lower condition number

κ(M A)<κ(A).
In iterative stationary methods (like Gauss-Seidel) and more

general methods of Krylov subspace (like conjugate gradient)
a preconditioner reduces the condition number and also the
amount of steps necessary for the algorithm to converge.

Instead of solving
A x−b=0,

with preconditioning we solve
M (A x−b)=0.

The preconditioned conjugate gradient algorithm is:
x 0, initial approximation
r0 ← b−A x 0, initial gradient
q 0 ← M r0

p 0 ← q0, initial descent direction
k ← 0
while ∥rk∥>ε

αk ← −
rk

T qk

p k
T A p k

x k+1 ← x k+αk pk

rk+1 ← rk−αk A p k

q k+1 ← M r k+1

βk ←
r k+1

T q k+1

rk
T qk

p k+1 ← q k+1+βk pk

k ← k +1
For large and sparse systems of equations it is necessary to

choose preconditioners that are also sparse.
We will talk about three kinds of preconditioners suitable

for sparse systems with SPD matrices:

• Jacobi M −1=(diag (A))−1.

• Incomplete Cholesky factorization M −1=Gl Gl
T, Gl≈L.

• Factorized sparse approximate inverse M=Hl
T H l, H l≈L−1

.
For the first two preconditioners, M is not constructed,

instead M −1 is defined and we have to solve a system of
equations in each step to obtain q k

M −1 q k=rk.
Parallelization of the preconditioned CG is done using

OpenMP, operations parallelized are matrix-vector, dot
products and vector sums. To synchronize threads has a
computational cost, it is possible to modify to CG to reduce
this costs maintaining numerical stability [DAze93].

A. Jacobi preconditioner
The diagonal part of M −1 is stored as a vector,

M −1=(diag (A))−1.

Parallelization of this algorithm is straightforward, because
the calculus of each entry of q k is independent.

B. Incomplete Cholesky factorization preconditioner
This preconditioner has the form

M −1=Gl Gl
T,

where Gl is a lower triangular sparse matrix that have
structure similar to the Cholesky factorization of A.

• The structure of G0 is equal to the structure of the lower tri-
angular form of A.

• The structure of Gm is equal to the structure of L (complete
Cholesky factorization of A).

• For 0<l<m the structure of Gl is creating having a number
of entries between L and the lower triangular form of A,
making easy to control the sparsity of the preconditioner.
Values of Gl are filled using (6) and (7). This preconditioner

is not always stable [Golu96 p535].
The use of this preconditioner implies to solve a system of

equations in each CG step using a backward and a forward
substitution algorithm, this operations are fast given the
sparsity of Gl . Unfortunately the dependency of values makes
these substitutions very hard to parallelize.

C. Factorized sparse approximate inverse
preconditioner

The aim of this preconditioner is to construct M to be an
approximation of the inverse of A with the property of being
sparse. The inverse of a sparse matrix is not necessary sparse.

A way to create an approximate inverse is to minimize the
Frobenius norm of the residual I−A M,

F (M)=∥I−A M∥F
2. (8)

The Frobenius norm is defined as

∥A∥F=√∑i=1

m

∑
j=1

n

∣a i j∣
2=√ tr(AT A).

It is possible to separate (8) into decoupled sums of
2-norms for each column [Chow98],

F (M)=∥I−A M∥F
2=∑

j=1

n

∥e j−A m j∥2
2,

where e j is the j-th column of I and m j is the j-th column of
M. With this separation we can parallelize the construction of
the preconditioner.

The factorized sparse approximate inverse preconditioner
[Chow01] creates a preconditioner

M=Gl
TGl,

where G is a lower triangular matrix such that
Gl≈L−1,

where L is the Cholesky factor of A. l is a positive integer that
indicates a level of sparsity of the matrix.

Instead of minimizing (8), we minimize ∥I−Gl L∥F
2, it is

noticeable that this can be done without knowing L, solving
the equations

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

(Gl L LT)i j=(LT)i j , (i , j)∈S L,
this is equivalent to

(Gl A)i j=(I)i j, (i , j)∈S L,
S L contains the structure of Gl .

This preconditioner has these features:
• M is SPD if there are no zeroes in the diagonal of Gl .

• The algorithm to construct the preconditioner is paralleliz-
able.

• This algorithm is stable if A is SPD.
The algorithm to calculate the entries of Gl is:

Let S l be the structure of Gl

for j ← 1…n
for ∀(i , j)∈Sl

solve (AGl)i j=δi j

Entries of Gl are calculated by rows. To solve (AGl)i j=δi j
means that, if m=η((Gl)j) is the number of non zero entries of
the column j of Gl , then we have to solve a small SPD system
of size m×m.

A simple way to define a structure Sl for Gl is to simply
take the lower triangular part of A .

Another way is to construct Sl from the structure take from
Ã, Ã2, ..., Ãl ,

where Ã is a truncated version of A,

Ãi j={1 if i= j o ∣(D−1/2 A D−1 /2)i j∣>threshold
0 other case

,

the threshold is a non negative number and the diagonal
matrix D is

D̃i i={∣Ai i∣ if ∣Ai i∣>0
1 other case

.

Powers Ãl can be calculated combining rows of Ã. Lets
denote the k-th row of Ãl as Ãk , :

l ,

Ãk , :
l = Ãk , :

l−1 Ã.
The structure Sl will be the lower triangular part of Ãl .

With this truncated Ãl , a G̃l is calculated using the previous
algorithm to create a preconditioner M=G̃l

TG̃l .
The vector q k ← M rk is calculated with two matrix-

vector products,
M rk=G̃l

T(G̃l rk).

VIII. NUMERICAL EXPERIMENTS

A. Solutions with OpenMP
First we will show results for the parallelization of solvers

with OpenMP. The next example is a 2D solid deformation
with 501,264 elements, 502,681 nodes. A system of equations
with 1’005.362 variables is formed, the number of non zero
entries are η(K)=18 ' 062,500 , η(L)=111 ' 873,237 . Tolerance

used in CG methods is ∥rk∥≥1×10−5.

Cholesky CG CG-Jacobi CG-IChol CG-FSAI
0

50

100

150

200

250

300

350

400

450 1 core
2 cores
4 cores
8 cores

Ti
m

e
[s

]

Solver 1 core
time [s]

2 cores
time [s]

4 cores
time [s]

8 cores
time [s]

Steps Memory

Cholesky 227 131 82 65 3,051,144,550
CG 457 306 258 260 9,251 317,929,450
CG-Jacobi 369 245 212 214 6,895 325,972,366
CG-IChol 154 122 113 118 1,384 586,380,322
CG-FSAI 320 187 156 152 3,953 430,291,930

The next example is a 3D solid model of a building that
sustain deformation due to self-weight. Basement has fixed
displacements.

The domain was discretized in 264,250 elements, 326,228
nodes, 978,684 variables, η(K)=69 ’255,522 .

Cholesky CG CG-Jacobi CG-FSAI
0

50

100

150

200

250

300

350

400

1 core 2 cores 4 cores 6 cores 8 cores

Ti
m

e
[m

]

Solver 1 core
time [m]

2 cores
time [m]

4 cores
time [m]

6 cores
time [m]

8 cores
time [m]

Memory

Cholesky 143 74 44 34 32 19,864,132,056
CG 388 245 152 147 142 922,437,575
CG-Jacobi 160 93 57 54 55 923,360,936
CG-FSAI 74 45 27 25 24 1,440,239,572

In this model, conjugate gradient with incomplete Cholesky
factorization failed to converge.

B. Solutions with MPI+OpenMP
Test were executed in a cluster with 14 nodes, each one

with two dual core Intel Xeon E5502 (1.87GHz) processors, a

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 8

total of 56 cores.
The problem tested is the same 3D solid model of a

building. Using domain decomposition we tested the this
problem using the following configurations:
• 14 partitions in 14 computers, using 4 cores per solver.

• 28 partitions in 14 computers, using 2 cores per solver.

• 56 partitions in 14 computers, using 1 core per solver.

Parallel alternating Schwarz method is set to iterate until a
global tolerance of ∥ui∥≤1×10−4 is reached for all partitions.

Solution times:

Cholesky CG-Jacobi CG-FSAI
0

500

1000

1500

2000

2500

347

2,444

848

178

1,941

686

165

2,235

758

14 partitions
28 partitions
56 partitions

Ti
m

e
[s

]

Partitions Cholesky CG-Jacobi CG-FSAI
14 347.3 2,444.2 847.5
28 177.5 1,940.5 685.9
56 165.3 2,234.8 757.9

Memory usage:

Cholesky CG-Jacobi CG-FSAI
0

2,000,000,000

4,000,000,000

6,000,000,000

8,000,000,000

10,000,000,000

12,000,000,000 14 partitions
28 partitions
56 partitions

M
em

or
y

[b
yt

es
]

Partitions Cholesky CG-Jacobi CG-FSAI
14 12,853,865,804 1,149,968,796 1,779,394,516
28 12,520,198,517 1,290,499,837 1,985,459,829
56 11,906,979,912 1,405,361,320 2,156,224,760

IX. CONCLUSIONS

We found that incomplete Cholesky factorization is unstable
for some matrices, it is possible to stabilize the solver making
the preconditioner diagonal-dominant, but we have to use a
heuristic to do so.

The big issue for domain decomposition with iterative
solvers is load balancing. Even thought partitioned meshes had
almost the same number of nodes, the condition number of
each matrix could vary a lot, making difficult to efficiently
balance workload in each Schwarz iteration. The following
images show this effect in several iterations. Left image
correspond to the workload of the fastest solved partition (less
used core), right image shows the workload of the slower
solved partition (core used intensively).

It is complex to partition domains in such way that each
partition take the same time to be solved. This issue is less
noticeable when Cholesky solver is used.

To split the problem using domain decomposition with
Cholesky works well, the fastest configuration was using one
thread per solver. The obvious drawback is the memory
consumption. We still can solve larger systems of equations
using CG with FSAI but it will take more time.

For future work, some strategies can be taken to improve
convergence:
• Create from the problem mesh a coarse mesh to solve this

first and have a two level solution, the coarse solution is
used in the Schwartz algorithm and have a better approxim-
ation

• It is possible to create the preconditioners from the overlap-
ping of partitions to improve convergence.

• Original alternating Schwarz algorithm does not solve both
partitions at the same time, it alternates. Partition coloring
could be used to solve in parallel all non adjacent partitions
with color 1, and use these solutions as boundary conditions
for all partitions with color 2, etc. Several colors could be
used.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 9

REFERENCES

[Chow98] E. Chow, Y. Saad. Approximate Inverse
Preconditioners via Sparse-Sparse Iterations. SIAM
Journal on Scientific Computing. Vol. 19-3, pp. 995-1023.
1998.

[Chow01] E. Chow. Parallel implementation and practical use
of sparse approximate inverse preconditioners with a priori
sparsity patterns. International Journal of High
Performance Computing, Vol 15. pp 56-74, 2001.

[DAze93] E. F. D'Azevedo, V. L. Eijkhout, C. H. Romine.
Conjugate Gradient Algorithms with Reduced
Synchronization Overhead on Distributed Memory
Multiprocessors. Lapack Working Note 56. 1993.

[Drep07] U. Drepper. What Every Programmer Should Know
About Memory. Red Hat, Inc. 2007.

[Gall90] K. A. Gallivan, M. T. Heath, E. Ng, J. M. Ortega, B.
W. Peyton, R. J. Plemmons, C. H. Romine, A. H. Sameh,
R. G. Voigt, Parallel Algorithms for Matrix Computations,
SIAM, 1990.

[Geor81] A. George, J. W. H. Liu. Computer solution of large
sparse positive definite systems. Prentice-Hall, 1981.

[Geor89] A. George, J. W. H. Liu. The evolution of the
minimum degree ordering algorithm. SIAM Review Vol
31-1, pp 1-19, 1989.

[Golu96] G. H. Golub, C. F. Van Loan. Matrix Computations.
Third edition. The Johns Hopkins University Press, 1996.

[Heat91] M T. Heath, E. Ng, B. W. Peyton. Parallel
Algorithms for Sparse Linear Systems. SIAM Review,
Vol. 33, No. 3, pp. 420-460, 1991.

[Kary99] G. Karypis, V. Kumar. A Fast and Highly Quality
Multilevel Scheme for Partitioning Irregular Graphs.
SIAM Journal on Scientific Computing, Vol. 20-1, pp.
359-392, 1999.

[MPIF08] Message Passing Interface Forum. MPI: A
Message-Passing Interface Standard, Version 2.1.
University of Tennessee, 2008.

[Saad03] Y. Saad. Iterative Methods for Sparse Linear
Systems. SIAM, 2003.

[Smit96] B. F. Smith, P. E. Bjorstad, W. D. Gropp. Domain
Decomposition: Parallel Multilevel Methods for Elliptic
Partial Differential Equations. Cambridge University Press,
1996.

[Ster95] T. Sterling, D. J. Becker, D. Savarese, J. E.
Dorband, U. A. Ranawake, C. V. Packer. BEOWULF: A
Parallel Workstation For Scientific Computation.
Proceedings of the 24th International Conference on
Parallel Processing, 1995.

[Tose05] A. Toselli, O. Widlund. Domain Decomposition
Methods - Algorithms and Theory. Springer, 2005.

[Wulf95] W. A. Wulf , S. A. Mckee. Hitting the Memory
Wall: Implications of the Obvious. Computer Architecture
News, 23(1):20-24, March 1995.

[Zien05] O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, The Finite
Element Method: Its Basis and Fundamentals. Sixth
edition, 2005.

